您当前的位置:首页 > 发表论文>论文发表

数学老师教学论文怎么写

2023-12-12 00:30 来源:学术参考网 作者:未知

数学老师教学论文怎么写

数学归纳思想在各学段之特点和教学启示

第一章 导论

初中数学教学论文范文3篇

  数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理的初中数学教学论文 范文 ,欢迎阅读!
  初中数学教学论文范文篇一:初中数学智能教学研究
  一、初中生智能

  智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维—— 逻辑思维 ,对前人 总结 的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段 教育 ,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。

  二、发展智能是初中数学教学的重要任务

  数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。

  三、初中生的智能开发

  开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。
  初中数学教学论文范文篇二:初中数学教学中数学思维培养
  一、数学思维的特点

  任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。

  1.数学思维具有严谨性

  数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。

  2.数学思维具有抽象性

  所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。

  二、培养初中生良好思维方式的 方法

  具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。

  1.不断拓展学生的思维

  在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。

  2.运用正确的引导方式和教学方式

  教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。

  3.培养学生的学习兴趣

  学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。

  4.运用现代教学方式和技术进行课堂教学

  随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。

  三、结束语

  数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。
  初中数学教学论文范文篇三:初中数学教学课堂小结研究
  一、进行课堂小结的方式

  1.梳理课堂知识.一种常见的课堂小结方式,就是把整堂课的知识用简短的话从头到尾梳理一遍,这种梳理不是通篇的叙述,而是有重点的、分层次的总结.例如,在讲“点和圆,直线和圆的位置关系”时,课堂小结就主要是把点与圆的三种位置关系、直线与圆的三种位置关系,结合黑板上的图例再次梳理一遍.这种总结方式,可以让学生全面地复习一遍所讲内容,对新知识有整体了解,同时可以让学生形成对知识的网络式记忆,把知识延伸到整个学习系统中.

  2.概括课堂知识.教师还可以对课堂内容进行几句话的概括总结,这种概括要涉及新课内容的关键点,通常用于新课内容有多个重要知识的情况下.

  3.联系以前知识.有些新课的内容是在以前所学知识的基础上进一步扩展而来,或者是新课与所学知识有着一定的相似度.在课堂小结的时候,教师可以将两者进行联系,进行对照解读.这样的课堂小结,可以让学生具体形象地理解所学内容.当然,当遇到新课与旧知识有着明显反差的时候,教师也可以拿来对比解读,以避免学生对新知识和旧知识产生混淆.这样一来,学生心中的知识脉络就会更加清晰.

  4.和学生共同回想课堂知识.数学教师在讲课时往往是单方面讲授课堂内容给学生,而很少有和学生进行互动的,这都是因为学科的特性和课堂时间的紧迫,而缺乏互动可能导致学生和课堂的融入度不够,容易造成开小差的现象.教师在进行课堂总结时可以有意地和学生进行互动,共同复习整堂课的知识.可以是对学生进行课堂关键内容的提问,也可以是向学生询问他们所认为的难点内容来再一次讲解以答疑和强化记忆.这样,不仅活跃了课堂气氛,拉近了教师与学生的距离,让学生更亲近课堂,让教师更了解学生的学习现状,同时让学生对难点内容有了进一步的学习和消化.

  二、进行课堂小结的注意点

  课堂小结不是教师一味地总结讲课知识,这里的本体应该是学生自己,是学生来回味和消化课堂所学内容,不懂的地方提出疑问,教师起到串联和辅导作用.教师可以从学生的角度考虑如何总结,才能提高复习效果.

  1.课堂小结的概括性.课堂小结要简单明了,用几句概括性的话语进行总结,不宜多次重复复杂内容,这样不仅起不到总结的效果,还会让学生更加混淆,对所学知识产生过多疑问.另外,课堂小结应该用最直接的语言讲述出课堂内容,不应该加以多少修饰,以避免所述内容的冗长,导致上课时间的不够.

  2.课堂小结要有重点.有的人说,一堂课里有一半的时间讲重点内容就很难得,而学生只要把这些重点听明白,他们这堂课的收益就很大.课堂小结相对于课堂上的详细讲解而言,是为大部分学生整理的要点总结,不需要对整堂课的内容都重述一遍,而要对讲课内容的要点进行有针对性的重点回顾,这样可以帮助学生理清课堂的重点内容,进行重点练习和记忆.

  3.课堂小结要能引导课外学习.课堂小结是一堂课的结尾总结,也是学生课外学习的一个开始.课堂小结要注重引导学生对所学知识进行深入探究.例如,在讲解例题后,可以让学生寻找课外相似的题目进行训练,充分利用学生的课外时间进行学习拓展.同时,能使课堂与课外连接起来,促进学生的课外学习.总之,课堂小结是初中数学教学中必不可少的环节之一.做好课堂的总结是每个教师的分内之事,它不是一个可有可无的环节.做好课堂小结,不仅能让学生的学习更加轻松有效率,而且能够帮助教师进行授课总结,从而提高教学效果.

如何写好数学教学论文?

