卫星通信双线极化天线馈源阵列分析的论文
摘要 :本文介绍了一种用于Ku频段卫星通信的双线极化天线馈源阵列,该馈源阵列可应用于单反射面或双反射面的卫星通信天线中,实现对通信卫星的小角度、高速、高精度电子波束扫描和跟踪,降低卫星天线对机械伺服结构精度和动态跟踪的要求,从而大幅降低伺服系统成本,拓展动中通卫星天线在民用领域的应用。
关键词 :馈源阵列;动中通;微带天线
1引言
星地动中通天线系统满足了用户通过卫星在动态移动中传输宽带数据信息的需求,使车辆、轮船、飞机等移动载体在运动过程中可实时跟踪卫星,不间断传送语音、数据、图像等信息[1][2]。目前,动中通天线主要用Ku频段与固定轨道卫星进行通信[3],需同时覆盖上行/下行频段,其中上行频段为13.75-14.5GHz,下行频段10.95-11.75GHz、12.25-12.75GHz,上行和下行频段为双正交的线极化。为保证卫星与地面移动设备间的流畅通信,动中通天线要实时指向通信卫星,同时为避免天线发射时对邻近卫星的干扰,移动设备在运动中天线的跟踪误差要小于0.1°,并且馈源也要进行旋转跟踪,接收和发射间的极化隔离度要大于30dB[4][5]。国内外已有多家企业推出了动中通天线产品,如以色列RaySat公司的多组片天线、美国TracStar的IMVS450M产品等[6]。为满足天线对卫星的高精度实时跟踪对准的要求,上述动中通天线中均包含有自动跟踪系统,在初始静态情况下,由GPS、经纬仪、捷联惯导系统测量出航向角、载体所在位置的经度和纬度及相对水平面的初始角,然后根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动方位,并以信号极大值方式自动对准卫星。在载体运动过程中,测量出载体姿态的变化,通过数学运算变换为天线的误差角,通过伺服机构调整天线方位角、俯仰角、极化角,保证载体在变化过程中天线对星保持在规定范围内,使卫星发射天线在载体运动中实时跟踪地球同步卫星。高精度的伺服系统始终是传统动中通天线系统的关键部分。通常情况下,由于动中通天线具有较大的口径(一般约为0.8~1.2m)及重量,造成了高精度伺服系统具有较高的成本。目前,应用于动中通天线的高精度伺服系统成本动辄数万、甚至超过十万,占整个动中通天线系统成本的很大部分,限制了动中通卫星天线在民用领域的广泛应用[5]。
2双线极化天线馈源阵列
为了克服现有的动中通天线跟踪伺服系统所需精度高、成本高等缺点,我们开发了一种双线极化天线馈源阵列,可应用于单反射式或卡塞格伦式卫星通信天线中,结合后端的多通道数字波束形成(DigitalBeamForming,DBF)技术实现天线系统的机电融合跟踪,最终通过“大角度低精度机械跟踪”与“小角度多通道DBF精确跟踪”相结合,在实现天线系统对卫星的高精度跟踪对准的同时,降低对伺服系统的精度要求,从而降低伺服系统的成本。此馈源阵列为中心对称式结构,阵列的中心放置在单反射式或卡塞格伦式天线的焦点处,当对阵列中不同单元进行馈电时天线将辐射不同指向的高增益波束,此时再结合后端的高精度DBF技术可实现小角度范围内高精度的波束指向控制。馈源阵列采用基于微带印刷电路板的“法布里-帕罗”天线形式,阵列由三层结构组成,其中底层为带金属地板的微带反射板,中间层为微带形式的天线结构,顶层为一块起增强定向性作用的纯介质板。
2.1底层结构
馈源阵列的底层为一侧附铜并开有8个馈电孔的介质板,SSMA以及空心铜柱通过馈电孔焊接在底层介质板上,发射天线馈口和接收天线馈口分别有4个馈电孔。图2为底层电路板结构示意图。
2.2顶层结构
顶层介质板是将覆铜板全部刻蚀掉的介质板,构成了“法布里-帕罗”的上层结构。图3为顶层电路板结构示意图。
