水文地球化学的研究方法,除了借助于已有的地质—水文地质方法外,还必须采用现代化学、物理学和原子物理学等学科的理论、观点和方法,研究元素活动的历史及水文地球化学作用过程。尤其是近30年来计算机技术的迅速发展,至1985年已形成了50余个地球化学计算的软件,将地球化学模拟(化学热力学模拟和化学动力学模拟)引向深入。近二十年来,另一个引人注目的动态是地球化学已开始从平衡的静态描述转向重视其作用过程的动力学研究。此外,核检测技术取得的巨大进步使同位素技术在水文地质学研究中得到日益广泛应用。
一、化学热力学计算
地球化学模拟是近十几年发展起来的定量研究地下水地球化学演化的重要方法。对反应的识别是研究天然水化学演化的必要因素之一。近十几年来,国外已开始应用地下水地球化学模拟方法定量研究地下水地球化学演化问题。国内在九十年代才开始起步。地下水地球化学模拟是研究地下水地球化学演化的重要方法。当前亟需更多的热力学数据以及研究元素的化学形态(包括水溶态)的实验方法等。
1.种类计算
化学分析资料提供的某个元素的含量均是以其溶解态形式存在的一个总和值,并未给出该元素在水中存在形式及其在总和值中所占的比例。水溶液中的溶解态组分以单一离子络阴离子以及复杂的无机和有机络合物三种形式存在。水溶液中化学组分的迁移、富集过程中伴生着溶解—沉淀等作用,其结果使溶液中化学成分发生改变。由于络合作用,可使一种络合迁移形式转变为另一种络合迁移形式,在酸碱度、氧化还原电位的控制下,影响和制约元素参与溶解—沉淀、吸附—解吸等物理化学作用过程,以及元素在水溶液中的迁移、转化和富集的过程和规律性。因此,水中元素的存在形式对各种化学组分的溶解—沉淀等作用的强度及趋势产生重要影响,不考虑溶液中元素的具体存在形式,将元素的总含量不加区别地作为自由离子的含量,在研究物理化学作用过程中必将产生较大的误差,甚至会得出错误的结论。因此,查明水中元素的存在形式,才能正确地认识其迁移、富集和沉淀等问题。目前要将元素的存在形式全部测定出来是很困难的,但通过模拟水溶液物理化学反应的数值计算可获得求解。
地球化学(反应)模拟是在平衡热力学理论基础上于60年代发展起来的一种理论计算方法。之后不断取得了改进和完善,至1985年已形成了50余个地球化学计算的软件,并可用以研究天然水系统和水岩系统的地球化学作用。
地下水地球化学热力学模拟的理论基础是化学理论,可用物理化学模型和数学模型表述。模型可通过两种方法求解,一种是求解自由能函数的最小值方法,即最小自由能法;另一种是求解质量作用定律和质量守衡约束组成的一组多元非线性方程组,即平衡常数法。这两种方法在热力学上是完全等价的。在种类计算、质量平衡计算和物质迁移计算(或称反应途径模拟)中,种类计算是后两者的基础和不可缺少的组成部分。
该热力学模拟计算在最近的大洋水多金属结核研究中及油田水研究中进行成功的应用,并取得了一系列重要的结论。
2.质量平衡和反应路径计算
质量平衡和反应路径计算是定量研究水文地球化学演化的重要手段。质量平衡模拟方法是已知起点和终点水化学成分,确定它们之间所发生的水-岩相互作用和矿物质量转移量,即所谓模拟的逆问题。由于质量平衡模型为一线性方程组,建模方法简单,求解容易,因此,许多研究者应用该方法研究了碳酸盐(如Plummer,1977,1983;Plummer等,1990;John等,1991;Back等,1970;Jones等,1993)或铝硅酸盐(James等,1989)含水层中的水-岩相互作用。反应路径模拟方法是已知起点水化学成分,利用质量平衡模型确定的水-岩相互作用和矿物质量转移量,预测终点水化学成分,是模拟的正问题。该模拟模型为—高次非线性方程组,需要用特制的计算机软件如PHREEQM和PATH计算程序来完成。
二、动力学研究
化学热力学理论可预测化学变化的方向和可能进行程度。自发化学变化沿着化学位梯度向降低的方向进行,当自由能随着反应程度的增加而降底时,反应是可能进行的。在平衡状态时,正反应驱动力等于逆反应的驱动力。并且由平衡常数K可以求得组成。但是一个自发过程并不一定是一个快速过程。整个化学反应的能量和它们的速度之间并没有简单的关系,它取决于诸多因素。例如在研究地热流体的管道硅酸盐结垢时,根据实验室经验和野外观察表明:存在大量的因素影响着硅沉淀的动力学特征。一些重要的因素有:饱和度、pH、温度、流量、流体所含气体的多寡以及流体中其他离子的存在(与K.L.Brown私人交谈)。在此我们不是想讨论结论问题,而是试图强调整个化学反应的能量和它们的速度之间并没有简单的关系。反应的动力学特性及速度公式是从实验中得到的,并且是按照由各级单元反应组成的机理来阐述的(W.施图姆,J.J.摩尔根,1981)。有关这方面的研究在我国正处在刚刚起步状态。中国科学院广州地球化学所吴大清等在其今年发表的论文探讨了CaCO3溶解作用的动力学方程。目前有关矿物-水反应的动力学数据正在积累之中,有关地球化学模拟中的动力学模拟理论还不成熟,比较适用的计算软件尚待建立。
