您当前的位置:首页 > 发表论文>论文发表

催化学报综述ppt

2023-12-09 23:21 来源:学术参考网 作者:未知

催化学报综述ppt

《催化学报》是中国化学会和中国科学院大连化学物理研究所主办,科学出版社出版的学术性刊物,为月刊。 主要报道催化领域的基础性和应用基础性的最新研究成果。现被SCI等数据库收录,其2008年ISI影响因子为0.707,国内影响因子为1.108。2006年起Elsevier合作在ScienceDirect网络平台上出版《催化学报》英文电子版(国际版)期刊《Chinese Journal of Catalysis》,部分文章的英文版在该平台上发表。《催化学报》现被Abstract Journals (VINITI),Cambridge Scientific Abstracts (CIG),Catalysts & Catalysed Reactions (RSC),Chemical Abstract Service/SciFinder (CAS),Chemistry Citation Index (Thomson ISI),Japan Information Center of Science and Technology Journal Citation Reports/Science Edition (Thomson ISI),Science Citation Index Expanded (Thomson ISI),SCOPUS (Elsevier),Web of Science (Thomson ISI)以及《中文核心期刊要目总览》,《中国学术期刊文摘》(CSA),《中国科学引文数据库》(CSCD),《中国科技期刊精品数据库》,《中国学术期刊综合评价数据库》(CAJCED),《中国期刊全文数据库》(CNKI),《万方数据资源系统》,《中文科技期刊数据库》(VIP),《中文电子期刊服务数据库》(CEPS)和《中国化学文献数据库》(CCBD)等国内外重要数据库收录。该刊刊登稿件类型包括快讯、论文和综述,稿件可以用英文或中文撰写。

催化剂研究方面比较好的导师?

Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities
Hironori Arakawa, Michele Aresta,....Tobin J. Marks
Chem. Rev. 2001, 101, 953-996此篇作者基本汇集了世界上一半的著名催化科学家,必读!

Organic Reactions at Well-Defined Oxide Surfaces
Mark A. Barteau特拉华大学的催化牛人
Chem. Rev. 1996, 96, 1413-1430

ACID-BASE REACTIONS ON SOLID SURFACES: THE REACTIONS OF HCOOH, H&O, AND HCOOCH3 WITH OXYGEN ON Ag (110)
M.A. BARTEAU, M. BOWKER and R.J. MADIX三位牛人的固体表面酸碱反应
Surface Science 94 (1980) 303-322

Chemical Structures and Performance of Perovskite Oxides
M. A. Pen and J. L. G. Fierro关于钙钛矿氧化物的牛人综述
Chem. Rev. 2001, 101, 1981-2017

The Binary Rare Earth Oxides二元稀土氧化物
Gin-ya Adachi* and Nobuhito Imanaka
Chem. Rev. 1998, 98, 1479-1514

Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges过渡金属和稀土氧化物的氧空穴,很著名的综述
M. Veronica Ganduglia-Pirovano, Alexander Hofmann, Joachim Sauer
Surface Science Reports 62 (2007) 219–270 **的一句名言“中东有石油,中国有稀土。”

Classical kinetics of catalytic reactions
Gérald Djéga-Mariadassou and Michel Boudart
Journal of Catalysis 216 (2003) 89–97经典的机理与催化反应,必读!

Role of the Crystal-Field Theory in Determining the Structures of Spinels
Jeremy K. Burdett 伯德特金属固体物理
J. Am. Chem. Soc. 1982, 104, 92-95

Hideshi Hattori服部英教授的多相碱催化3篇综述,填补田部教授的固体酸催化

Heterogeneous Basic Catalysis多相碱催化唯一Chem Rev综述
Chem. Rev. 1995, 95. 537-550

CATALYSIS BY BASIC METAL OXIDES金属氧化物的碱性催化
Materials Chemistry and Physics, 18 (1988) 533-552

Solid base catalysts: generation of basic sites and application to organic synthesis
Applied Catalysis A: General 222 (2001) 247–259固体碱催化剂

Solid base catalysts for the synthesis of fine chemicals
Yoshio Ono
Journal of Catalysis 216 (2003) 406–415 前面讲过Robert J. Davis的一篇在J Catal上的分子筛碱催化综述

“Intelligent” reforming catalysts: Trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites
Katsuomi Takehira 必将风靡的智能重整催化剂
Journal of Natural Gas Chemistry 18(2009) 237–259

SURFACE RECONSTRUCTION AND CATALYSIS
G. A. Somorjai
Annu. Rev. Phys. Chern. 1994.45: 721-51表面重建与催化

High technology catalysts towards 100% selectivity Fabrication, characterization and reaction studies
G.A. Somorjai*, R.M. Rioux
Catalysis Today 100 (2005) 201–215高选择性的研究

POTENTIAL ENERGY SURFACES FOR CHEMICAL REACTIONS AT SOLID SURFACES
Barbara J. Garrison and Deepak Srivastava在固体表面化学反应的势能面
Annu. Rev. Phys. Chern. 1995.46: 373-94

Elementary Processes at Gas/Metal Interfaces
By Gerhard Ertl
Angew Chem IE (1976)金属界面

Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways
R. Blume…R. Schlogl…and M. Kiskinova*弗里茨哈珀所的钌基催化
Phys. Chem. Chem. Phys., 2007, 9, 3648–3657

Mechanism of HCl oxidation (Deacon process) over RuO2
Núria López...Javier Pérez-Ramírez 牛人JPR教授在制氯的综述
Journal of Catalysis 255 (2008) 29–39

Substitutional alloy of Ce and Al
Qiao-Shi Zeng…铈铝结晶石,浙大去年很有影响力的一篇
PNAS February 24, 2009 vol. 106 no. 8 2515–2518

Deactivation of metal catalysts in liquid phase organic reactions
Michèle Besson, Pierre Gallezot 液相有机反应中金属催化剂的失活
Catalysis Today 81 (2003) 547