2.3中间层结构
中间层电路板两侧分别刻蚀了发射天线、接收天线及其附属馈电线路,其中,为焊接方便,焊盘均在一侧。为隔绝表面波对天线方向图的影响,天线阵列由格状金属条带分割,电路板两侧均有金属条带,并由金属化通孔相互导通。图4为中间层电路板结构示意图。中间层电路板上的微带阵列单元采用一对交叉的金属偶极子结构分别实现收/发的功能,两金属偶极子分别印刷于中间层微带介质板的正面与背面,分别工作于收/发(下行/上行)频段,并且交叉偶极子结构可对应实现收/发所要求的两正交线极化。阵列单元通过同轴底馈的方式实现馈电,其中偶极子的两臂分别与同轴接口的内芯以及外壁通过一段印刷细导线相连,这里采用细导线以减小馈电结构对收/发间隔离的影响。为进一步减小馈电结构对收/发间隔离所带来的影响,在设计中将同一位置处的两偶极子结构通过一段印刷细导线相连,通过其长度、粗细等参数可利用合适的对消手段来实现收/发之间的高隔离。通过在阵列单元周围引入一圈密集的金属化通孔结构,并且在电路板上设计金属附加结构以隔离介质中的表面波,从而降低阵列单元间的互耦。
2.4馈源阵列的装配
馈源阵列的三层电路板由数个尼龙螺柱进行固定,图5是馈源阵列的立体分解及整体装配示意图。在馈源阵列结构中,通过调节金属偶极子的'臂长,可调节天线的工作频率。通过调节顶层介质基板与中间层电路板间的距离,可方便地调节辐射增益以适应不同反射面尺寸及焦距的需求。
3仿真及实测效果
馈源阵列的端口1、端口3、端口5、端口7为接收端口,端口2、端口4、端口6、端口8为发射端口。图6是馈源阵列的仿真和测试回波损耗结果图。由图6可见,接收端口和发射端口回波分别在12.25-12.75GHz和13.75-14.5GHz范围内小于-10dB,达到了良好匹配。图7是馈源阵列在工作频点12.5GHz的仿真及实测接收方向图。由图7可见,工作于12.5GHz时,天线在天顶方向的增益为15dB,副瓣比主瓣低10dB(仿真)/18dB(实测)。图8是馈源阵列在工作频点14.1GHz的仿真及实测发射方向图。由图8可见,工作于14.1GHz时,天线在天顶方向的增益为15dB,副瓣比主瓣低11dB(仿真)/10dB(实测)。
4结束语
本馈源阵列采用微带印刷电路板结构,简单紧凑、工艺成熟、加工简单、成本较低且适用于大规模生产。相比于传统的波导口、波导喇叭等馈源结构,可在较小的面积内实现多个单元以及收/发通道,从而利于实现更高精度的波束指向控制。同时,馈源阵列采用的对消技术可在天线结构端实现同一位置处接收/发射通道之间30dB的隔离度,减轻了后端器件的压力。从实际应用来看,天线馈源阵列与主反射面配合,实现了动中通卫星天线对Ku频段通信卫星的小角度、高速、高精度电子波束扫描和跟踪。采用这种技术,大幅降低了天线对伺服系统精度和动态反应速度的要求,把伺服系统的成本降低了一个数量级,有助于推动卫星天线在天地一体化通信中的规模应用。
参考文献
[1]徐烨烽.创新引领、精进发展、规模应用-谈动中通天线发展新趋势[J].卫星与网络,2013,09:39-40.
[2]LouisJ.,IppolitoJr著.孙宝升译.卫星通信系统工程[M].北京:国防工业出版社,2012,3.
[3]MiuraA.,Yamamotos,Huan-bangLi,etal.Ka-BandAeronauticalSatelliteCommunicationsExperimentsUsingCOMETS[J].IEEETrans.onVehicularTechnology,2002,51(5):1153-1164.
[4]刘昌华.移动载体卫星通信系统天线跟踪技术的研究[硕士学位论文].西安电子科技大学,2009,3-4.