再者,考虑到许多地球化学作用是复杂的,非线性动力学过程。因此,随着非线性理论的发展,化学动力学在水文地球化学中的引入和应用越来越受到人们的关注。并且越来越多的野外观察、实验与理论研究表明,应将化学动力学的研究放在开放的和非平衡的复杂系统加以研究,目前国内外研究者们认为开放体系、非平衡和不可逆性是地球化学反应体系的普遍而重要的特征。建立了一些地球化学反应动力学的实验方法(如连续流动搅拌反器)等理论模式。特别是近年来通过实验陆续发现了化学振荡、混沌振荡、化学分形等非线性现象。在水文地球化学研究中这一理论的引入,将推动研究矿物-水反应速度,研究在开放-流动体系内物质与能量的传递,进而达到真正把握地球化学过程的本质。
三、同位素研究
50年代随着核检测技术的发展,同位素研究和应用在水文地质学研究中得到日益广泛的应用,不仅可以探讨地下水的起源、形成、埋藏和质与量的沿时变化等地下水形成理论问题,而且还可以判定地下水的补给来源、补给强度、各种补给来源的比例、补给区位置高度以及测定地下水年龄、流向和流速等实际应用问题。这种研究方法的进步,使水文地质工作者能够把大气水-地表水-地下水视为统一的“系统”,进而定量研究其转化关系。是否成功地利用同位素研究手段是国际学术界恒量研究成果质量优劣的一个重要方面。
原苏联对很多盆地的地下水同位素进行了调查以解决区域水文地质问题,并对同位素水文学的理论和应用进行了研究。美国的研究者们应用环境同位素进行了大量水文地质示踪试验,平价地下水的补给量,确定地下水中的溶质运移,研究裂隙地层的渗透性能,示踪天然水力坡度等,并对示踪试验的原理、问题和应用进行了广泛的研讨。他们还调查了环境同位素示踪剂地下运移和分布及其与包气带水分运移空间变化之间的相关关系。加拿大、日本和西德等国在地下水研究中也应用了同位素方法,如通过测定氚的浓度来验证地下水的流速,利用环境同位素氚和碳-14的浓度直接求出地下水的年龄,利用人工放射性同位素示踪,在单孔中测定地下水流向、流速和渗透系统,通过多孔测定有效孔隙度、导水系数和弥散系数等。
我国同位素技术成功地在地热系统、地下水盐化作用、地下水年龄、区域水文地质学、矿床水文地质学、环境地质学等方面得到应用并产生了相应的研究成果。其主要进展可概括为如下几个方面。
1.地下水年代学研究
国内的地下水同位素年代学研究始于70年代末80年代初,刘存富教授、张之淦研究员等分别对河北平原第四系地下水进行研究,所采用的方法主要有氚、碳-14和氯-36等核素。1993年以来,孙继朝等对河北平原第四系地下水进行更系统研究,在其最近的论文中指出由于地下水的年龄不同于岩石或矿物的年龄,地下水处在不断运动且与流经介质相互作用着。事实上,没有任何一滴水是由单一年龄的水构成的,所谓地下水年龄是一个平均值,其精度受测年方法、研究对象和取样过程的制约。他们认为提高测年质量的关键是加强水岩作用和水动力混合影响研究,并建议将测年纳入研究工作全过程。
2.同位素分馏理论
从70年代中期开始,美、法、日等国除不断推进氢氧同位素的研究外,相继探索氮同位素方法确定地下水中硝酸盐起源,作为传统方法的重要补充,已显示出良好前景。针对水圈被氮化合物污染已成为一个严重的环境问题,人们越来越关注氮同位素的研究。邵益生等对水土环境中的氮同位素分馏机理作了深入的研究。并认为影响氮同位素分馏的七个因素为:固氮、同化、矿化、硝化、反硝化、离子交换及氨的挥发。而硝化、反硝化和氨的挥发是影响地下水中硝酸盐的同位素组成变化最直接和最主要的过程。
3.硼、氯同位素应用
进入80年代中期以来,硼、氯同位素测定技术的提高,自然界中硼、氯同位素的分馏被证实并引起重视。硼、氯同位素地球化学的研究已在海洋、盐湖、地下水、蒸发岩、热液矿床、环境等方面开展,并显示出良好前景。
4.地下水同位素年代学剖面的建立和环境演变信息的提取
地下水作为古气候变化信息的档案库进行研究始于1993年,各国学者的研究有一个共同的特点,就是不再将地下水仅仅视为流体,而是作为信息储存库进行研究。我国学者孙继朝等通过对河北平原第四系地下水的研究,建立了地下水同位素年代学剖面,并与各种古气候研究剖面进行对比。研究表明地下水的形成过程并不是一个简单的连续过程,其过程受控于区域排泄基准面的变化。地下水确实记录了古气候变化信息,水中主要离子的分布支持这种认识。国外地下水中惰性气体的研究证实了这一点,此方面的研究将是未来的一个重要方向。
同位素方法在我国正处在方兴未艾阶段。同位素技术深化了研究者对天然水的认识层次,使人们从水的分子结构层次和原子结构层次深入到原子核层次。
化学动力学(chemical kinetics)是研究化学反映过程的速率和反应机理的物理化学分支学科。
例如,药物的保质期。
药物在一般的保存条件下,会发生分解等化学反应,导致有效成分的含量降低,或者分解产物(杂质)的浓度升高。那么,有效成分的含量降低到达不到疗效浓度需要多长时间,就需要通过化学动力学的实验确定。