Process options for converting renewable feedstocks to bioproducts
Pierre Gallezot 可再生的原料
Green Chem., 2007, 9, 295–302

Catalytic Conversion of Biomass: Challenges and Issues
Pierre Gallezot 生物质催化转化
ChemSusChem 2008, 1, 734 – 737

New possibilities and opportunities for basic and applied research on selective oxidation by solid catalysts: an overview
G. Centia,*, M. Misonob 固体催化剂的选择性氧化综述
Catalysis Today 41 (1998) 287

The Desorption of Alcohols from Metal Oxides.
D. J. WHEELER…醇在金属氧化物表面的脱附
J Catal, 1960

Research Perspectives during 40 Years of the Journal of Catalysis
Frank S. Stone 催化学报40年历史的总结
Journal of Catalysis 216 (2003) 2–11

Environmental catalysis
François Garin 环境催化综述
Catalysis Today 89 (2004) 255–268

Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century
Jack H. Lunsford 甲烷的催化转化展望
Catalysis Today 63 (2000) 165–174

Natural gas chemical transformations: The path to refining in the future
Eduardo Falabell, Sousa-Aguiar…天然气的未来
Catalysis Today 101 (2005) 3–7

Characterization of zeolite basicity using probe molecules by means of infrared and solid state NMR spectroscopies固体核磁表征分子筛的碱性
Manuel Sanchez-Sanchez, Teresa Blasco *
Catalysis Today 143 (2009) 293–301

Transition metal phosphide hydroprocessing catalysts: A review
S. Ted Oyama…加氢催化综述
Catalysis Today 143 (2009) 94–107

Concepts in Theoretical Heterogeneous Catalytic Reactivity
Rutger A. Van Santen; Matthew Neurock大牛的多相催化转化的理论概念
Catalysis Reviews, 37: 4, 557

Hydrotalcite-like anionic clays in catalytic organic reactions
Bert F. Sels; Dirk E. De Vos; Pierre A. Jacobs
Catalysis Reviews, 43: 4, 443 水滑石类阴离子粘土的有机催化

Methane Oxyforming for Synthesis Gas Production
Andrew P. E. York; Tian-cun Xiao; Malcolm L. H. Green…
Catalysis Reviews, 49:4, 511 – 560 牛津甲烷的利用

Precious Metal Catalysts Supported on Ceramic and Metal Monolithic Structures for the Hydrogen Economy
Robert J. Farrauto…氢能领域的负载型贵金属催化剂
Catalysis Reviews, 49:2, 141 - 196

Catalytic Production of Liquid Fuels from Biomass-Derived Oxygenated Hydrocarbons: Catalytic Coupling at Multiple Length Scales 生物质能
Dante A. Simonetti; James A. Dumesic
Catalysis Reviews, 51: 3, 441

Gas Conversion to Liquid Fuels and Chemicals: The Methanol Route-Catalysis and Processes Development
Touhami Mokrani; Mike Scurrell 甲醇经济,气转液
Catalysis Reviews, 51: 1, 1

Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis 液相中形貌尺寸可控合成纳米金属
Natalia Semagina; Lioubov Kiwi-Minsker
Catalysis Reviews, 51: 2, 147

Selective Catalysis of Lactic Acid to Produce Commodity Chemicals
Yongxian Fan; Chunhui Zhou; Xiaohong Zhu 浙工大去年很著名的乳酸催化转化综述
Catalysis Reviews, 51: 3, 293

Water Gas Shift Catalysis
Chandra Ratnasamy; Jon P. Wagner 水汽转换反应
Catalysis Reviews, 51: 3, 325

Aromatic Hydrogenation Catalysis: A Review
Antonymuthu Stanislaus; Barry H. Cooper 芳烃的加氢催化
Catalysis Reviews, 36: 1, 75

Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles
XIULIAN PAN…AND XINHE BAO* 包院士的碳纳米管催化综述
nature materials

石墨烯的化学研究进展
傅强, 包信和 科学通报2009 年第 54 卷第 18 期: 2657 ~ 2666

Chem Rev上关于多相催化著名的一期专刊
Special Issue of ‘‘Introduction: Heterogeneous Catalysis’’
Volume 95, Number 3 May 1995

Methods for Preparation of Catalytic Materials 催化材料的制备,必读!
James A. Schwarz, Cristian Contescu and Adriana Contescu

Oscillatory Kinetics in Heterogeneous Catalysis
Ronald lmbihl and Gerhard Ertl*

Turnover Rates in Heterogeneous Catalysis 最近被狂顶的TOF综述,殊不知该期篇篇经典
M. Boudart

Supported Metal Clusters: Synthesis, Structure, and Catalysis 牛人的催化材料综述
B. C. Gates

Spillover in Heterogeneous Catalysis 多相催化的溢流
W. Curtis Conner, Jr., J and John L. Falconer

Modeling the Kinetics of Heterogeneous Catalysis 模拟和机理
H. Chuan Kang*, W. H. Weinberg*

推荐几期其他杂志多相催化相关的专刊:

Special Issue of ‘‘IB metals’’ Copper, Silver and Gold in Catalysis
Catalysis Today 36 (1997)

Special Issue of ‘‘Recent advances in catalytic production of hydrogen from renewable sources’’
Catalysis Today 129 (2007) 263–264

Special Issue of ‘‘Chemistry and physics of metal oxide nanostructures’’
Phys. Chem. Chem. Phys., 2009, 11, 3607

Special Issue of ‘‘Catalytic Synthesis and Utilization of Alcohols’’
Catalysis Today 147 (2009) 61

德国马普-哈伯研究所的Hans-Joachim Freund教授,有实力N/S但据说号称绝不发表N/S的牛人

Surface chemistry of carbon dioxide 最早拜读Freund教授的文章
Surface Science Reports 25 (1996) 225-273