[5]汤铭.动中通伺服系统的设计[J].现代雷达,2003,25(4):51-54.
[6]阮晓刚,汪宏武.动中通卫星天线技术及产品的应用[J].卫星与网络,2006,3:34-37.
3GPP和其他标准化组织开展的大部分5G卫星通信标准化工作都集中在物理层和MAC层,还考虑在卫星5G集成网络的背景下定义卫星用例和架构选项。加拿大航天技术公司MDA卫星通信研发部总监纪尧姆·拉蒙塔涅重点分析了6G卫星通信标准化工作中需要考虑的几个问题,以实现卫星和地面6G网络的完全融合。
1
移动性管理
LEO卫星提供比GEO卫星更短的传播延迟和更高的数据速率。然而,这些优势伴随着频繁的切换和拓扑变化的代价。LEO卫星的切换分为三种类型:发生在卫星波束之间的卫星内切换;发生在卫星之间的卫星间切换;接入网络间切换(也称为垂直切换),发生在属于不同接入网络的卫星之间。
在6G未来网络中,LEO卫星不仅将服务于农村或偏远地区,还将在城市和人口稠密地区提供通信服务和覆盖。这样的场景将导致数千个UE连接到一颗LEO卫星,而这一大群用户几乎需要同时经历频繁的切换过程。使用传统的切换管理方案同时或半同时管理数千个用户的切换将产生巨大的网络负载。需要新的切换管理方案来处理6G LEO卫星中的这个问题。
对于基于IP的网络中的移动性管理,IETF引入了许多协议,例如移动互联网协议版本6 (MIPv6)和代理移动互联网协议版本6 (PMIPv6)。然而,此类协议并非旨在应对卫星中的高拓扑变化率。学术界已经提出了许多方法来解决这个问题,其中软件定义网络(SDN)的控制平面和数据平面的概念是一种有效管理LEO拓扑的有前途的方法。
LEO卫星的快速移动足迹影响寻呼程序,这主要与跟踪区域管理有关。跟踪区域为卫星覆盖区域(足迹);它可以是固定的或移动的。虽然移动跟踪区域可以适应LEO卫星的移动足迹,但它会导致高寻呼负载,网络难以管理。此外,在未来的LEO卫星中支持双连接和垂直切换需要新的机制来提供集成6G网络中的无缝移动性并改善全球网络覆盖和服务。
2
路由
LEO巨型 星座 的一个非常重要的特性是卫星能够形成网络并通过星间链路(ISL)相互通信。由于LEO中的频繁拓扑变化,ISL的寿命有限。此外,由于某些分区的高流量负载,一些ISL可能会出现拥塞。此外,由于预计LEO将服务于不同类型的应用,因此每种类型的应用都需要满足某些QoS要求(例如数据包传递延迟)。因此,成功的数据传输需要强大的路由方案,能够满足每种应用类型的QoS要求并适应LEO的独特特性。例如,延迟容忍路由适用于延迟敏感应用,而多路径路由则需要支持对带宽要求较高的应用。因此,开发适应LEO动态环境并满足各种用户应用需求的标准路由协议至关重要。标准应支持不同卫星 星座 和运营商之间的互操作性。此外,应考虑跨网络路由(即跨卫星、空中和地面网络)以实现LEO与6G的完全集成。为了支持有效的路由,资源分配、网络监控和拥塞控制等主题应被视为标准化工作的一部分。
3
对SDN/NFV的采用
SDN/NFV范式将在未来的6G卫星集成网络中发挥关键作用。然而,学术界尚未充分研究在LEO中使用SDN/NFV。虽然已有文献提出了几种软件定义的卫星网络架构,但是在标准化工作中应考虑基于SDN的LEO解决方案,以提供集成网络组件与不同供应商和服务提供商之间的兼容性和互操作性。例如,可以按照特定标准开发星载SDN兼容路由器,以在LEO卫星上运行,并提供软件化路由功能,以适应 LEO动态环境的变化。