本人从智网上找的 有PDF格式 这是从上面转下来的
统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备采用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备采用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi Vol.24 No.1合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c=4.8 K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法采用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在4.8 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi Vol.24 No.1为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc=4.6 K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为2.46 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc=0.66 K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)0.5Mn1.25[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:1297低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel H.M. J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel H.M. Proc. R.A. Welch Found. Chem. Res.1967;11:144还在常温区,如[Fe(Htrz)4 Wickman H.H. ,Trozzolo A.M. ,Williams H.J. ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 三唑类) ,在常温下从紫色(低自旋)随温度5 Miller J.S. ,Calabrese J.C. ,Epstein A.J. ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].1984年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 ManriquezJ.M. ,Yee G.T. ,Mclean R.S. ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong Z.J. ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,Eng.Series, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler W.D. ,Babel D.Z. ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 MillerJ.S. ,EpsteinA.J.Angew. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,NovakM.A. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand P.M. ,Khemani K.C. ,Koch A. ,et al. Science,1991;254:301四、展 望16 MillerJ.S. ,ZhangJ.H. ,Reiff W.M. ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 MillerJ.S. ,CalabressJ.C. ,DixonD.A. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,LongS.M. ,MillerJ.S. Phys.Lett.A,1993;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 MillerJ.S. Inorg. Chem. ,2000;39:4392
估计效果很不好 如果想要的话,留个邮箱,给你发过去