您当前的位置:首页 > 发表论文>论文发表

基因组编辑技术相关研究

2023-12-12 00:40 来源:学术参考网 作者:未知

基因组编辑技术相关研究

基因编辑技术不断发展,到现在已发展到第三代基因编辑技术。第三代基因技术CRISPR/Cas克服了传统基因操作的周期长、效率低、应用窄等缺点。作为一种最新涌现的基因组编辑工具,CRISPR/Cas能够完成RNA导向的DNA识别以及编辑。通过一段序列特异性向导RNA分子(sequence- specific guide RNA)引导核酸内切酶到靶序列处,从而完成基因组的精确编辑,因其操作简单、成本低、高效率,近几年成为炙手可热的基因编辑手段,目前已广泛用于模式生物研究,医疗,植物作物,农业畜牧等领域。

CRISPR/Cas9的出现给了科研人员无限想象的可能,基于CRISPR/Cas9的技术很快就被广泛应用于全世界各个实验室中,这里我们将主要介绍最常用的几种应用。

早期,科研人员通过同源重组(HR)介导的基因打靶技术来实现基因编辑,但因效率太低,极大地限制了其应用。为了克服这一难题,一系列通过核酸内切酶介导的基因编辑技术被开发出来,通过这些核酸内切酶切割特定的基因组序列,借助细胞自身修复体系如非同源末端连接或同源重组修复方式,并由此达到改变基因组序列的目的,锌指核酸内切酶(ZFNs)、类转录激活因子效应物核酸酶(TALENs)以及sgRNA介导的Cas9核酸内切酶正是基于此原理工作的。

锌指核酸内切酶(ZFNs)和类转录激活因子效应物核酸酶(TALENs)均可通过蛋白-DNA相互作用识别基因组上的特定DNA序列并完成特定位点的切割,但是它们因效率低下、可选潜在位点少、成本高等原因极大地限制了它们的应用,直到CRISPR/Cas9系统的出现,科研人员才找到了一种成本低、效率高、简单易用的基因编辑工具。

CRISPR/Cas9出现之后,科研人员最先想到的便是将其运用到基因编辑上了,根据目标基因的外显子序列设计single guide RNA(sgRNA)并与含有Cas9编码序列的质粒一起转入细胞,sgRNA通过碱基互补配对的原则引导Cas9蛋白靶向目标DNA序列,Cas9蛋白会在该位点切割DNA,引发DNA双链断裂(DSB),此时细胞通过非同源末端连接修复(NHEJ)完成DNA的自身修复,

因修复过程中常常发生碱基的添加和丢失,而最终导致基因的移码突变从而达到基因敲除的目的,或者针对目的基因的上下游序列各设计一个sgRNA,从而引发该基因上下游同时发生DSB,再通过DNA损伤修复机制将断裂的上下游两端的DNA连接在一起,引发DNA片段缺失,从而达到基因敲除的目的。如果在此基础上为细胞引入一个修复的模板质粒,细胞就会以此模板进行同源重组修复,如果引入的修复模板是一个想要插入的基因,便可在特定的位置进行基因敲入了。

随着人们对Cas9研究的不断深入,Cas9发挥功能的结构基础也渐渐明确,在Cas9发挥切割DNA的功能时,它的两个结构域发挥着重要作用,分别是RuvC和HNH,其中HNH结构负责sgRNA互补链的切割,切割的位点位于PAM的5'端的第三个碱基外侧,RuvC结构域负责非互补链的切割,切割位点是在PAM上游的3-8碱基之间,当将这二者同时突变失活,便产生了失去DNA切割活性的Cas9蛋白了(dCas9),dCas9虽然失去了对DNA的切割能力,但依旧可以在sgRNA的引导下到达指定的DNA序列处,这是基于sgRNA–dCas9复合体的这一特征,若在dCas9上融合不同功能的结构域,便可在特定的DNA区域完成不同的修饰了,这便形成了基于CRISPR/dCas9的工具包了。

脑洞大开的科学家利用dCas9蛋白,开发出各种用途的工具,可谓是把CRISPR/dCas9利用得淋漓尽致,这里我们举几个简单的例子如研究人员针对目标基因的启动子序列设计sgRNA,使得sgRNA–dCas9复合体靶向结合到目标基因的启动子上,因dCas9蛋白带来的空间位阻可干扰转录因子的结合,从而引发在转录水平上的干扰基因表达的效果,而在此基础上为了达到更佳的干扰效果,一些能够引发基因转录阻遏的结构域也被融合到dCas9蛋白上,如KRAB(Krüppel-associated box)等。