Molecular beam experiments on model catalysts
Surface Science Reports 57 (2005) 157–298

Photochemistry on Metal Nanoparticles
Chem. Rev. 2006, 106, 4301-4320

Gold Supported on Thin Oxide Films: From Single Atoms to Nanoparticles
Vol. 41, No. 8 August 2008 949-956 ACCOUNTS OF CHEMICAL RESEARCH

Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts
Chem. Soc. Rev., 2008, 37, 2224–2242

美国德州A&M大学化学系的D. Wayne Goodman教授,表面化学及催化牛人

Model Catalytic Studies over Metal Single Crystals
Acc. Chem. Res. 1984, 17, 194-200

Catalysis: New Perspectives from Surface Science 科学的展望
SCIENCE, VOL. 236

Model Studies in Catalysis Using Surface Science Probes 又是那一期著名的文章之一
Chem. Rev. 1995, 95, 523-536

Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms
Chem. Rev. 1999, 99, 77-174

High-pressure catalytic reactions over single-crystal metal surfaces 表面催化必读经典
Surface Science Reports 14 (1991) 1-107

Chemical and Electronic Properties of Bimetallic Surfaces 双金属表面
Acc. Chem. Res., Vol. 28, No. 12, 1995

Catalytically Active Gold: From Nanoparticles to Ultrathin Films
Acc. Chem. Res. 2006, 39, 739-746 Precious little catalyst 前面介绍过的NATURE, 2008

UCR的Francisco Zaera教授

Infrared and molecular beam studies of chemical reactions on solid surfaces
International Reviews in Physical Chemistry, 21: 3, 433

Regio-, Stereo-, and Enantioselectivity in Hydrocarbon Conversion on Metal Surfaces
Acc. Chem. Res. 1152-1160 August 2009 Vol. 42, No. 8 碳水化合物

Kinetics of Chemical Reactions on Solid Surfaces: Deviations from Conventional Theory
Acc. Chem. Res. 2002, 35, 129-136 固体表面的催化

Organic chemistry on solid surfaces马博士的文章
Surface Science Reports 61 (2006) 229–281

瑞士苏黎世联邦理工的Alfons Baiker教授

Aerogels in Catalysis
Catalysis Reviews, 37: 4, 515 — 556

Supercritical Fluids in Heterogeneous Catalysis
Chem. Rev. 1999, 99, 453-473

Utilization of carbon dioxide in heterogeneous catalytic synthesis²
Appl. Organometal. Chem. 14, 751–762 (2000)

Heterogeneous Enantioselective Hydrogenation over Cinchona Alkaloid Modified Platinum: Mechanistic Insights into a Complex Reaction
Acc. Chem. Res. 2004, 37, 909-917

Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts
Chem. Rev. 2004, 104, 3037-3058

Catalytic Oxidations in Dense Carbon Dioxide
Chem. Rev. 2009, 109, 2409–2454 拜科教授的综述值得一读

NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance
Chem. Rev. 2009, 109, 4054–4091

有关安全管理毕业论文参考文献

参考文献作为安全管理论文中不可缺少的组成部分,引用参考文献往往是决定安全管理论文质量的重要因素之一。下文是我给大家带来的安全管理论文参考文献的内容,欢迎大家阅读参考!

[1] 刘宇. 高级氧化-生物活性炭-膜滤优化组合除有机物中试研究[D]. 哈尔滨工业大学 2014

[2] 刘起峰. 密云水库水的预氧化及强化混凝研究[D]. 中国地质大学(北京) 2007

[3] 韩宏大. 安全饮用水保障集成技术研究[D]. 北京工业大学 2006

[4] 赵建伟. 富营养化原水中微囊藻毒素分析与去除 方法 及氧化降解机制研究[D]. 西安建筑科技大学 2006

[5] 刘起峰. 密云水库水的预氧化及强化混凝研究[D]. 中国地质大学(北京) 2007

[6] 程庆锋. 高铁锰氨氮地下水净化工艺优化及菌群结构研究[D]. 哈尔滨工业大学 2014

[7] 苗杰. 电化学无氯预氧化安全净水新技术研究[D]. 北京化工大学 2014

[8] 王娜. 腐殖质在混凝与预氧化工艺中的特性及对水处理效能的影响研究[D]. 哈尔滨工业大学 2012

[9] 唐阳. 功能导向的电化学体系建立与碳基复合电极的设计和制备[D]. 北京化工大学 2013

[10] 王琼杰. 基于新型磁性强碱离子交换树脂净化的水源水深度处理技术研究[D]. 南京大学 2014

[11] 周娟. 负载型Pd基催化剂对饮用水中消毒副产物的催化加氢还原[D]. 南京大学 2014

[12] 张怡然. 预臭氧化消毒副产物生成特性和控制技术研究[D]. 南开大学 2014

[13] 吴云. 澄清池膜过滤用于饮用水处理的工艺研究[D]. 天津大学 2009

[14] 李金成. 负载锰氧化物滤料对高锰地下水处理技术研究[D]. 中国海洋大学 2011

[15] 刘志泉. 水中铜绿微囊藻与硝基苯复合污染的特征和作用机制[D]. 哈尔滨工业大学 2012

[1] 姜再兴,黄玉东,刘丽. 粗糙度对碳纤维/聚芳基乙炔复合材料界面性能的影响[J]. 化学与粘合. 2007(05)

[2] 张国权,杨凤林. 蒽醌/聚吡咯复合膜修饰电极的电化学行为和电催化活性[J]. 催化学报. 2007(06)

[3] 范新庄. 石墨电极的电化学改性制备方法与准电容特性研究[D]. 中国海洋大学 2011

[4] 杨旭,孙承林,谢茂松,杜远华,王贤高. 用电-多相催化技术处理油田废水[J]. 工业水处理. 2002(12)

[5] 陶龙骧,谢茂松. 电催化和粒子群电极用于处理有机工业污水[J]. 工业水处理. 2000(09)