NFV将特别需要向用户隐藏集成网络的复杂性。NFV可用于各种应用,例如移动基站、内容交付网络和平台即服务的虚拟化。部署在通用标准化硬件上的网络功能虚拟化有望减少服务和产品引入时间以及资本和运营支出。根据ETSI的说法,NFV环境控制的一个重要部分应该通过自动化和编排来完成。ETSI在NFV中创建了一个单独的流MANO,描述了如何控制灵活性。ETSI引入了一套完整的标准来实现一个开放的生态系统,其中虚拟化网络功能(VNF)可以与独立开发的管理和编排系统进行互操作。许多主要的网络设备供应商已宣布支持NFV。另一方面,主要的软件供应商宣布他们将提供NFV平台,供设备供应商用来构建他们的NFV产品。然而,在卫星网络领域,这些概念和技术的采用仍处于起步阶段。需要进一步调查以确定在LEO中采用NFV所需的要求。此外,在卫星网络组件的设计中应考虑对NFV的支持。
4
智能管理与编排
人工智能和机器学习将成为6G网络不可或缺的一部分,尤其是在网络管理和编排层面。ETSI于2017年2月启动了体验网络智能(ENI)行业规范组(ISG)。ENI是向辅助系统(即利用ENI智能功能的现有系统)提供智能网络操作和管理建议及/或命令的实体。ENI有两种运行模式:推荐模式和管理模式。前者为运营商或辅助系统提供建议,而后者也可以为辅助系统提供策略命令。在推进网络自动化的另一项努力中,3GPP引入了SON的概念,其中AI/ML可以应用于多个网络管理功能自动化。然而,ENI和SON概念仍仅限于5G环境,在应对设想的6G卫星集成网络中的巨大复杂性、异构性和移动性方面可能不够灵活。为了支持6G的智能和自主性,有学者提出了自我进化网络(SEN)的概念。SEN考虑6G及以上的集成架构,利用AI/ML使未来的集成网络完全自动化,并在网络、通信、计算和基础设施节点移动性的提供、适配、优化和管理方面进行智能演进。SEN可用于支持LEO中的实时决策、无缝控制、智能管理,以实现高水平的自主运行。然而,SEN是一个相当新的概念,尚未被标准化组织考虑。
5
容错解决方案
卫星网络环境非常容易受到卫星在太空中难以修复的故障的影响。此外,升级卫星基站并不像升级地面基站那么容易。第三,卫星稀缺的电源可能会干扰正常的电信功能。因此,卫星网络设计应基于容错的概念,以保持网络的生存能力。此外,与卫星相关的标准化活动应支持未来密集部署的卫星网络中的容错概念。
6
动态频谱管理
由于无线通信的普遍增长以及UE对带宽需求不断增加,动态和高效的频谱管理在LEO中非常重要。随着更多卫星的部署和更多应用的出现,频谱稀缺问题是未来LEO面临的主要挑战之一。不可预测的用户移动性和卫星移动性的因素使得动态频谱分配是必要的,但也是困难的。需要在多个层面上考虑动态频谱分配,以减轻多波束卫星系统中的小区间干扰、卫星间干扰以及频段共享时卫星与地面通信之间的干扰。此外,频谱管理必须考虑更高频段(THz) 和使用自由空间光学 (FSO)通信的选项,因为它们有望在未来的LEO中使用。尽管卫星研究人员已经研究了各种静态和动态频谱分配方案,但标准化工作并未充分涵盖该问题。
通信业已经走进了千家万户,成为了大家日常生活不可分割的一部分,如今一些高校也设立了专门的通信专业。下面我给大家带来通信专业 毕业 论文题目参考_通信方向专业论文题目,希望能帮助到大家!