既然可以通过CRISPR/dCas9实现基因表达的干扰,那是不是也可以通过CRISPR/dCas9实现激活基因表达呢?答案是肯定的。科研人员通过向dCas9上融合vp64(四个串联的vp16)、p65AD(p65 activation domain)等促进促进基因转录的结构域,实现基因的内源性激活,在经过各种优化之后,比如由vp64、p65AD和VPR(Epstein-Barr病毒R反式激活因子Rta47)组成的三联结构域(dCas9–VPR)就可以实现很高水平的内源性激活基因表达的效果了。

通过基于CRISPR/dCas9的基因表达干扰和内源性激活工具的建立,使得科研人员在进行诸如基因功能研究的工作时有了更为简单、高效且低成本的研究工具。这很大程度上为科研人员节约了时间和成本。

表观遗传研究是近些年来非常火热的领域,DNA甲基化、组蛋白乙酰化等都在生物体中发挥着重要的生物学功能,而CRISPR/dCas9在表观遗传的研究中也成为了十分强大的工具。比如CRISPR/dCas9介导的靶向DNA甲基化修饰,我们知道在DNA甲基化过程中DNA甲基转移酶(DNA methytransferases,DNMTs)起着关键的催化作用,而且大部分DNA甲基化都发生在CpG岛,

因此研究人员尝试着将DNMTs的催化结构域融合到dCas9上形成dCas9-Dnmt3a3L,并通过sgRNA的引导靶向目标DNA序列的CpG附近催化其甲基化,以实现DNA甲基化的定点编辑。相似地,研究人员将在DNA去甲基化过程中起关键催化作用的TET1蛋白的催化结构域融合到dCas9上形成dCas9-TET1,同样的通过sgRNA的引导靶向目标DNA序列的CpG附近,可以实现去甲基化修饰。

再如CRISPR/dCas9介导的靶向组蛋白修饰,与靶向DNA甲基化修饰相似,一些和组蛋白修饰相关的酶包括组蛋白去甲基化酶(LSD1/KDM1A)、组蛋白乙酰转移酶以及组蛋白甲基转移酶等也被融合到dCas9蛋白上,以实现靶向组蛋白修饰。

除以上的应用外,CRISPR/dCas9还被用于其他多个领域,比如将EGFP融合到dCas9上,通过sgRNA靶向特定DNA序列实现基因组成像。此外,还有研究人员开发出基于CRISPR/dCas9的enChIP技术,以来探测特定基因组区域上的DNA-蛋白质相互作用,通过sgRNA靶向特定基因组基因座的标记dCas9的抗体免疫沉淀,之后通过蛋白质谱(enChIP-MS),鉴定与之特异性相互作用的蛋白质。这些工具的开发都极大地帮助了科研人员,使得之前无法实现的操作成为可能,推动了生命科学的快速发展。

以往基于ZFN或TALENs的基因组编辑技术,需要针对DNA靶序列设计蛋白质,而CRISPR技术仅需要根据不同的靶序列合成相应的80nt左右的sgRNA来引导Cas9蛋白对序列进行修饰,这就实现了基因编辑技术的高通量应用。

CRISPR全基因组筛选技术可用于必需基因及药物靶标基因鉴定。多伦多大学Jason Moffa研究组建立了覆盖全基因组gRNA库并在5个细胞系中逐个敲除了1.8万个基因,最后鉴定出在不同细胞系间保守的1580个必需基因构成的“core fitness genes”。

同样,美国达纳-法伯癌症研究所W. Nick Haining研究组通过CRISPR/Cas9系统性地敲除了黑色素瘤细胞的2368个基因,发现ptpn2基因缺失会使这些癌细胞对PD-1阻断更加敏感。华盛顿大学医学院Michael Diamond研究组利用CRISPR/Cas9鉴定在宿主细胞中坚定了黄病毒感染所绝对必需的9个基因,其中spcs1基因缺失时,不仅降低黄病毒感染率,而且对细胞也不产生副作用,这将是一个潜在的黄病毒药物靶标。

CRISPR/Cas9作为新一代基因编辑技术,同样可被应用于建立疾病模型及培育供体器官。基因治疗可实现在患者自身细胞中纠正遗传缺陷,并结合其他生物学技术在体外培育出组织特异性的“类器官”,对于疾病建模、药物筛查及临床治疗等方面研究有极大意义。CRISPR介导的基因组编辑技术可以直接应用于非人类哺乳动物的疾病模型建立,将更有利于疾病致病机理和治愈研究。

