您当前的位置:首页 > 发表论文>论文发表

关于天文学的国外论文

2023-12-12 17:02 来源:学术参考网 作者:未知

关于天文学的国外论文

法国天文学家勒威耶比亚当斯年长8岁,于1846年8月31日写出了一份标题是“论使天王星运行失常的那颗行星,它的质量,轨道和现在所处的位置结论性意见”论文。柏林天文台年轻的天文学家伽勒和他的助手根据勒威耶计算出来的新行星的位置,把望远镜指向了黄经326度宝瓶星座的一个天区,只用了30分钟就发现了一颗在星图上没有标出的8等星,为人类探索天外行星中找到了第八颗新的行星——海王星。后来通过天文学家们观测都证实了这颗行星的存在。

望向宇宙的眼睛——哈勃太空望远镜

哈勃太空望远镜最初构想于20世纪40年代,耶鲁大学天体物理学家-小莱曼·斯皮策发表了一篇关于空间天文学优势的论文,并介绍了大型太空望远镜的概念,写了望远镜在太空中的科学好处。他提议在地球轨道上设计、建造和发射一个“地球外观测站”。他的开创性想法最终花了几十年才得以实现。

1974年天体物理学家和工程师为大型太空望远镜举行了他们的第一次工作组会议。会议制定了空间望远镜的概念以及航天器的预算和技术要求。

1977年10月1日-美国国会于1977年早些时候批准的大型空间望远镜项目的资金开始生效,该项目正式开始实施。

1983年美国宇航局宣布了大型太空望远镜的正式名称:哈勃太空望远镜,纪念已故天文学家埃德温·哈勃的开创性研究。埃德温·哈勃计算出仙女座星系大约有90万光年远,是银河系中已知最远恒星距离的8倍多,让他得出结论,仙女座不是星云,而是一个星系,最重要的是,银河系只是我们宇宙中的星系之一。改变了我们对太空的看法。以及他作为天文学家的许多其他成就,美国宇航局于1983年以他的名字正式命名了太空望远镜。

1986年1月,挑战者号航天飞机的全体机组人员在发射后爆炸。使哈勃的发射受阻了四年多。这导致了1989年发布的“指南星表”和支持它的软件,彻底改变了天文学家锁定恒星位置从任何地面或空间天文台收集数据的方式,并最终实现了哈勃观测的自动化。

在构想了40多年后,1990年4月24日哈勃太空望远镜从位于佛罗里达州卡纳维拉尔角的肯尼迪航天中心发射到地球轨道。一天后,宇航员从发现号航天飞机的货舱引导这架43英尺12吨的望远镜进入离地球表面340英里的轨道上。哈勃每天运行15圈--大约每95分钟一圈。望远镜以每秒5英里(8公里)的速度移动,大约每小时17,000英里(每小时27,300公里)。

同年5月20日哈勃望远镜发布了这张“第一束光”图像,以说明与地面观测站相比,望远镜的分辨率有所提高。右边是哈勃太空望远镜的广域/行星相机拍摄的第一张照片的一部分。

在分析了哈勃太空望远镜的第一张图像后,科学家们意识到主镜有一个缺陷,称为球面像差。一项调查显示,在制造过程中,镜子的外部边缘被磨得太平,深度为4微米(大致相当于人类头发厚度的1/50)。这个缺陷分散了宇宙物体反射的光线,导致图像模糊。虽然哈勃望远镜没有返回预期的图像质量,但它仍然提供了地面望远镜不可能获得的结果。

在1970年代初,大型太空望远镜最初计划要求每5年返回地球,翻新,并重新发射,并在轨道上服务每2.5年。硬件寿命和可靠性要求是基于服务任务之间的2.5年间隔。直到70年代后期,与航天飞机返回地球有关的污染和结构负荷问题消除了该计划中的地面返回概念。美国宇航局决定,在轨维修的可能足以维持哈勃太空望远镜的15年设计寿命。于是采用了为期三年的在轨维修周期。

