差很多。
穷举法是用人工的方法把所有的可能项全部列出,再从中挑选符合约束的最优解,是最笨的一种方法。比如说要找出从A地到D地的最短距离,就要把所有从A到D的各种不同走法的距离都写出来,看哪个最小最优解就是哪个。变量少点还勉强可以,变量一多又麻烦又容易出错。
动态规划是用科学的方法按照顺序或逆序,从中间变量开始依次往后或往前迭代推算,每次选出的都是最优解。这样就避免了那些从第一节点就非最优的一系列计算,只挑最优的算。在变量较多的时候使用,可以很快很准确的得到答案。
动态规划是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。
意义:
如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。
每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果。
局限性:
动态规划对于解决多阶段决策问题的效果是明显的,但是动态规划也有一定的局限性。首先,它没有统一的处理方法,必须根据问题的各种性质并结合一定的技巧来处理;另外当变量的维数增大时,总的计算量及存贮量急剧增大。
因而,受计算机的存贮量及计算速度的限制,当今的计算机仍不能用动态规划方法来解决较大规模的问题,这就是“维数障碍”。
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较著名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。