此外,CRISPR技术还可应用于大型动物的基因编辑以研究免疫排斥及跨物种的疾病传染,从而解决异种移植器官来源的瓶颈,猪被认为是人体异种器官来源的首选动物,而目前猪器官用于人类的主要障碍为免疫排斥反应,及猪内源性逆转录病毒(Porcine endogenous retroviruses, PERVs)带来的医疗风险问题。eGenesis公司杨璐菡博士与哈佛大学George Church教授利用CRISPR进行基因改造一步让62个PERV pol 基因关闭,因而将来自PERV的传染风险降低了三个数量级,成功培育出不含PERVs的猪品系,作为安全有效的异种移植器官来源,这些研究让猪成为病人的器官来源更有前景。

基因编辑技术可以准确地改造人类基因,达到基因治疗效果。中国科学院生物化学与细胞生物学研究所李劲松研究组通过在小鼠胚胎中注射CRISPR/Cas9纠正白内障小鼠模型中的遗传缺陷,所产生的后代是可育的并能将修正后的等位基因传递给它们的后代。杜氏肌营养不良(DMD)是一种罕见的肌肉萎缩症,也是最常见的致命性遗传病之一,是由肌营养不良蛋白dystrophin基因突变引起。杜克大学Charles Gersbach研究组应用CRISPR/Cas9在DMD小鼠中将dystrophin基因突变的23外显子剪切,而合成了一个截短的但功能很强的抗肌萎缩蛋白,这是生物学家“首次成功地利用CRISPR基因编辑技术治愈了一只成年活体哺乳动物的遗传疾病”。

► CAR-T治疗简图,图片来自onclive.com

基因编辑技术联合免疫疗法在肿瘤及HIV/AIDS治疗具有广泛的应用前景。嵌合抗原受体T细胞(Chimeric Antigen Receptor T cell,CAR-T)细胞治疗是非常有前景的肿瘤治疗方法。CAR-T细胞疗法在B细胞恶性血液肿瘤治疗中已经取得硕果。中科院动物研究所王皓毅研究组利用CRISPR/Cas9技术在CAR-T细胞中进行双基因(TCRα subunit constant 和beta-2 microglobulin)或三基因(TRAC,B2M及programmed death-1)敲除。美国斯隆凯特林癌症纪念中心Michel Sadelain研究组发现CRISPR/Cas9技术将CAR基因特异性靶向插入到细胞的TRAC基因座位点,极大增强了T细胞效力,编辑的细胞大大优于传统在急性淋巴细胞白血病小鼠模型中产生CAR-T细胞。

继诺华的Kymriah以及Gilead (kite Pharma)的Yescarta接连上市,CRISPR Therapeutics公司也在应用CRISPR/Cas9基因编辑技术开发同种异体CAR-T候选产品。2016年10月,四川大学华西医院的肿瘤医生卢铀领导的一个团队首次在人体中开展CRISPR试验,从晚期非小细胞肺癌患者体内提取出免疫细胞,再利用CRISPR/Cas9技术剔除细胞中的PD-1基因更有助于激活T细胞去攻击肿瘤细胞,最后将基因编辑过的细胞重新注入患者体内。

微生物种群与人体医学,自然环境息息相关。北卡罗来纳大学Rodolphe Barrangou与Chase L. Beisel合作通过使用基因组靶向CRISPR/Cas9系统可靶向并区分高度密切相关的微生物,并程序性去除细菌菌株,意味着CRISPR/Cas9系统可开发成精细微生物治疗体系来剔除有害致病菌,人类将有可能精确控制微生物群体的组成。以色列特拉维夫大学Udi Qimron将CRISPR系统导入温和噬菌体中在侵染具有抗生素抗性的细菌以消灭此类细菌,CRISPR系统已具有成为新一类抗生素的潜力。Locus BioSciences公司也在开发在噬菌体中开发CRISPR系统以达消灭难辨梭菌的目的。

弗吉尼亚理工大学Zhijian Tu研究组在雄蚊子中进行M因子基因编辑,可以导致雌雄蚊之间的转化或雌蚊的杀戮,从而实现有效的性别分离和有效减少蚊子的数量,也将减少寨卡病毒及疟疾等传播。

基于CRISPR治疗不仅可以应用于根除共生菌或有益菌群的病原体,也可应用于靶向人类病毒,包括HIV-1,疱疹病毒,乳头瘤病毒及乙型肝炎病毒等。具有纯合的32-bp缺失(Δ32)的CC趋化因子受体5型(CCR5)基因的患者对HIV感染具有抗性。因此加利福尼亚大学Yuet Wai Kan在诱导多能干细胞iPSC中利用CRISPR系统引入纯合CCR5Δ32突变后,诱导分化后的单核细胞和巨噬细胞对HIV感染具有抗性。天普大学Kamel Khalili 课题组应用CRISPR/Cas9系统在宿主细胞基因组中精确编辑HIV-1 LTR U3区,从而在将艾滋病病毒从基因组中剔除。