所以自1990年开始运作,哈勃被设计成为一个长期的、以空间为基础的天文台。为了实现这一目标,并保护航天器免受仪器和设备故障的影响,美国航天局计划执行定期维修任务。以保持其平稳运行并延长其寿命。

服务任务(SM1)

在1993年12月2日至13日,在奋进号航天飞机上的7名宇航员对哈勃进行了第一次服务任务。在第一次服务任务中最主要的便是纠正了哈勃望远镜主镜视力模糊的缺陷。并安装了两个新的设备-广域和行星相机2,和修正光学空间望远镜轴向替换。都是为了补偿主镜的缺陷形状而设计的。并对望远镜做了其他的修理更换或替换了新的仪器。

这次成功的飞行任务不仅提高了哈勃望远镜的视力--在很短的时间内导致了一系列非凡的发现--而且它也验证了在轨服务的有效性。

服务任务(SM2)

1997年2月11日至21日发现号航天飞机的七名宇航员对哈勃太空望远镜进行了第二次服务任务。在第二次服务任务中,发现号航天飞机上的宇航员更换了两台关键的哈勃仪器。戈达德高分辨率光谱仪(GHRS)被近红外相机和多目标光谱仪(NICMOS)取代,使哈勃能够在红外波段观察宇宙,而微弱物体光谱仪(FOS)被空间望远镜成像光谱仪(STIS)所取代,用于拍摄天体的详细照片和寻找黑洞。将哈勃的波长范围扩大到近红外成像和光谱,扩大了哈勃的视野使我们能够探测宇宙中最遥远的区域。

服务任务(SM3A / SM3B)

本来哈勃的第三次维修任务最初被设想为维修任务。但当第四个陀螺仪失效时,美国航天局将任务分为两部分:服务任务3A(SM3A)于1999年12月飞行和服务任务3B(SM3B)于2002年3月飞行。

1999年11月13日,六个陀螺仪中的四个在哈勃上失效,(当时,哈勃需要三个陀螺仪来观测天体目标。)望远镜暂时关闭了对宇宙的观察。没有三个工作的陀螺仪,哈勃无法进行科学研究,因此进入了一种叫做安全模式的休眠状态。本质上,哈勃“睡着了”,而它却在等待帮助。在安全模式下,哈勃无法观测目标,但它的安全性得到了保护。这种保护模式允许地面控制望远镜,为了保护光学系统,控制器关闭了光圈门,并将航天器对准太阳,以确保哈勃的太阳能电池板能从太阳获得足够的能量。

于是在1999年12月19日至27日,7名宇航员乘坐发现号航天飞机对哈勃进行了第三次服务任务。其主要目标是恢复哈勃的工作秩序,并升级其系统。在两部分任务的第一阶段,最紧迫的任务是更换陀螺仪。机组人员成功地更换了所有的六台陀螺仪,并进行了几次重要的维修升级。他们安装了一台比它的前身快20倍的计算机和一台可以存储10倍数据的数字数据记录器。机组人员还增加了一个电子增强工具包,电池改进工具包,以及新的外层热保护。哈勃几乎如新的。在SM3A之后,哈勃再次成功地开始运行和观测。

2002年3月1日至12日在哥伦比亚号航天飞机上,七名宇航员开始了哈勃的第四次服务任务,即3B服务任务。服务团3A以前是在1999年作为哈勃的救援任务进行的,而服务3B任务的目的是更新哈勃。

此次宇航员的主要任务是安装一种新的科学仪器,叫做高级调查照相机(ACS)。这是自1997年以来第一台安装在哈勃望远镜上的新仪器,ACS以其广阔的视野、锐利的图像质量和更高的灵敏度,将哈勃的视野扩大了一倍,收集数据的速度比望远镜早期的测量仪器广域行星照相机2(WFPC 2)快10倍。