通信专业毕业论文题目
1、高移动无线通信抗多普勒效应技术研究进展
2、携能通信协作认知网络稳态吞吐量分析和优化
3、协作通信中基于链路不平衡的中继激励
4、时间反转水声通信系统的优化设计与仿真
5、散射通信系统电磁辐射影响分析
6、无人机激光通信载荷发展现状与关键技术
7、数字通信前馈算法中的最大似然同步算法仿真
8、沙尘暴对对流层散射通信的影响分析
9、测控通信系统中低延迟视频编码传输 方法 研究
10、传输技术在通信工程中的应用与前瞻
11、城市通信灯杆基站建设分析
12、电子通信技术中电磁场和电磁波的运用
13、关于军事通信抗干扰技术进展与展望
14、城轨无线通信系统改造方案研究
15、无线通信系统在天津东方海陆集装箱码头中的运用
16、分析电力通信电源系统运行维护及注意事项
17、 无线网络 通信系统与新技术应用研究
18、基于电力载波通信的机房监控系统设计
19、短波天线在人防通信中的选型研究
20、机场有线通信系统的设计简析
21、关于通信原理课程教学改革的新见解
22、机载认知通信网络架构研究
23、无线通信技术的发展研究
24、论无线通信网络中个人信息的安全保护
25、短波天波通信场强估算方法与模型
26、多波束卫星通信系统中功率和转发器增益联合优化算法
27、HAP通信中环形波束的实现及优化
28、扩频通信中FFT捕获算法的改进
29、对绿色无线移动通信技术的思考
30、关于数据通信及其应用的分析
31、广播传输系统中光纤通信的应用实践略述
32、数字通信信号自动调制识别技术
33、关于通信设备对接技术的研究分析
34、光纤通信网络优化及运行维护研究
35、短波通信技术发展与核心分析
36、智慧城市中的信息通信技术标准体系
37、探究无线通信技术在测绘工程中的应用情况
38、卫星语音通信在空中交通管制中的应用
39、通信传输系统在城市轨道交通中的应用发展
40、通信电源 系统安全 可靠性分析
41、浅谈通信电源的技术发展
42、关于电力通信网的可靠性研究
43、无线通信抗干扰技术性能研究
44、数能一体化无线通信网络
45、无线通信系统中的协同传输技术
46、无线通信技术发展分析
47、实时网络通信系统的分析和设计
48、浅析通信工程项目管理系统集成服务
49、通信网络中的安全分层及关键技术论述
50、电力通信光缆运行外力破坏与预防 措施
51、电力通信运维体系建设研究
52、电力配网通信设备空间信息采集方法的应用与研究
53、长途光缆通信线路的防雷及防强电设计
54、电网近场无线通信技术研究及实例测试
55、气象气球应急通信系统设计
56、卫星量子通信的光子偏振误差影响与补偿研究
57、基于信道加密的量子安全直接通信
58、量子照明及其在安全通信上的应用
59、一款用于4G通信的水平极化全向LTE天线
60、面向无线通信的双频带平面缝隙天线设计
铁道信号专业毕业论文题目
1、CTCS应答器信号与报文检测仪-控制主板软硬件设计
2、基于ACP方法的城市轨道交通枢纽应急疏散若干问题研究
3、全电子高压脉冲轨道电路接收器的硬件研究与设计
4、实时断轨检测系统中信号采集与通信子系统研究
5、基于模型的轨旁仿真子系统验证及代码自动生成
6、基于全相位FFT的铁道信号频率检测算法研究
7、基于机器视觉的嵌入式道岔缺口检测系统应用
8、铁路信号产品的电磁兼容分析与研究
9、铁路高职院校校内实训基地建设研究
10、铁道信号电子沙盘系统整体规划及设计
11、基于Web的高职院校考试系统的设计与实现
12、铁道信号沙盘模拟显示系统研究
13、联锁道岔电子控制模块的研制
14、基于ARM的故障监测诊断系统设计(前端采集和通信系统)
15、客运专线列控车载设备维修技术及标准化研究
16、驼峰三部位减速器出口速度计算方法研究
17、CTCS-2级列控系统应答器动态检测的研究
18、石家庄铁路运输学校招生信息管理系统的设计与实现