Cas12a (Cpf1)属于CRISPR家族另一核酸内切酶,它也可被gRNA引导并剪切DNA。但是,它不仅可以切割相结合的单链或双链DNA,也剪切其他的DNA。近日,加州大学伯克利分校Jennifer Doudna研究组开发了基于CRISPR的一项新技能——基因侦探(DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR))。利用单链DNA将荧光分子和淬灭分子连接构建成一个报告系统,当CRISPR-Cas12a在gRNA引导下结合到目标DNA并发挥剪切作用时,报告系统中的DNA也被剪切,荧光分子将被解除抑制。此系统在致癌性HPV的人的DNA样品检测HPV16和HPV18变现极佳。

布罗德研究所Feng Zhang研究组开发的基于CRISPR的2代SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing),原理是利用Cas13a被激活后,可以切割除靶序列外其他的RNA的特征,引入了解除荧光分子的抑制。此工具可实现一次性多重核酸检测,可同时检测4种靶标分子,额外添加的Csm6使得这种工具比它的前身具有更高的灵敏度,并将它开发成微型试纸条检测方法,简单明了易操作,已被研究人员成功应用于RNA病毒,如登革热病毒和寨卡病毒,及人体液样本检测。

Broad研究所David R. Liu研究组利用CRISPR/Cas9开发了一种被称为CAMERA(CRISPR-mediated analog multi-event recording apparatus)的记录细胞事件的“黑匣子”他们利用这个系统开发出两种细胞记录系统,在第一种被称为“CAMERA 1”的细胞记录系统中,研究人员利用细菌中质粒的自我复制但又严格控制其自身数量的特征,

将两种彼此之间略有不同的质粒以稳定的比例转化到细菌中,随后在接触到外来药物刺激时,利用CRISPR/Cas9对这两种质粒中的一种进行切割,通过对质粒进行测序并记录两种质粒比例的变化来记录细菌接触外来刺激的时间。另一种细胞记录系统被称为“CAMERA 2”,它利用基于CRISPR/Cas9的碱基编辑系统实现在细胞内特定信号发生时改变遗传序列中的单个碱基,以此实现对诸如感染病毒、接触营养物等刺激的记录。这套技术的出现将很大程度的帮助人们进一步了解细胞的各类生命活动的发生发展规律。

2015 年 4 月,中山大学的黄军利用CRISPR/Cas9介导的基因编辑技术,同源重组修复了胚胎中一个引发地中海贫血β-globin gene (HBB)的突变。

► 图片来自kurzgesagt.org

2016年,广州医科大学的范勇团队在三原核受精卵中,应用基因编辑技术CRISPR受精卵中的基因CCR5进行编辑引入CCR5Δ32纯合突变由于当时脱靶效率问题突出,产生了镶嵌式的受精卵。

2017年8月2日,俄勒冈健康与科学大学胚胎细胞和基因治疗中心Shoukhrat Mitalipov研究组公布了其应用CRISPR在人类胚胎中进行DNA编辑的结果,纠正了突变的MYBPC3基因,其突变会引起心肌肥厚并将年轻运动员猝死。

CRISPR/Cas9:基因编辑的历史与发展

[](_javascript:void(0);)

|

CRISPR/Cas系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶(Cas)在序列识别处切割外源基因组DNA,从而达到防御目的。

根据Cas蛋白的特点,可将CRISPR/Cas系统分为Ⅰ、Ⅱ、Ⅲ型。Ⅰ型和Ⅲ型系统需要借助复杂的蛋白复合体发挥作用,Ⅱ型系统仅借助 Cas9蛋白和sgRNA即可对靶目标进行编辑,结构简单,操作容易,因此目前主要使用Ⅱ型CRISPR/Cas9 系统。

CRISPR/Cas自诞生以来,迅速发展,已经成为生命科学领域最耀眼、最有前景的技术。尤其是近两年,在全世界科学家的共同努力下,CRISPR/Cas相关新进展新突破不断涌现。

一、基因编辑技术的发展史

基因编辑可以分为三代,第一代:ZFN;第二代:TELEN;第三代:CRISPR/Cas。这三个基因编辑技术都利用了DNA修复机制,所以我们先来了解一下DNA修复机制( 图1 )。[图片上传失败...(image-8dab49-1625385468208)]