太空行走的宇航员们用更小、更硬的太阳能电池板取代了大型、灵活、有八年 历史 的太阳能电池板。还取代了过时的电力控制单元,后者将太阳能阵列和电池的电力分配给望远镜的其他部分。此次任务中自1990年发射以来,工作了近12年的哈勃太空望远镜第一次被地面控制完全关闭。

宇航员还为近红外相机和多目标光谱仪安装了一个新的冷却系统。在1999年耗尽了自1997年以来冷却它的230磅重的氮冰。新的低温冷却器延长了哈勃红外相机的寿命

服务任务(SM4)

2003年2月1日在经过15天的太空任务后,哥伦比亚号航天飞机在重返地球大气层后解体,机上七名宇航员全部遇难。于是原定于 2004年1月16日–哈勃的第五次也是最后一次维修任务(服务任务4)被正式取消。

直到2006年10月31日美国宇航局宣布恢复对哈勃太空望远镜进行第五次维修任务的计划,这也是哈勃最具挑战性和最复杂的服务任务。

2009年5月11日至24日 – 乘坐亚特兰蒂斯号航天飞机上的宇航员,在为期13天的任务中完成了第五次也是对哈勃的最后一次维修任务。

宇航员在第四次服务任务期间在哈勃上安装了两个新仪器:广域摄像机3(WFC 3)和宇宙起源谱仪(COS)。这些仪器使天文台比发射时更强大100倍。WFC 3能看到三种不同的光:近紫外线、可见光和近红外光,相机的分辨率和视场比以前的仪器要大得多。Cos使哈勃望远镜的紫外线灵敏度至少提高了10倍,在观察极其微弱的物体时提高了70倍。

在SM4期间宇航员完成了望远镜创建者从未设想过的壮举及有史以来第一次在太空修复科学仪器(高级调查照相机(ACS)和空间望远镜成像光谱仪(STl)。两个都已停止工作。ACS在2007年停电后停止工作,而STI则在2004年停电后停止工作。为了进行修理,宇航员必须进入仪器内部,打开组件并重新供电。这项任务的成功完成,加上两项新仪器的增加,使哈勃充分补充了五种可供今后观测的仪器。

SM4的目标之一是加强和振兴望远镜的基本空间飞行系统。宇航员们用新的、改良过的电池替换了所有18年前的哈勃电池。宇航员安装了六个新的陀螺仪,用来指向望远镜,和一个精细制导传感器锁定恒星作为指向系统的一部分。他们还安装了一种新的设备--软捕获机制--允许机器人航天器某一天在望远镜生命周期结束时将自己附着在哈勃上,并引导其降落到地球或将其提升到更高的轨道。

2008年8月11日 – 哈勃完成了它的100000太空轨道,为了纪念哈勃太空望远镜在其 探索 和发现的第18个年头中完成了其100000个轨道,位于马里兰州巴尔的摩的太空望远镜科学研究所的科学家们瞄准哈勃拍摄了一个令人眼花缭乱的天体诞生和更新区域的快照。

这张具有代表性拍摄于2008年8月10日,哈勃的广角行星相机2。红色显示硫原子的发射,绿色来自发光的氢,蓝色来自燃烧的氧气。

在这个大约100光年宽的幻想状景观中,黑暗的尘埃塔在分子云表面的一堵发光的气体墙上方升起。右下角的海马柱长约20光年,大约是太阳和最近的恒星--半人马座阿尔法星之间距离的四倍。

2011年7月4日– 哈勃太空望远镜在其21年的太空 探索 和发现之旅中跨越了另一个里程碑。哈勃记录了在1000光年以外的一个系外行星大气层中寻找水的第一百万次科学观测。

“21年来,哈勃一直是最重要的空间科学观测站,给我们留下了深刻而美丽的图像,使我们能够在广泛的天文学科中进行开创性的科学研究,”美国宇航局局长查尔斯·博尔登说。他驾驶了把哈勃送入轨道的航天飞机任务。“哈勃望远镜在研究一颗遥远的行星时遇到了这一里程碑,这一事实极大地提醒了它的力量和遗产。”