[6] 吴庆,陈惠芳,潘鼎. 炭纤维表面处理综述[J]. 炭素. 2000(03)

[7] 杨旭,孙承林,谢茂松,杜远华,王贤高. 用电-多相催化技术处理油田废水[J]. 工业水处理. 2002(12)

[8] 吴海燕. 单线态氧与不饱和化合物的反应及其过氧化产物的化学发光研究[D]. 江南大学 2012

[9] 陶龙骧,谢茂松. 电催化和粒子群电极用于处理有机工业污水[J]. 工业水处理. 2000(09)

[10] 吴庆,陈惠芳,潘鼎. 炭纤维表面处理综述[J]. 炭素. 2000(03)

[11] 周抗寒,周定. 用涂膜活性炭提高复极性电解槽电解效率[J]. 环境科学. 1994(02)

[12] 谢茂松,王学林,徐桂芬,杨旭,安铁军. 治理难降解有机工业废水新技术--电-多相催化作用[J]. 大连铁道学院学报. 1998(02)

[1] 张芳芳,张永成,骆汉宾. 房地产企业施工阶段安全保障体系研究[J]. 土 木工 程与管理学报. 2013(04)

[2] 卢阳. 谈我国建设工程 安全生产 管理问题与对策研究[J]. 山西建筑. 2012(30)

[3] 曾力勇. 不确定条件下房地产企业投资决策模型研究[D]. 湖南大学 2007

[4] 马建军,陈凤林. 论以企业安全发展伦理为重点的企业安全 文化 建设[J]. 中共银川市委党校学报. 2012(04)

[5] 刘卡丁,郑兰兰,周诚. 我国城市轨道交通安全保障体系研究[J]. 土木工程与管理学报. 2011(04)

[6] 田原. 房地产开发企业安全管理[J]. 现代职业安全. 2011(08)

[7] 曾力勇. 不确定条件下房地产企业投资决策模型研究[D]. 湖南大学 2007

[8] 吴贤国,张立茂,余宏亮,余明辉. 基于知识集成的地铁施工安全风险识别专家系统研究[J]. 施工技术. 2012(13)

[9] 陈必安. 房地产企业综合竞争力分析与提升策略研究[D]. 天津大学 2009

[10] 张孟春. 建筑工人不安全行为产生的认知机理及应用[D]. 清华大学 2012

[11] 张登伦. 机电安装工程项目施工安全风险管理研究[D]. 中国矿业大学(北京) 2013

[12] 王原博. 日本煤矿安全监察与管理理念[J]. 陕西煤炭. 2011(02)

[13] 姚崎. 房地产建设施工现场的安全管理[J]. 企业技术开发. 2011(01)

[14] 余建强,周晓冬. 我国建筑工程安全标准体系的现状分析[J]. 工程管理学报. 2010(03)

猜你喜欢:

1. 安全管理论文参考文献大全

2. 最新仓储管理论文参考文献

3. 安全管理论文参考

4. 有关安全管理论文参考文献

5. 安全管理论文参考文献

乙酰氯保护氨基的条件

氨基保护方法胺类化合物对氧化和取代等反应都很敏感,为了使分子其它部位进行反应时氨基保持不变,通常需要用易于脱去的基团对氨基进行保护。例如,在肽和蛋白质的合成中常用氨基甲酸酯法保护氨基,而在生物碱及核苷酸的合成中用酰胺法保护含氮碱基。化学家们在肽的合成领域内,对已知保护基的相对优劣进行了比较并在继续寻找更有效的新保护基。除了肽的合成外,这些保护基在其它方面也有很多重要应用.下面介绍保护氨基的一些主要方法和基团。1  形成酰胺法将胺变成取代酰胺是一个简便而应用非常广泛的氨基保护法。单酰基往往足以保护一级胺的氨基,使其在氧化、烷基化等反应中保持不变,但更完全的保护则是与二元酸形成的环状双酰化衍生物。常用的简单酰胺类化合物其稳定性大小顺序为甲酰基<乙酰基< 苯甲酰基.酰胺易于从胺和酰氯或酸酐制备,并且比较稳定,传统上是通过在强酸性或碱性溶液中加热来实现保护基的脱除.由于若干基质,包括肽类、核苷酸和氨基糖,对这类脱除条件不稳定,故又研究出了一些其他脱除方法,其中有甲酰衍生物的还原法,甲酰基以及对羟苯基丙酰基衍生物的氧化法,苯酰基和对羟苯基丙酰基衍生物的电解法,卤代酰基、乙酰代乙酰基以及邻硝基、氨基、偶氮基或苄基衍生物等“辅助脱除法”,等等。为了保护氨基,已经制备了很多N2酰基衍生物,上述的简单酰胺最常用,卤代乙酰基衍生物也常用。这些化合物对于温和的酸水解反应的活性随取代程度的增加而增加:乙酰基〈 氯代乙酰基〈 二氯乙酰基〈 三氯乙酰基< 三氟乙酰基。此外,在核苷酸合成的磷酸化反应中,胞嘧啶、腺嘌呤和鸟嘌呤中的氨基是分别由对甲氧苯酰基、苯酰基和异丁酰或甲基丁酰基予以保护的,这些保护基是通过氨解脱除的.另外,伯胺能以酰胺的形式加以保护,这就防止了活化的N2乙酰氨基酸经过内酯中间体发生外消旋化。111  甲酰衍生物胺类化合物很容易进行甲酰化反应,常常仅用胺和98 %的甲酸制备。甲酸乙酸酐也是一个有用的甲酰化试剂。对于某些容易发生消旋化的氨基酸可用甲酸和N ,N′2双环己基碳二亚胺(DCC) 在0 ℃时进行甲酰化反应,也可用酯类进行氨解。
甲酰胺类是相当稳定的化合物,因此广泛应用于肽的合成。甲酰基的脱除也有很多方法,氧化或还原法脱酰反应均可被采用。N2甲酰衍生物用15 %过氧化氢水溶液处理,可以顺利地进行氧化脱解。用氢化钠在二甲氧基乙烷中回流可以代替用酸或碱水解去除酰基。112  乙酰基及其衍生物胺类化合物的乙酰化或取代乙酰衍生物是用酰氯、酸酐进行酰化或在二环己基碳二亚胺(DCC) 或焦亚磷酸四乙基酯存在下,直接与酸综合加以制备,有时也可用酯或硫酯氨解的方法;制备乙酰胺另一好的方法是用胺和乙烯酮〔15〕或异丙烯乙酸酯反应。如果用双烯酮〔17〕反应,则得到的是乙酰乙酰基衍生物。用乙酰基保护氨基比用其他保护基要多。由于它比甲酰基更稳定,因此,在进行亲电取代、硝化、卤代等反应时常选择乙酰基来保护芳香胺。乙酰胺丙二酸酯也可用于合成α2氨基酸,但在脱乙酰基时所需的酸或碱性条件,可使分子内其他部位受影响.在脱去氨基糖上的乙酰基时,也可用肼解反应代替碱性水溶液。近年来用卤代乙酰基尤其是三氟乙酰基保护N —H 键越来越得到重视,这个保护基可在温和的碱性条件下水解去掉,如用氨水、碱性离子交换树脂等,肽类上的三氯乙酰或三氟乙酰均可用硼氢化钠还原去掉。三氟乙酰基不仅用于肽的合成,而且也用于氨基糖类的保护。在甾体、苷类合成中也有一些应用三氟乙酰基的重要实例,它既可以保护甾体上的氨基,也可以保护糖上的氨基。113  苯甲酰基及有关衍生物胺的苯甲酰化和取代苯甲酰衍生物常用酰氨Schotten — Baumann 反应制备,用焦亚磷酸四乙基酯进行混合酸酐法也可得到非常好的结果。其它都是用酸或碱水解脱除。用苯甲酰类作保护基,一般不及用甲酰、乙酰保护方便,除非是苯甲酰类对水解稳定,而其某些优越之处在于核苷酸类保护基上的应用。114  环状酰亚胺衍生物环状酰亚胺衍生物非常稳定, 很宜用于保护一级胺和氨, 但非环状的酰亚胺已证明过分活泼而不宜用作保护基。在环状酰亚胺衍生物中, 琥珀酰胺衍生物的应用较有限, 仅用于青霉素的合成和芳香胺的硝化。现最受重视的还是邻苯二甲酰亚胺, 用邻苯二甲酰亚胺的钾盐进行烷基化以制备纯的一级胺, 是应用已久的著名的Gabriel 氏合成法, 不过, 现对此法已做了许多改进.
为了保护一级胺, 可将胺和丁二酸酐或邻苯二甲酸酐在150~200 ℃共热, 引进丁二酰基或邻苯二甲酰基, 在不太强烈的条件下形成非环的单酰胺(酰胺酸) , 用混合的脱水剂, 如乙酰氯或亚硫酰氯处理时, 通常可转化成环状酰胺.另外, 也可将胺与酸酐在苯或甲苯中与三乙胺回流, 反应过程中生成的水用共沸蒸馏除去。21 形成氨基甲酸酯和尿素型化合物的保护法211  氨基甲酸酯型衍生物在肽合成中, 将氨基甲酸酯用作氨基酸的保护基, 从而将外消旋化抑制到最低限度。为最大限度抑制外消旋化, 可使用非极性溶剂, 此外使用尽量少的碱和低的反应温度以及使用氨基甲酸酯保护基(R = O2烷基和O2芳基) , 都是有效的措施.通常采用胺和氯代甲酸酯或重氮甲酸酯进行反应制备氨基甲酸酯.它们的稳定性有着很大的差异, 因此, 当需要选择性地脱去保护基时, 用此类基团对氨基进行保护很为适宜, 其中最有用的几种氨基甲酸酯有: 特丁酯(BOC) 容易通过酸性水解反应脱除; 苄酯(CBZ) 通过催化氢解反应脱除; 2 , 42二氯苄酯能在氨基甲酸苄酯和特丁酯的酸催化水解条件下保持稳定; 22 (联苯基) 异丙酯比氨基甲酸特丁酯更容易为稀醋酸所脱除; 92芴甲基酯在碱存在下经由β2消除反应裂解; 异烟基酯在醋酸中用锌还原裂解; 12金刚烷基酯易被三氟乙酸裂解; 22苯基异丙酯对酸性水解的稳定性比氨基甲酸特丁酯稍强。但应该注意, 叠氮甲酸特丁酯由于对热和振动敏感, 故有一定的危险性, 只要有可能, 叠氮甲酸酯应避免使用.氨基甲酸酯类物质很多, 还有其取代衍生物及其它类型的氨基甲酸酯都可作为氨基的保护基, 在合成反应上, 特别是在肽的合成中应用广泛, 这里不再一一举例了.212  尿素型化合物将胺做成尿素型化合物加以保护比将氨基做成氨基甲酸酯加以保护较为少见。在合成磺胺时, 用N , N′2二苯基尿素作为原料, 可代替苯胺的酰基衍生物。近年来常采用哌啶羰基保护组氨酸中咪唑环上的N2H 键。这个保护基的用途在于, 它可以提高含组氨酸的较大肽类的溶解度, 并对酸水解、氢解以及对合成肽类常用的其它试剂都比较稳定, 还可用N2氯甲酰哌啶在无水吡啶中于65 ℃时引进哌啶羰基, 并可经肼处理除去之。