图1-NHEJ修复(左),HDR修复(右)

NHEJ(Non-homologous end joining)

非同源性末端接合

NHEJ修复机制不需要任何模版,修复蛋白直接将双股裂断的DNA末端彼此拉近,在DNA连接酶的帮助下重新接合( 图1 )。

HDR(Homology directed repair)

同源重组修复

当细胞核内存在与损伤DNA同源的DNA片段时,HDR才能发生。

NHEJ的机制简单又不依靠模版,因而NHEJ的活性相对于HDR高出许多。但NHEJ修复出错的概率较高,容易造成移码突变等,基因编辑正是利用了这一点( 图1 )。

1.ZFN的识别切割机制

融合锌指模块和FokI切割结构域形成ZFN ;以二聚体的形式靶向切割每个锌指结构;特异识别3个碱基 ;组装多个锌指结构(识别12-18bp)形成的ZFN对可特异切割基因组靶点 ( 图2 )。

[图片上传失败...(image-3f1d8d-1625385468209)]

图2-ZFN基因编辑原理图

2.TALEN的识别切割机制

两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点;设计灵活识别特异性强( 图3 )。

[图片上传失败...(image-6dcfc-1625385468209)]

图3-TELEN基因编辑原理图

3.CRISPR/Cas9的识别切割机制

crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA( 图4 )。

[图片上传失败...(image-c85235-1625385468209)]

图4-CRISPR/Cas9基因编辑原理图

ZFN、TELEN、CRISPR/Cas9比较

[图片上传失败...(image-dd6344-1625385468209)]

图5-三种基因编辑的比较

二、CRISPR/Cas技术的介绍

CRISPR/Cas9 系统的发现

1987年,在大肠杆菌的基因组中首次发现了一个特殊的重复间隔序列——CRISPR序列,随后,在其他细菌和古菌中也发现了这一特殊序列。

2005年,发现这些CRISPR序列和噬菌体的基因序列匹配度很高,说明CRISPR 可能参与了微生物的免疫防御。

2011年,CRISPR/Cas系统的分子机制被揭示:当病毒首次入侵时,细菌会将外源基因的一段序列整合到自身的CRISPR的间隔区;病毒二次入侵时,CRISPR 转录生成 前体crRNA (pre-crRNA), pre-crRNA 经过加工形成含有与外源基因匹配序列的crRNA,该crRNA与病毒基因组的同源序列识别后,介导 Cas 蛋白结合并切割,从而保护自身免受入侵。

2013年,发现CRISPR/Cas9系统可高效地编辑基因组。随后张锋等使用CRISPR系统成功的在人类细胞和小鼠细胞中实现了基因编辑。

从此开始,CRISPR/Cas9技术给生命科学领域带来了巨大冲击,CRISPR/Cas9相关研究成果频频登上CNS等顶级期刊,近两年更是成为诺贝尔奖热门候选。

CRISPR/Cas技术的原理

CRISPR/Cas9系统的工作原理是 crRNA( CRISPR-derived RNA )通过碱基配对与 tracrRNA(trans-activating RNA )结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA (single guide RNA ),从而引导 Cas9 对 DNA 的定点切割(图4)。

CRISPR/Cas技术的优势

设计简单,简明的碱基互补设计原则,识别不受基因组甲基化影响,能靶向几乎任意细胞任意序列,方便同时靶向多个靶点,切割效率高。

三、CRISPR/Cas的脱靶效应

PAM**** (Protospacer adjacent motif )

前间区序列邻近基序

PAM序列区是CRISPR/Cas9系统行使切割功能的基本条件。如果靶序列 3′端没有PAM序列,即使靶序列与sgRNA序列完全匹配,Cas9蛋白也不会切割该序列位点。 PAM序列主要影响CRISPR/Cas9的DNA切割效率。在细胞水平上,NGG介导的切割效率是最高的。

sgR****NA ****(Single guide RNA )

向导 RNA

sgRNA与目标基因组相结合的 20nt 序列区决定着 CRISPR/Cas 系统的靶向特异性。CRISPR/Cas9与靶位点识别的特异性其实主要依赖于sgRNA与靠近PAM区的10~12 bp的碱基配对,而其余远离PAM序列 8~10 bp 碱基的错配对靶位点识别的影响并不明显。目前研究结果均提示,可能靠近 PAM 的 8~14 bp 序列是决定特异性的关键,其他序列也均在不同程度上影响脱靶效应。