2011年10月4日 – 哈勃科学小组成员亚当·里斯和其他天文学家因发现宇宙正在加速膨胀而获得了瑞典皇家科学院的诺贝尔物理学奖。证明宇宙的膨胀速度正在加速,这一现象被广泛地归因于一种神秘的、无法解释的“暗能量”充满了宇宙。

2011年12月6日 – 哈勃太空望远镜在其 探索 中又走过了一个里程碑:第一万份哈勃科学论文已经发表。这使哈勃成为 历史 上最多产的天文事业之一。

这些论文是基于哈勃望远镜的观测,几乎涵盖了天文学的每一个前沿。五篇最高参考的科学论文依次是:寻找用来表征暗能量的遥远超新星;精确测量宇宙的膨胀速度;星系质量与中心黑洞质量之间的明显联系;哈勃深场中的早期星系形成;低质量恒星和褐矮星的演化模型。

哈勃望远镜在轨期间向地球发射了数十万张图像,照亮了天文学的许多奥秘。在它的许多发现中,哈勃揭示了宇宙的年龄约为138亿年,比100亿到200亿年的旧范围精确得多。哈勃在发现暗能量方面发挥了关键作用,暗能量是导致宇宙膨胀加速的一种神秘力量。

哈勃太空望远镜自发射三十二年以来,已经对超过48,000个天文物体进行了140万次观测,并且继续“其在天文学前沿的作用”,从我们自己的太阳系到“高红移宇宙”。为我们研究宇宙的起源以及 探索 星系做出了不可磨灭的贡献。

在未来的时间里哈勃太空望远镜将会与他的接班人詹姆斯·韦伯空间望远镜共同合作。2021年12月25日詹姆斯·韦伯太空望远镜发射。并且STSCI(太空望远镜科学研究所)还将计划下一个太空望远镜 南希·格雷斯罗马太空望远镜。仅次于詹姆斯·韦伯空间望远镜。

在同样的灵敏度和分辨率下,罗马太空望远镜的视野比哈勃太空望远镜宽100倍,它将在近红外光下绘制天空大区域的宽视场地图,并有可能回答系外行星和暗能量研究中的重要问题。南希·格雷斯罗马太空望远镜目前正计划于2026年年底发射。

展望未来,哈勃太空望远镜将于詹姆斯·韦伯空间望远镜并有希望于南希·格雷斯罗马太空望远镜共同合作,为我们揭示宇宙的奥秘。

求一篇1000字左右的论文! 只要是和天文学有关的都可以,要明显啊!