  如何写好数学教育论文

  华南师范大学数学系 何小亚

  一、数学教育论文的基本结构
  标题
  (论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)
  作者名(单位名、省、市、邮政编码)
  摘要:
  [ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]
  关键词:
  (关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)
  引言(开头语)
  1. 选题的原因和重要性。
  2. 对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。
  3. 本课题研究的目的、方法、计划。
  4. 本课题研究的意义和价值。
  几种常见的开头方法:
  1.内容范围开头法,即说明本文要论述的内容范围;
  2.问题开头法,即以数学问题或研究对象所存在的问题的方式开头;
  3.设问开头法,即以设问的形式把论文要论述的中心内容表达出来;
  4.目的开头法,即直接把论文要达到的目的告诉读者;
  5.背景开头法,即阐述所研究课题的历史背景;
  6.结论开头法,即直接阐述论文的的主要结论。
  正文
  1 …………
  1.1……
  1.2……
  1.3……
  2 …………
  ………
  结论与讨论(结束语)
  结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。
  下列情况可以省略结论部分:
  1. 前言部分已对结论进行了概括;
  2. 结论已不言自明;
  3. 验证性的论文;
  4. 商榷、反驳、补充性的论文。
  附录
  附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。
  参考文献
  参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。
  一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。
  引用文献为期刊,可仿下面的例子书写:
  [1] 何小亚. 数学应用题认知障碍的分析[J].上海教育科研,2001,
  6:41-43.
  [5] 何小亚. 建构良好的数学认知结构的教学策略[J].数学教育学报. 2002,11(1):25.

  引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:
  [2] 赵振威,黄熙宗,范叙保,等. 中学数学解题研究[M]. 江苏:
  江苏教育出版社,1998. 96-104.
  引用文献为报纸,可仿下例书写:
  [8] 谢希德. 创造学习的新思路[N]. 人民日报,1998—12—25(10)

  上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。
  一、问题的提出
  (背景、问题、你要研究什么问题……)
  二、术语界定
  (术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)
  三、研究的现状(综述同行(相关文献)的研究情况)
  (谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行.。
  四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)
  五、研究方法(你的方法属文献研究、比较研究、定性研究)
  六、研究结果
  就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。
  七、研究结论
  (根据“五、研究结果”得出的结论)
  八、研究展望
  (研究的不足/存在的问题/进一步值得研究的问题)

  二、数学教育论文的选题

  1.学习研究数学教育文献
  数学教育类期刊
  Educational Studies in Mathematics(荷兰);
  Journal for Research in Mathematics Education(美);
  Mathematics Teaching(英);
  Mathematics Teacher(美);
  《课程. 教材. 教法》(人民教育出版社)
  《数学教育学报》(天津师范大学等)
  《数学通报》(中国数学会,北京师范大学);
  《数学教学》(华东师范大学);
  《中学数学》(湖北大学);
  《中学数学教学参考》(陕西师范大学);
  《中学数学研究》(华南师范大学)。
  2.把握数学教育研究的新动向
  及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。
  3.研究课程标准和新教材
  九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材
  4.研究学生学习数学的过程和教学方法
  5.研究初等数学问题
  对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。

  三、注意事项

  1.结合自己的兴趣特长选择研究课题
  2.注意文献资料的取舍
  围绕课题选择文献资料,选择的材料应具有典型性(代表性)、
  实践性、理论性和新颖性
  3. 构思与布局
  在总体构思论文的框架结构时,要注意从整体上思考如何提出问
  题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。
  4. 修改和定稿
  初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。
  5. 注意创新
  论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什
  么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。
  6.不容易被刊用的稿件的特点
  (1) 论述的经验、方法是众所周知的;
  (2) 所列举的数据有为自己评功摆好的嫌疑;
  (3) 选用的例证陈旧;
  (4) 仅仅是例证的堆砌,缺少深刻的理论分析;
  (5) 概念不清,逻辑推理出错;
  (6) 结论的推导冗长而应用面狭窄;
  (7) 课题过大,设计面过宽,讨论问题面面俱到,但不深入;
  (8) 文章过长(超过5000字)。

  附件四:研究课题举例
  一、一般性的研究课题
  1. 中学数学课程标准的分析研究
  2. 关于高考数学命题及答卷的研究
  3. 数学开放题研究
  4. 数学应用题研究
  5. 优秀数学教师的教育思想及教学艺术评析
  6. 数学教学改革实验研究
  7. 数学差生的成因与教学对策
  8. 学生数学能力评价研究
  9. 数学教育中的素质教育内涵
  10. 中学数学教学与学生创新意识培养
  11. 中学数学教学与学生应用意识培养
  12. 数学课程评价的理论与实践
  13. 数学语言教学研究
  14. 数学思想方法的教学研究
  15. 中学数学作业处理
  16. 运用数学方法论指导数学教学
  17. 中学生数学阅读能力的调查研究
  18. 中学生数学语言能力的调查研究
  19. 数学学习方式的调查研究
  20. 数学交流能力的调查研究
  二、 高中数学新课程教学方面的研究课题
  (一)在新课程理念下对原有内容的教学研究
  1. 函数教学研究
  2. 向量教学研究
  3. 立体几何教学研究
  4. 解析几何教学研究
  5. 导数及其应用教学研究
  6. 概率与统计的教学研究
  7. 不等式教学研究
  8. 三角恒等变换教学研究