CRISPR/Cas9的脱靶效应给研究带来了一定程度上的不确定性,也是限制其发挥更大潜力的主要原因之一。

2017年5月30日, Nature 杂志子刊 Nature Methods 刊登了美国哥伦比亚大学研究人员的一篇文章,研究人员通过CRISPR/Cas9成功修复了导致小鼠失明的基因后,对小鼠进行全基因测序,发现修复后的小鼠基因组有超过1500个单核苷酸突变,以及超过100个位点发生大片段插入或缺失( 图6 )。文章的结论无疑引发了巨大震动,也给正在进行中的CRISPR/Cas9带来了不确定性。

[图片上传失败...(image-f21b76-1625385468208)]

图6--动物体内实验中CRISPR/Cas9编辑后发生意想不到的突变

仔细分析后,发现该文章并不十分严谨,文章仅有两只小鼠作为实验组,一只作为对照组,数量不足以证明结论是否只是个例。而且单碱基突变是生物体内自然现象,不能全归于CRISPR/Cas9。整个实验只基于一个sgRNA数据,且该sgRNA特异性评分很低,造成脱靶效应也应该在预料之中( 图7 )。

[图片上传失败...(image-751d94-1625385468208)]

图7--针对 Nature Methods 文章的回应

经过一系列的研究和改进,目前CRISPR系统的脱靶性已经很低,当然,要想达到理想的状态,还有很长的路要走。

四、CRISPR/Cas技术的进展

2016年6月,张锋在 Science 发表文章,发现CRISPR/Cas13a能有切割细菌的特定RNA序列。

2016年9月,Jennifer Doudna在 Nature 发表文章,证实CRISPR/Cas13a可以用于RNA检测。

2017年2月22日,美国纪念斯隆.凯特林癌症中心(MSK)研究人员在 Nature 杂志发文,使用腺相关病毒(AAV)介导,将CRISPR/Cas9基因编辑技术应用于CAR-T疗法。该研究既解决了传统CAR-T疗法的随机整合可能存在的潜在危害,又大大降低了CAR-T细胞发生分化或癌化的风险,赋予了CAR-T技术全新的高效性、稳定性、安全性。

2017年8月2日,Shoukhrat Mitalipov在 Nature 发表长文,使用CRISPR/Cas9技术修正了植入子宫前的人类胚胎中一种和遗传性心脏病有关的变异。该研究证实了通过编辑人类胚胎进行治疗遗传病是安全可行的。值得一提的是,该成果受到了基因编辑领域大牛George Church等人的质疑。

2017年8月11日,杨璐菡等在 Science 发表文章,通过CRISPR/Cas9技术敲除猪基因组中的内源逆转录病毒(PERV)序列,并克隆出多只PERV失活小猪。向最终实现使用猪器官进行人体器官移植的终极目标迈进了一大步。

2017年9月,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术敲除与镉吸收和积累相关基因的水稻育种成功。该研究从根本上解决了水稻镉污染的问题,将扭转我国部分农作物重金属超标的问题,进而改善部分人群重金属慢性中毒的问题。

2017年10月4日,张锋在 Nature 发表论文证实CRISPR/Cas13a能够在哺乳动物细胞中编辑特定的RNA。CRISPR/Cas13a能够达到RNAi相似的降低基因表达的效率,而且有更强的特异性,且对细胞内天然的转录后调控网络的影响更小。

2017年10月19日,Jennifer Doudna在 Nature 发表文章,设计了高精确性的Cas9变体—HypaCas9。该研究极大地降低了Cas9的脱靶效应,且不降低靶向切割效率。

2017年10月25日,张锋在 Science 发表文章介绍CRISPR新系统--REPAIR,可以高效的进行RNA的单碱基修复。因为不改变DNA序列,所以为通过基因编辑治疗遗传病而又不永久影响基因组提供了新可能。

2017年10月25日,哈佛大学Broad研究所的David Liu实验室在 Nature 发表长文,报道了新型腺嘌呤基因编辑器——ecTadA-dCas9,可以将A·T碱基对转换成G·C碱基对,该技术首次实现了不依赖DNA断裂即可进行基因编辑的技术,即单碱基基因编辑技术。该技术高于其它基因组编辑方法的效率,且几乎没有随机插入、删除或其它突变等不良副作用,因此为今后大范围治疗点突变遗传疾病提供了极大的便利。

五****、展望

近几年CRISPR/Cas基因编辑技术飞速发展,推广应用到了生物、医学、农业以及环境等多个领域,造就了一批批科研奇迹,尤其是在遗传病的治疗、疾病相关基因的筛查与检测、肿瘤治疗以及动植物的改造、病原微生物防治等领域有着巨大的潜力,也将深远地影响整个世界。