浅论天文

天文学历史
天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。
古时候,人们通过用肉眼观察太阳、月亮、星星来确定时间和方向,制定历法,指导农业生产,这是天体测量学最早的开端。早期天文学的内容就其本质来说就是天体测量学。从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。
十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。
二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。
天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。
人类很早以前就想到太空畅游一番了。1903年人类在地球上开设了第一家月亮公园。花50美分就能登上一个雪茄状、带翼的车,然后车身剧烈摇晃,最后登上一个月亮模型。
同一年,莱特兄弟在空中哒哒作响地飞行了59秒,同时一位名为康斯坦丁·焦乌科夫斯基、自学成才的俄罗斯人发表了题为《利用反作用仪器进行太空探索》的文章。他在文内演算,一枚导弹要克服地球引力就必须以1.8万英里的时速飞行。他还建议建造一枚液体驱动的多级火箭。
50年代,有一个公认的基本思想是,哪个国家第一个成功地建立永久性宇宙空间站,它迟早就能控制整个地球。冯·布劳恩向美国人描述了洲际导弹、潜艇导弹、太空镜和可能的登月旅行。他曾设想建立一个经常载人的、并能发射核导弹的宇宙空间站。他说:“如果考虑到空间站在地球上所有有人居住的地区上空飞行,那么人们就能认识到,这种核战争技术会使卫星制造者在战争中处于绝对优势地位。
1961年,加加林成为进入太空的第一人。俄国人用他说明,在天上飞来飞去的并不是天使,也不是上帝。美国约翰·肯尼迪竞选的口号是“新边疆”。他解释说:“我们又一次生活在一个充满发现的时代。宇宙空间是我们无法估量的新边疆。”对肯尼迪来说,苏联人首先进入宇宙空间是“多年来美国经历的最惨痛的失败”。唯一的出路是以攻为守。1958年美国成立了国家航空航天局,并于同年发射了第一颗卫星“探险者”号。1962年约翰·格伦成为进入地球轨道的第一位美国人。
许多科学家本来就对危险的载人太空飞行表示怀疑,他们更愿意用飞行器来探测太阳系。
而美国人当时实现了突破:三名宇航员乘“阿波罗号”飞船绕月球飞行。在这种背景下,计划在1969年1月实现的两艘载人飞船的首次对接具有特殊的意义。
20世纪的80年代,苏联的第三代空间站“和平”号轨道站使其航天活动达到高峰,都让美国人感到眼热。“和平”号被誉为“人造天宫”,1986年2月20日发射上天,是迄今人类在近地空间能够长期运行的唯一载人空间轨道站。它与其相对接的“量子1号”、“量子2号”、“晶体”舱、“光谱”舱、“自然”舱等舱室形成一个重达140吨、工作容积400立方米的庞大空间轨道联合体。在这一“太空小工厂”相继考察的俄罗斯和外国宇航员有106名,进行的科考项目多达2.2万个,重点项目600个。
在“和平”号进行的最吸引人的实验是延长人在太空的逗留时间。延长人在空间的逗留时间是人类飞出自己的摇篮地球、迈向火星等天体最为关键的一步,要解决这一难题需克服失重、宇宙辐射及人在太空所产生的心理障碍等。俄宇航员在这方面取得重大进展,其中宇航员波利亚科夫在“和平”号上创造了单次连续飞行438天的纪录,这不能不被视为20世纪航天史上的一项重要成果。在轨道站上进行了诸如培养鹌鹑、蝾螈和种植小麦等大量的生命科学实验。
如果将和平号空间站看作人类的第三代空间站,国际空间站则属于第四代空间站了。国际空间站工程耗资600多亿美元,是人类迄今为止规模最大的载人航天工程。它从最初的构想和最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面折射出历史的一段进程。
国际空间站计划的实施分3个阶段进行。第一阶段是从1994年开始的准备阶段,现已完成。这期间,美俄主要进行了一系列联合载人航天活动。美国航天飞机与俄罗斯“和平”号轨道站8次对接与共同飞行,训练了美国宇航员在空间站上生活和工作的能力;第二阶段从1998年11月开始:俄罗斯使用“质子-K”火箭把空间站主舱——功能货物舱送入了轨道。它还担负着一些军事实验任务,因此该舱只允许美国宇航员使用。实验舱的发射和对接的完成,将标志着第二阶段的结束,那时空间站已初具规模,可供3名宇航员长期居住;第三阶段则是要把美国的居住舱、欧洲航天局和日本制造的实验舱和加拿大的移动服务系统等送上太空。当这些舱室与空间站对接后,则标志着国际空间站装配最终完成,这时站上的宇航员可增至7人。
美、俄等15国联手建造国际空间站,预示着一个各国共同探索和和平开发宇宙空间的时代即将到来。不过,几十年来载人航天活动的成果还远未满足他们对太空的渴求。“路漫漫其休远兮,吾将上下而求索”,人类一直都心怀征服太空的欲望和和平利用太空资源的决心。1998年11月,人类第一个进入地球轨道的美国宇航员、77岁的老格伦带着他未泯的雄心再次踏上了太空征程,这似乎在告诉人类:照此下去,征服太空不是梦。
[编辑本段]天文学概况
天文和气象不同,它的研究对象是地球大气层外各类天体的性质和天体上发生的各种现象——天象,而气象研究的对象是地球大气层内发生的各种现象——气象。