N′2对甲苯磺酰胺羰基衍生物(R1R2NCONHSO2C6H42P2CH3) 也是尿素型衍生物, 由氨基酸与异氰酸对甲苯磺酰酯制得, 收率20 %~80 % , 用醇类裂解(95 %EtOH 水溶液, n2PrOH 或n2BuOH , 100 ℃, 1h , 收率95 %) 。它对于稀碱、酸(HBr/ HOAc 或冷的CF3COOH) 以及肼都是稳定的 。3  形成N2烷基衍生物的保护法用烷基保护氨基主要是用苄基或三苯甲基, 这些基团特别是三苯甲基的空间位阻作用对氨基可以起到很好的保护作用, 并且很容易除去。311  苄基衍生物单和双苄基衍生物通常是用胺和苄氯在碱存在下进行制备。用选择性的催化加氢法可将双苄基变成单苄基衍生物, 一级胺的苄叉衍生物进行部分氢化反应是一个制备烷基苄基胺或芳香苄胺的常用方法。用苄胺进行亲核取代反应, 可引入一个氨基(保护形式) , 然后在反应后期去掉苄基.合成维生物H (生物素biotion) 中就是用上述类似方法制备了一个关键中间体.化学家们研究了各种取代的苄基和有关的基团在催化加氢时脱去的难易, 发现对位取代基更不容易进行氢解, 而二苯甲基、12和22萘甲基以及92芴基等均不如苄基稳定.312  三苯甲基衍生物三苯甲基衍生物如单苄基衍生物一样, 可用三苯甲基溴化物或氯代物在碱性存在下与胺进行反应制备, 也可用催化剂加氢还原脱掉; 三苯甲基与苄基不同在于, 它可以在温和的酸性条件下脱去, 这方面双2 (对甲氧基苯基) 2甲基有类似情况, 单2对甲氧基代三苯甲基则对酸更不稳定。在肽的合成和青霉素的合成中用三苯甲基保护α2氨基酸是很有价值的。由于其体积大, 不仅可保护氨基, 还可对氨基的α2位基团有一定的保护作用。313  烯丙基衍生物烯丙基胺用于保护咪唑环上的N2H 键。在K2CO3 存在下腺嘌呤和62羟基嘌呤与烯丙基溴在N , N2二甲基乙酰胺中可得92烯丙基衍生物, 而在碱性条件下, 可将保护基氧化除去。
4  形成C = N 键保护氨基酮或醛与一级胺反应生成甲亚胺, 通称Schiff 碱。如果是芳香胺, 则有时称缩苯胺(Anil) 。由芳香醛、酮和脂肪酮形成的Schiff 碱是稳定的, 但脂肪醛与胺形成的Schiff 碱, 往往发生羟醛缩合反应而不适用于作保护基。由于芳亚甲基衍生物容易形成而且稳定, 因此是应用最广的保护方法。烷基化后可以生成不稳定的季铵盐, 由此可得到收率高的纯二级胺.α2氨基酸酯容易形成苯亚甲基衍生物, 但从游离酸形成的衍生物是不稳定的。当醛基的邻位有羟基存在时, 由于形成氢键而使衍生物更加稳定。芳香亚甲基可以在极其温和的酸性条件下进行水解脱去, 且在反应过程中不致发生消旋。可是, 由于在某些情况下偶合不成功, 致使该方法在应用中有一定的局限性.L2赖氨酸中的α2氨基可生成稳定的单苯亚甲基衍生物,利用这一现象可以制备L2赖氨酸的α2苄氧羰基氨基衍生物。5  质子化反应和熬合反应对氨基的保护511  质子化反应从理论上讲, 对氨基最简单的保护方法是使氨基完全质子化, 即占据氮原子上的孤电子对, 以阻止取代反应的发生, 但实际上在使氨基完全质子化所需的酸性条件下, 可以进行的合成反应很少, 所以, 这种方法仅曾用于防止氨基的氧化.然而游离胺在浓硫酸中低温(约0 ℃) 进行硝化时, 则不必先酰化, 因其质子化作用已足以保护氨基不致被氧化。氨基质子化后使芳香环的活泼性减弱, 还改变取代反应的定位效应。例如2 , 22二氨基取代苯在硫酸中硝化时得到42硝基衍生物, 但是用二氨基的双酰化物(如丁酰胺) 进行硝化时, 却主要得到32和52位硝基取代物。也可用形成季铵盐的方法来保护氨基.季铵盐通常用于氧化反应中保护叔胺.上述反应条件能够在羟基或酚基的存在下, 由伯、仲、叔胺(包括氨基酸) 形成季铵盐 。512  螯合反应一个与质子化相似而有效的保护方法是, 利用氮原子上的孤电子对形成熬合物,例如α2和β2氨基酸可与过渡金属形成稳定的配合物。应用络氨酸铜配合物, 苯乙酰化反应只在酚基上发生, 不在氨基上发生反应.二元氨基酸也可选择地只在一个氨基上进行酰化反应。复合物用硫化氢处理很容易得到酰化物。
6  用含磷有机物保护氨基611  二烷基磷酰基作为氨基保护基[46] .在合成肽时, 用磷酰基作为氨基保护基, 对碱较稳定, 对酸则敏感易脱去, 可与苄氧羰基媲美。例如由O, O2二烷基2N2取代苯乙基磷酰胺3a~c 合成了N , N2二烷基磷酰基2N2取代苯乙基甘氨酸衍生物4a~e , 在Lewis 酸催化下成功地进行了Freidel2Crafts 反应得到相应的分子内环化产物苯并232氮杂环庚酮212衍生物, 并在温和条件下脱保护基。在合成苯并232氮杂环庚酮类(6a 、6b) 化合物时, 以二异丙基磷酰基作为氨基保护基, 具有易除去、不脱羰的优点, 这是磺酰基、烷氧羰基所不及的, 在一般有机合成中作为氨基保护基是大有潜力的。612  亚磷酸二乙酯作为α2氨基酸中α2氨基的保护基[48 ]目前在多肽合成中常用的α2氨基保护基大多属于烷氧羰基型(R2O2CO2) , 如BOC、Z、PMZ 等, 这些保护基对碱稳定对酸敏感, 易于在酸性条件下脱除, 但相应的试剂在制备时需使用剧毒的光气, 这无论对实验室制备或工业生产都会带来很多不便, 因此, 需要寻找能替代它们的价廉易得、稳定且低毒的新α2氨基保护试剂.以亚磷酸二乙酯为试剂, 由引入O , O’2二乙基磷酰基(DEPP) 作为α2氨基酸的α2氨基保护基, 采用相转移催化法不仅合成了N2 (DEPP) 2α2氨基酸甲酯衍生物, 还合成了含有游离羟基的N2 (DEPP) 2α2氨基酸, 并由叠氮法制得了两种模型二肽.对一些DEPP 保护的氨基酸衍生物作了在酸、碱及水合肼中稳定性的研究, 用4 mol/ L HCL及TFA 作了脱保护基条件的试验。在各项考察的基础上, 对亚磷酸二乙酯作为α2氨基酸的α2氨基保护试剂在肽合成上应用的可行性作评价。亚磷酸二乙酯制备简单、低廉、低毒且相当稳定, 试验表明, 用它作试剂在温和条件下不仅能与α2氨基酸酯类反应生成N2DEPP 衍生物, 而且还能使α2氨基酸四烷铵盐N2DEPP 化, 然后较易得到N2DEPP2α2氨基酸.这N2DEPP2衍生物在碱中稳定, 通常在弱酸性条件下也很稳定。虽然在2mol/ L NaOH 和85 %水合肼中观察到有微弱副反应发生, 但它不是保护基的脱除反应。用DEPP2氨基酸衍生物合成的两种模型二肽, 无论在氨基酸分析上, 还是在层析行为上都与标准二肽相同, 这说明以亚磷酸二乙酯为试剂引入DEPP 为α2氨基酸的α2氨基保护基是行之有效的, 可用于肽的合成。然而以DEPP 为α2氨基酸的α2氨基保护基虽然在试剂方面有其优越性, 但DEPP 保护基也有不可忽视的缺点 , 这项工作还有待于进一步研究。