特别感谢:BioArt主编给予的帮助和意见以及吉满生物吴晨提供图1-图5的图片。

|

| |

基因组编辑技术有哪些优点及弊端,详述

1、优点:由于基因技术在生物工程中的特殊作用,基因技术革命是继工业革命、信息革命之后对人类社会产生深远影响的一场革命。

它在基因制药、基因诊断、基因治疗等技术方面所取得的革命性成果,将极大地改变人类生命和生活的面貌。同时,基因技术所带来的商业价值无可估量。

从事此类技术研究和开发企业的发展前景无疑十分广阔。前期美国股市基因技术类股票的大幅上涨表明投资者对此类公司前途看好。我国的基因技术研究取得了不少成果,相关上市公司值得关注。

2、缺点:基因工程产品的技术含量非常高,从目的基因的取得到表达载体的构建都是十分烦琐而艰巨的工作,必须在实验室中进行大量的工作。

因此,基因工程产品的前期研究和开发投入(R&D)非常高,尤其是对细胞因子和重组药物的生产只要取得了具有高表达量的生产菌株,掌握分离和纯化技术,利用普通的发酵罐就能生产。

如大举介入生物医药领域的日本麒麟株式会社原来是啤酒生产企业,掌握了生产技术后,利用原有的发酵设备便很快在细胞因子的生产领域占有了一席之地。

扩展资料:

基因编辑已经开始应用于基础理论研究和生产应用中,这些研究和应用,有助于生命科学的许多领域,从研究植物和动物的基因功能到人类的基因治疗。下面主要介绍基因编辑在动植物上的应用。

基因编辑和牛体外胚胎培养等繁殖技术结合,允许使用合成的高度特异性的内切核酸酶直接在受精卵母细胞中进行基因组编辑。

CRISPR-Cas9进一步增加了基因编辑在动物基因靶向修饰的应用范围。CRISPR-Cas9允许通过细胞质直接注射(CDI)从而实现对哺乳动物受精卵多个靶标的一次性同时敲除(KO)。

参考资料来源:百度百科-基因技术

参考资料来源:百度百科-基因编辑

基因编辑技术及其应用科普漫谈

DNA是绝大部分生物的遗传信息的储存介质,由腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种核苷酸组成,并且严格遵守A-T,C-G的碱基互补配对原则,DNA链上这四种核苷酸的排列信息就是生物体的主要遗传信息。基因是控制生物性状的基本遗传单位,即一段携带特定遗传信息的DNA序列,主要通过翻译出对应的效用蛋白发挥功能。

图1. DNA的结构示意图(图片来自网络)

基因异常往往导致各种疾病的发生:如在超过50%的人类肿瘤中都能检测到编码p53蛋白的基因的突变(丧失活性);Rag1等基因的突变会导致重症联合免疫缺,患儿终生不能接触外界空气,只能终生生活在隔绝容器内(图2)。

图2. 终生生活在隔离容器内的美国男孩大卫·维特(图片来自网络)

什么是基因编辑技术?

基因编辑技术是指特异性改变目标基因序列的技术。目前主要的基因编辑技术都是基于如下原理发展而来的:在细胞内利用外源切割复合体特异性识别并切割目的基因序列,在目的基因序列上制造断裂端,这种断裂端随即会被细胞内部的DNA损伤修复系统修复,重新连接起来。在此修复过程中,当有修复模板存在时,细胞会以修复模板为标准进行修复,从而实现对基因序列的特异性改变,即基因编辑(图2)。

图3 基因编辑技术的基本原理示意图

要实现基因编辑,外源切割复合体必须满足两个条件:

① 切割复合体必须可以特异性地识别和结合至目的基因DNA序列上,这是各种基因编辑技术的主要差异所在,也是发展基因编辑技术的最大困难所在;

② 切割复合体必须具有切割DNA,制造断裂端的功能;

基因编辑技术的简要发展历史

自1953年沃森和克里克两位科学家提出DNA的双螺旋结构以来,人们一直都在积极探索着高效便利的基因编辑技术:

上世纪80年代,科学家在小鼠胚胎干细胞中通过基因打靶技术实现了基因编辑(2007年诺贝尔生理医学奖),但此技术在其余细胞内效率极低,应用受到了极大的限制;

上世纪90年代,基于细胞内不同锌指蛋白可特异性识别DNA上3联碱基的特征以及核酸酶FokI二聚化后可以切割DNA的特点,人们通过锌指蛋白偶联Fokl的策略逐渐发展出了一种新的基因编辑技术--锌指蛋白核酸酶技术(Zinc Finger Nucleases, ZFNs)。但此技术专利被公司垄断,且锌指蛋白数量有限,可以识别的DNA序列数量有限,其应用也受到了很大的限制。