天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。
宇宙中的天体由近及远可分为几个层次:(1)太阳系天体:包括太阳、行星(包括地球)、行星的卫星(包括月球)、小行星、彗星、流星体及行星际介质等。(2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。(3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。
天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。天文学按照研究的内容还可分为天体测量学、天体力学和天体物理学三门分支学科。
天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。天文学家也将密切关注灾难性天文事件——如彗星与地球可能发生的相撞,及时作出预防,并作出相应的对策。
[编辑本段]太阳系
(注:在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八大行星。文中所有涉及“九大行星”的都已改为“八大行星”。)
太阳系(solar system)是由太阳、8颗大行星、66颗卫星以及无数的小行星、彗星及陨星组成的。
行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)和海王星(neptune)。
离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(大于3.0克/立方厘米)、体积小、自转慢、卫星少、主要由石质和铁质构成、内部成分主要为硅酸盐(silicate)并且具有固体外壳。
离太阳较远的木星、土星、天王星及海王星称为类木行星(jovian planets)。宇宙飞船也都对它们进行了探测,但未曾着陆。它们都有很厚的大气圈、主要由氢、氦、冰、甲烷、氨等构成、质量和半径均远大于地球,但密度却较低,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。
在火星与木星之间有100000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。
星,距离(AU),半径(地球),质量(地球),轨道倾角(度),轨道偏心率,倾斜度,密度(g/cm3)
太 阳,0 ,109 ,332,800 ,--- ,--- ,--- ,1.410
水 星 ,0.39 ,0.38 ,0.05 ,7 ,0.2056 ,0.1° ,5.43
金 星 ,0.72 ,0.95 ,0.89 ,3.394 ,0.0068 ,177.4° ,5.25
地 球 ,1.0 ,1.00 ,1.00, 0.000 ,0.0167 ,23.45° ,5.52
火 星 ,1.5, 0.53, 0.11 ,1.850 ,0.0934, 25.19° ,3.95
木 星 ,5.2 ,11.0 ,318 ,1.308 ,0.0483 ,3.12° ,1.33
土 星 ,9.5, 9.5 ,95 ,2.488 ,0.0560 ,26.73° ,0.69
天王星 ,19.2, 4.0 ,17 ,0.774 ,0.0461 ,97.86° ,1.29
海王星 ,30.1 ,3.9 ,17 ,1.774 ,0.0097 ,29.56° ,1.64
行星离太阳的距离具有规律性,即从离太阳由近到远计算,行星到太阳的距离(用a表示)a=0.4+0.3*2n-2(天文单位)其中n表示由近到远第n个行星(详见上表) 地球、火星、木星、土星、天王星、海王星的自转周期为12小时到一天左右,但水星、金星自转周期很长,分别为58.65天和243天,多数行星的自转方向和公转方向相同,但金星则相反。 除了水星和金星,其它行星都有卫星绕转,构成卫星系。
在太阳系中,现已发现1600多颗彗星,大致一半彗星是朝同一方向绕太阳公转,另一半逆向公转的。彗星绕太阳运行中呈现奇特的形状变化。 太阳系中还有数量众多的大小流星体,有些流星体是成群的,这些流星群是彗星瓦解的产物。大流星体降落到地面成为陨石。 太阳系是银河系的极微小部分,太阳只是银河系中上千亿个恒星中的一个,它离银河系中心约8.5千秒差距,即不到3万光年。太阳带着整个太阳系绕银河系中心转动。可见,太阳系不在宇宙中心,也不在银河系中心。 太阳是50亿年前由星际云瓦解后的一团小云塌缩而成的,它的寿命约为100亿年。
[编辑本段]宇宙航天
宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。
大爆炸理论
(big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实:
(1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明了这一点。
(2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。
(3)在各种不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。
(4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页