总之, 氨基的保护方法和保护基都很多, 上面介绍的是比较重要而又实用的方法和基团。化学家们至今还在寻求有关更好的方法及更有效的保护基, 研究工作仍在继续.氨基保护在有机合成中的应用将会越来越广泛.1  C B Reese。 Tetrahedron , 1978 , 34 : 31432  V Amarnath and A D Broom。 Chem Rev , 1977 , 77 : 1833  R S Goody and R T Walker. Tetrahedron Lett , 1967 , 2894  C B Reese. Tetrahedron , 1978 , 34 : 3143~31795  T O Thomas. Tetrahedron Letters , 1967 , 3356  KOkawa and S Hase。 Bull Chem Soc Japan , 1963 , 36 : 7547  J C Sheehan and D D H Yang。 J Am Chem Soc , 1985 , 80 : 11548  M Waki and TMeienhofer。 J Org Chem , 1977 , 42 : 20199  F M F Chen and N L Benoiton , Synthesis , 1979 , 70910  K Hofmann , E Stutz , G Spuhler , et al。 J Amer Chem Soc , 1960 , 82 : 372711  T S Meek. S Minkowitz , and M M Miller , J Org Chem , 1959 , 24 : 13912  A Galat. Ind and Eng Chem , 1944 , 36 : 19213  GLosse and W Zonnchen. Annalen , 1960 , 636 : 140
14  A R Battersby and T P Edwards. J Chem Soc , 1960 , 121415  J Blodinger and GW Anderson. J Amer Chem Soc , 1952 , 74 : 55416  G Ruadbeck。 Amgew Chem , 1956 , 68 : 36917  H J Hagemeyer and D C Hull. Ind and Eng Chem , 1949 , 41 : 292018  F Dangeli , F Filira , and E Scoffone. Tetrahedron Lett , 1965 , 60519  L Kisfaludy , TMohacsi , MLow , et al. J Org Chem , 1979 , 44 : 65420  A GM Barrett and J C A Lana. J Chem Soc , Chem Commun , 1978 , 47121  A S Steinfeld , F Naider , and J M Becker。 J Chem Res , Synop , 1979 , 12922  R A Olofson and R V Kendall. J Org Chem , 1970 , 35 : 224623  E E Schallenberg and M Calvin。 J Amer Chem Soc , 1955 , 77 : 277924  F Weygand and E Frauendorfer。 Chem Ber , 1970 , 103 : 243725  ML Wolfrom and H B Bhat。 J Org Chem , 1967 , 32 : 192126  R A Lugas , D F Dickel , R L Uziemian. et al. J Amer Chem Soc , 1960 , 82 : 5688
27  H Newman。 J Org Chem , 1965 , 30 : 128728  TJ Curphey. J Org Chem , 1979 , 44 : 280529  A GM Barrett and J C A Lana。 J Chem Soc , Chem Commun , 1978 , 47130  L horner and H Neumann。 Chem Ber , 1965 , 98 : 346231  E Whit。 Org Synth , Collect 1973 , Vol V: 33632  A GM Barrett and J C A Lana。 J Chem Soc , Chem Commun , 1978 , 47133  A Holy and M Soucek。 Tetrahedron Lett , 1971 , 18534  N Ishikawa and S Shin2Ya。 Chem Lett , 1976 , 67335  A S Steinfeld , F Naider , and J M Becker。 J Chem Res , Synop , 1979 , 12936  L F Fieser。 Org Experiments , D C Heath Boston , 1964 , 11737  T Sasaki , KMinamoto , and H Itok。 J Org Chem , 1978 , 43 : 2320第1期  高旭红等:有机合成中的氨基保护及应用(综述) 85© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved。38  D A Hoogwater , D N Reinhoudt , T S Lie , et al. Rell Trav Chim Pays2Bas , 1973 , 92 : 819
39  G H L Nefkens , G I Tesser , and R T F Nivard。 Red Trav Chim Pays2Bas , 1960 , 79 : 68840  GJager , R Geiger , and W Siedel. Chem Ber , 1968 , 101 : 353741  B Weinstein , T N S Ho R T Fukura , and E C Angell。 Synth Commun , 1976 , 61742  M Gerecke , T P Zimmerman , and W Aschwanden。 Helv Chim Acta , 1970 , 53 : 99143  L Zervas and D M Theodoropoulos。 J Amer Chem Soc , 1956 , 78 : 135944  J A Montgomery and H J Thomas. J Org Chem , 1965 , 30 : 323545  B Bezas and L Zervas。 J Amer Chem Soc , 1961 , 83 : 71946  F C M Chen and N L Benoiton. Can J Chem , 1976 , 54 : 331047  赵玉芬, 奚士庚, 古改姣, 等1Acta Chimica sinica , 1984 , 42 (4) : 35848  P D Carpenter and MLennon. J Chem Soc , Chem Commun , 1973 , 66449  王宗睦, 李 惟, 高光杰, 等1α2氨基酸α2氨基保护试剂亚磷酸二乙酯的研究. 吉林大学自然科学学报. 1989 , (3) : 85