  (二)对新增内容的教学研究
  9. 算法教学研究
  10. 统计案例教学研究
  11. 框图、推理与证明教学研究
  12. 选修系列3教学研究
  13. 选修系列4教学研究
  (三)双基与能力教学研究
  14. 新课程理念下高中数学双基教学设计研究
  15. 关于培养学生抽象、概括能力的研究
  16. 关于合情推理与演绎推理在培养学生思维能力中的作用的研究
  17. 数学新课程实施中学生自主学习的研究
  18. 数学教学中培养学生自我监控能力的研究
  19. 关于《标准》中课程内容与要求的科学性、可行性的研究
  20. 数学文化对于促进学生数学学习的研究
  21. 数学教学中渗透数学探究、研究性学习的研究

  三、高中数学新课程的评价课题
  1. 对学生数学学习过程评价的研究
  2. 体现新课程理念的模块终结性评价工具与方法的开发
  3. 对选修系列3、选修系列4读书报告的评价
  4. 对数学探究、数学建模的评价
  5. 高中新数学课程课堂教学评价
  6. 高中数学教师专业化发展评价
  7. 数学新课程理念下的高考命题研究
  8. 数学教学中情感、态度、价值观的评价
  9. 关于过程性评价与终结性评价有机结合的研究

  四、高中数学新课程的信息技术研究课题
  1. 信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用
  2. 网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)
  3. 信息技术与研究性学习的融合
  4. 运用信息技术手段,改变学生学习方式(结合具体内容研究)
  5. 信息技术对评价的形式与内容带来的影响
  6. 以信息技术为主要手段的数学课程和教学资源库的建立
  7. 信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进
  8. 运用信息技术手段,展示数学知识的发生和发展过程的案例研究
  9. 信息技术与数学课程内容整合的案例开发

  五、高中数学新课程的课程资源研究课题
  1. 算法的背景与实例的收集与积累
  2. 概率与统计的背景与实例的收集与积累
  3. 导数及其应用的背景与实例的收集与积累
  4. 关于高中数学选修系列3课程资源的开发与积累
  5. 关于高中数学选修系列4课程资源的开发与积累
  6. 现行高中数学新教材的比较研究
  7. 数学新课程资源的拓广与应用
  8. 网上数学资源的拓广与利用
  9. 数学教学软件的研制与开发
  10. 数学教学资源的传播与信息共享

  六、高中数学新课程的研究性学习(数学建模、数学探究)
  1. 如何指导学生选择数学探究、数学建模的课题
  2. 数学探究、数学建模活动与课堂教学的关系研究
  3. 研究性学习对培养学生能力的作用

  中学数学教材、教学研究的问题
  1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。
  2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。
  2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。
  3.统计与概率内容的系统设计及案例交流。
  4.课题学习的系统设计及案例交流。
  5.整理与复习的系统设计及案例交流。
  6.几何内容的系统设计及案例交流。
  7.发展学生推理能力的系统设计及案例交流。
  8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。
  9.信息技术对课程内容选择、呈现以及教师专业发展的影响。
  10.如何体现数学的文化价值,不只局限于数学史。
  11.教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)
  12.教材怎样才能更好地体现数学的特点及学生的认知特点。
  13.建立数学模型与数学的双基教学。
  14.如何处理教材“留白”和学生自学(阅读)之间的关系。
  15.教材“留白”与教师发展空间之间的关系。
  16.对评价的思考与实践。

  附二:
  教学设计模板

  课题名称:×××××××
  教学年级:×年级
  设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)
  一、教学内容分析
  1.教学主要内容
  2.教材编写特点
  本节课内容在单元中的地位,本节课教材编写的意图及特点等。
  3.教材内容的数学核心思想
  4.我的思考
  下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。
  说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。
  二、学生分析
  1.学生已有知识基础(包括知识技能,也包括方法)
  2.学生已有生活经验和学习该内容的经验
  3.学生学习该内容可能的困难
  4.学生学习的兴趣、学习方式和学法分析
  5.我的思考:
  下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。
  说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。
  已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。
  学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。
  调研中可以将学生测验、访谈、小组观察等结合起来。
  三、学习目标(以学生为主语)
  1. 知识与技能
  2. 过程与方法(数学思考、解决问题)
  3. 情感态度价值观
  说明:
  1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。
  2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。
  3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。
  4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。
  四、教学活动
  教学活动就是为学习目标的实现所设计的活动。包括
  1.活动内容
  2.活动的组织与实施
  说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,
  组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。
  3.活动的设计意图
  说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。
  4. 活动的时间分配预设
  说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。
  可以参考下面的表格形式,也可以用文档的形式。
  活动内容 活动的组织与实施(含教师活动和学生活动) 设计意图 时间分配

  五、教学效果评价
  目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。
  可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。
  以下几点供教师思考:
  (1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。
  (2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?
  (3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。
  (4) 教学是需要设计的,最后达到寓教于“无形”之中。
  (5) 设计应该考虑单元或更大的范围。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页