随后,基于改造后的植物病原菌中黄单胞菌属的TAL蛋白可以特异性识别DNA中一个碱基的特性,人们又发展出了新的基因组编辑技术--转录激活样因子核酸酶技术(Transcription activator-like effector nucleases, TALENs)。此技术理论上可以实现对任意基因序列的编辑,但其操作过程较为繁琐,一定程度上限制了其应用。

近年来,基于细菌规律成簇的间隔短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats,CRISPR)系统发展而来的新一代基因组编辑技术--CRISPR/Cas9技术,使得基因编辑变得更为简易、高效。值得提出的是,华裔科学家张锋教授对于CRISPR/Cas9技术的发展与应用作出了重要贡献,是目前这一领域的领军人物之一。

基因编辑技术的最新发展

由于目前最为广泛应用的CRISPR/Cas9技术仍然存在着无法对所有基因序列实现编辑、可能错误编辑其余基因、切割复合体中RNA容易降解导致复合体不稳定等一些不足之处,人们主要从以下几个方面优化发展新的基因编辑技术:

1)  优化CRISPR的蛋白序列,使得其可以识别更多的序列,并且能够更为有效地编辑基因序列;

2) 寻找新的具有特异性识别和切割目的基因序列的蛋白。如张锋教授在去年报道的Cpf1,已被证实为一类新的基因编辑工具;而目前引起广泛争议和关注的我国河北科技大学韩春雨教授在今年初报道的NgAgo,如果其真的可以实现细胞内的基因编辑,也是一类新的基因编辑工具,是目前各种基因编辑工具的有效补充;近期,我国南京大学学者又开发了一类新的基因编辑工具—SGN,也引起了学界的广泛关注。

基因编辑技术的应用

随着CRISPR/Cas9等新型基因编辑技术的迅猛发展,基因编辑技术在诸多方面都有着极为广阔而光明的应用前景:

1)  畜牧业和农业方面,现在已经在包括鸡、牛、羊等重要家畜和玉米、水稻、棉花等重要经济作物中实现了基因改造,有效地提高了这些家畜和经济作物的产量和质量;

2)  医疗健康方面,一方面,对于先天性基因突变致病患者,利用基因编辑技术改正突变的基因,可以为这些疾病的彻底根治提供希望。如在2013年,我国科学家上海生化细胞所的李劲松教授就利用CRISPR/Cas9技术治愈了小鼠的白内障遗传疾病。另一方面,基因编辑技术还有望为彻底治愈一些重大疾病的提供希望,如利用基因编辑技术改造艾滋病病毒HIV-1携带者免疫细胞中的CCR5基因,可以使得细胞不再受HIV-1病毒感染,有望成为彻底战胜艾滋病的有力武器。

结语:

迅猛发展的基因编辑技术正在给我们的生活带来巨大的变化,在享受先进科学技术带来的种种福利的同时,我们也必须进一步加强对于基因编辑技术的基础研究以及应用管理,以确保这一先进技术得到正确而有效地应用。

编辑:何郑燕  鲁凡英

(专家:吴剑锋,厦门大学生命科学学院博士,科普中国微平台原创首发)

基因编辑技术形式有哪些

基因编辑技术形式有:

1、同源重组

同源重组(Homologous recombination)是最早用来编辑细胞基因组的技术方法。同源重组是在DNA的两条相似(同源)链之间遗传信息的交换(重组)。

2、核酸酶

基因编辑的关键是在基因组内特定位点创建DSB。常用的限制酶在切割DNA方面是有效的,但它们通常在多个位点进行识别和切割,特异性较差。为了克服这一问题并创建特定位点的DSB。

基因编辑技术的应用:

基因编辑和牛体外胚胎培养等繁殖技术结合,允许使用合成的高度特异性的内切核酸酶直接在受精卵母细胞中进行基因组编辑。 CRISPR -Cas9进一步增加了基因编辑在动物基因靶向修饰的应用范围。CRISPR-Cas9允许通过细胞质直接注射从而实现对哺乳动物受精卵多个靶标的一次性同时敲除(KO)。

单细胞基因表达分析已经解决了人类发育的转录路线图,从中发现了关键候选基因用于功能研究。使用全基因组转录组学数据指导实验,基于CRISPR的基因组编辑工具使得干扰或删除关键基因以阐明其功能成为可能。

以上内容参考:百度百科—基因编辑技术

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页