5.9
百度文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
氨基保护方法
氨基保护方法
胺类化合物对氧化和取代等反应都很敏感,为了使分子其它部位进行反应时氨基保持不变,通常需要用易于脱去的基团对氨基进行保护。例如,在肽和蛋白质的合成中常用氨基甲酸酯法保护氨基,而在生物碱及核苷酸的合成中用酰胺法保护含氮碱基。化学家们在肽的合成领域内,对已知保护基的相对优劣进行了比较并在继续寻找更有效的新保护基。除了肽的合成外,这些保护基在其它方面也有很多重要应用.
下面介绍保护氨基的一些主要方法和基团。
第 1 页
1  形成酰胺法
将胺变成取代酰胺是一个简便而应用非常广泛的氨基保护法。单酰基往往足以保护一级胺的氨基,使其在氧化、烷基化等反应中保持不变,但更完全的保护则是与二元酸形成的环状双酰化衍生物。常用的简单酰胺类化合物其稳定性大小顺序为甲酰基<乙酰基< 苯甲酰基.
酰胺易于从胺和酰氯或酸酐制备,并且比较稳定,传统上是通过在强酸性或碱性溶液中加热来实现保护基的脱除.由于若干基质,包括肽类、核苷酸和氨基糖,对这类脱除条件不稳定,故又研究出了一些其他脱除方法,其中有甲酰衍生物的还原法,甲酰基以及对羟苯基丙酰基衍生物的氧化法,苯酰基和对羟苯基丙酰基衍生物的电解法,卤代酰基、乙酰代乙酰基以及邻硝基、氨基、偶氮基或苄基衍生物等“辅助脱除法”,等等。
第 2 页
为了保护氨基,已经制备了很多N2酰基衍生物,上述的简单酰胺最常用,卤代乙酰基衍生物也常用。这些化合物对于温和的酸水解反应的活性随取代程度的增加而增加:乙酰基〈 氯代乙酰基〈 二氯乙酰基〈 三氯乙酰基< 三氟乙酰基。此外,在核苷酸合成的磷酸化反应中,胞嘧啶、腺嘌呤和鸟嘌呤中的氨基是分别由对甲氧苯酰基、苯酰基和异丁酰或甲基丁酰基予以保护的,这些保护基是通过氨解脱除的.另外,伯胺能以酰胺的形式加以保护,这就防止了活化的N2乙酰氨基酸经过内酯中间体发生外消旋化。
第 3 页
111  甲酰衍生物
胺类化合物很容易进行甲酰化反应,常常仅用胺和98 %的甲酸制备。甲酸乙酸酐也是一个有用的甲酰化试剂。对于某些容易发生消旋化的氨基酸可用甲酸和N ,N′2双环己基碳二亚胺(DCC) 在0 ℃时进行甲酰化反应,也可用酯类进行氨解。
甲酰胺类是相当稳定的化合物,因此广泛应用于肽的合成。甲酰基的脱除也有很多方法,氧化或还原法脱酰反应均可被采用。N2甲酰衍生物用15 %过氧化氢水溶液处理,可以顺利地进行氧化脱解。用氢化钠在二甲氧基乙烷中回流可以代替用酸或碱水解去除酰基。
第 4 页
112  乙酰基及其衍生物
胺类化合物的乙酰化或取代乙酰衍生物是用酰氯、酸酐进行酰化或在二环己基碳二亚胺(DCC) 或焦亚磷酸四乙基酯存在下,直接与酸综合加以制备,有时也可用酯或硫酯氨解的方法;制备乙酰胺另一好的方法是用胺和乙烯酮〔15〕或异丙烯乙酸酯反应。如果用双烯酮〔17〕反应,则得到的是乙酰乙酰基衍生物。
用乙酰基保护氨基比用其他保护基要多。由于它比甲酰基更稳定,因此,在进行亲电取代、硝化、卤代等反应时常选择乙酰基来保护芳香胺。乙酰胺丙二酸酯也可用于合成α2氨基酸,但在脱乙酰基时所需的酸或碱性条件,可使分子内其他部位受影响.在脱去氨基糖上的乙酰基时,也可用肼解反应代替碱性水溶液。
第 5 页
近年来用卤代乙酰基尤其是三氟乙酰基保护N —H 键越来越得到重视,这个保护基可在温和的碱性条件下水解去掉,如用氨水、碱性离子交换树脂等,肽类上的三氯乙酰或三氟乙酰均可用硼氢化钠还原去掉。三氟乙酰基不仅用于肽的合成,而且也用于氨基糖类的保护。
在甾体、苷类合成中也有一些应用三氟乙酰基的重要实例,它既可以保护甾体上的氨基,也可以保护糖上的氨基。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页