分子生物学技术在国内防制虫媒传染病领域的应用
【摘要】 本文综述了国内近年来,分子生物学技术在虫媒病中蚊媒传染病防制的应用情况,以期为蚊媒传
染病的防制、应对突发公共卫生事件中蚊媒传染病的发生提供参考。
【关键词】 分子生物学技术;虫媒;传染病
虫媒病是由节肢动物携带病原体传播的一组疾病。
1992年在国际虫媒病毒中心登记的已达535种,其中128
种对人有致病性[1]。我国法定报告的传染病中,虫媒病占
13种,蚊虫作为媒介,除了传播病毒性疾病外,还可传播
寄生虫病。这类疾病大都属于自然疫源性疾病,有一定的
地域性和时间性,发病率低、死亡率高,主要通过媒介的
控制进行防制[2]。近年来,随着分子生物学技术的研究和
发展,在医学领域的应用日趋广泛,并取得了重大进展,
作者就近年来分子生物学技术在蚊媒传染病的诊断和防制
等方面的应用综述如下。
1 常用的分子生物学技术[3]
1·1 核酸分子杂交技术
核酸的分子杂交(molecular hybridization)它是利用核
酸分子的碱基互补原则,在特定的条件下,双链解开成两
条单链,与异源的DNA或RNA (单链)复性,若异源
DNA或RNA之间的某些区域有互补的碱基序列,则在复
性时可形成杂交的核酸分子。杂交的双方是待测核酸序列
及探针。核酸探针可用放射性核素、生物素或其它活性物
质标记。根据其来源和性质可分为cDNA探针、基因组探
针、寡核苷酸探针、RNA探针等。
分类:根据被测定的对象,分为Southern杂交和
Northern杂交;根据所用的方法,分为斑点(dot)杂交、
狭槽(slot)杂交和菌落原位杂交;根据环境条件:分为液
相杂交和固相杂交。
1·2 聚合酶链式反应(polymerase chain reaction, PCR)
是以拟扩增的DNA分子为模板,以一对分别与模板互
补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照
半保留复制的机理沿着模板链延伸直至完成新的DNA合
成。通过不断重复这一过程,可以使目的DNA片段得到扩
增,同时新合成的DNA片段也可以作为模板,使DNA的
合成量呈指数型增长。
PCR各种应用模式:兼并引物( degenerate primer)
pcr、套式引物(nested primer) pcr、复合pcr (multiplex
pcr)、反向pcr ( inverse pcr或reverse pcr)、不对称pcr
(asymmetric pcr)、标记pcr ( lp-pcr)和彩色pcr、加端
pcr、锚定pcr或固定pcr、玻片pcr、反转录pcr方法检测
rna、定量pcr。
1·3 DNA芯片
基因芯片又称DNA芯片(DNA chip)或DNA微阵列
(DNA microarray)。是采用光导原位合成或显微印刷等方
法将大量特定序列的探针分子密集、有序地固定于经过相
应处理的载体上,然后加入标记的待测样品,进行多元杂
交,通过杂交信号的强弱及分布,来分析目的分子的有无、
数量及序列,从而获得受检样品的遗传信。特点:具有通
量大,并行性、微量化与自动化等优点,但在实践中其研
究成本较高;方法标准化不足;配套软件不够完善。
2 分子生物学技术在虫媒病诊断的应用
2·1 疟疾
黄炳成等[4]用pBF2 DNA片断,经标记后作探针,从
多种疟原虫DNA样本中检出恶性疟原虫。基因芯片在疟原
虫的研究内容还有疟原虫新基因发现[5]、转录因子调控网
络[6]、疟原虫适应人体宿主机制[7]、疟原虫比较基因组杂
交分析[8]、恶性疟原虫抗原变异分子机制[9]以及疟原虫攻
击红细胞机制[10]等。
2·2 丝虫病
黄志彪等[11]运用PCR技术检测血液中的班氏丝虫微
丝蚴,可检出lOOul阳性血样中的l条班氏丝虫微丝蚴;用
于检测班氏丝虫监测点540份血液样本结果均为阴性,镜
检血片结果亦为阴性。常规丝虫检测是在夜间采血,有资
料显示[12], SsP/PCR扩增系统可用于检测班氏丝虫病患
者血样中的循环DNA,能用于周期性或夜间周期性丝虫病
的日间血检工作,从根本上改变了丝虫病的诊断、监测和
工作方式。
2·3 登革热病
郑夔等[13]应用多重PCR技术快速鉴定4种血清型登
革病毒,并在同一反应管中进行多重PCR对登革病毒进行
分型鉴定,证实了2004年在广东发生的登革热疫情为I型
登革病毒;也有报道应用寡核苷酸芯片技术能同时确认流
感和登革热病毒[14]。长期受这种疾病困扰的地区将有望通
过这种技术的完善,获得有效的治疗和保护。
给楼主论文:
分子细胞基因组的研究
随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。
发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。
蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。
遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。
基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。
蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。
高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。
1 植物体细胞杂交后代胞质基因组重组的多样性
体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。
2 创制胞质杂种的方法
2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。
2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。
2.3 其它的可能途径
(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。
3 胞质杂种中双亲胞质基因的传递遗传学
3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。
3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。
4 植物胞质基因组控制的重要性状
目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。
总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。
分子生物学的发展 龙华 生物学通报 2005-05-20 期刊 2 327
3 分子生物学发展简史与皮肤性病学 高天文; 李春英 中国麻风皮肤病杂志 2004-02-29 期刊 0 63
4 从元整体观看医学分子生物学的发展 刘倩; 禹金涛; 马学盛 安徽中医学院学报 2004-08-25 期刊 0 59
5 医学分子生物学的发展历程和展望 方福德 医学与哲学 1999-01-08 期刊 3 83
6 分子生物学的发展和相关科学仪器的进展 蒋中华; 马立人 现代科学仪器 2000-08-25 期刊 2 80
7 90年代:分子生物学发展大事记 国际展望 2000-11-08 期刊 0 48
8 为21世纪我国肺癌分子生物学的发展和腾飞而奋斗 周清华; 汪蕙; 孙燕 中国肺癌杂志 2001-02-28 期刊 1 23
9 神经分子生物学的发展 苏同霖 山东理工大学学报(社会科学版) 1994-06-15 期刊
具体需要哪个,你看下上面的网址,然后找我帮你下载