19、铁道信号基础设备智能网络监测器设计
20、基于光纤传感的铁道信号监测系统软件设计
21、铁道信号基础设备在线监测方法研究
22、有轨电车信号系统轨旁控制器三相交流转辙机控制模块的研究
23、基于故障树的京广高速铁路信号系统问题分析及对策
24、站内轨道电路分路不良计轴检查设备设计与实现
25、铁路综合视频监控系统的技术研究与工程建设
26、客运专线信号控制系统设计方案
27、铁路信号仿真实验室的硬件系统设计及其信号机程序测试
28、基于C语言的离线电弧电磁干扰检测系统数据采集及底层控制的实现研究
29、铁路综合演练系统的开发与实现
30、大功率LED铁路信号灯光源的研究
31、牵引供电系统不平衡牵引回流研究
32、CBTC系统中区域控制器和外部联锁功能接口的设计
33、城轨控制实验室仿真平台硬件接口研究
34、ATP安全错误检测码与运算方法的研究与设计
35、LED显示屏控制系统的设计及在铁路信号中的应用
36、客运专线列控系统临时限速服务器基于3-DES算法安全通信的研究与实现
37、基于动态故障树和蒙特卡洛仿真的列控系统风险分析研究
38、物联网环境下铁路控制安全传输研究与设计
39、轨道交通信号事故再现与分析平台研究与设计
40、铁路强电磁干扰对信号系统的影响
41、基于LTE的列车无线定位方法研究
42、列车定位系统安全性研究
43、基于CBTC系统的联锁逻辑研究
44、无线闭塞中心仿真软件设计与实现
45、职业技能 教育 的研究与实践
46、光纤铁路信号微机监测系统数据前端设计
47、LED大屏幕在铁路行车监控系统的应用研究
48、基于微机监测的故障信号研究与应用
49、语域视角下的人物介绍英译
50、基于嵌入式系统的高压不对称脉冲轨道信号发生器设计
通信技术毕业论文题目
1、基于OFDM的电力线通信技术研究
2、基于专利信息分析的我国4G移动通信技术发展研究
3、基于无线通信技术的智能电表研制
4、基于Android手机摄像头的可见光通信技术研究
5、基于激光二极管的可见光通信技术研究和硬件设计
6、智能家居系统安全通信技术的研究与实现
7、基于DVB-S2的宽带卫星通信技术应用研究
8、基于近场通信技术的蓝牙 配对 模块的研发
9、多点协作通信系统的关键技术研究
10、无线通信抗干扰技术性能研究
11、水下无线通信网络安全关键技术研究
12、水声扩频通信关键技术研究
13、基于协作分集的无线通信技术研究
14、数字集群通信网络架构和多天线技术的研究
15、通信网络恶意代码及其应急响应关键技术研究
16、基于压缩感知的超宽带通信技术研究
17、大气激光通信中光强闪烁及其抑制技术的研究
18、卫星通信系统跨层带宽分配及多媒体通信技术研究
19、星间/星内无线通信技术研究
20、量子通信中的精密时间测量技术研究
21、无线传感器网络多信道通信技术的研究
22、宽带电力线通信技术工程应用研究
23、可见光双层成像通信技术研究与应用
24、基于可见光与电力载波的无线通信技术研究
25、车联网环境下的交通信息采集与通信技术研究
26、室内高速可调光VLC通信技术研究
27、面向5G通信的射频关键技术研究
28、基于AMPSK调制的无线携能通信技术研究
29、车联网V2I通信媒体接入控制技术研究
30、下一代卫星移动通信系统关键技术研究
31、物联网节点隐匿通信模型及关键技术研究
32、高速可见光通信的调制关键技术研究
33、无线通信系统中的大规模MIMO关键理论及技术研究
34、OQAM-OFDM无线通信系统关键技术研究
35、基于LED的可见光无线通信关键技术研究
36、CDMA扩频通信技术多用户检测器的应用
37、基于GPRS的嵌入式系统无线通信技术的研究
38、近距离低功耗无线通信技术的研究
39、矿山井下人员定位系统中无线通信技术研究与开发
40、基于信息隐藏的隐蔽通信技术研究
通信专业毕业论文题目参考相关 文章 :
★ 通信工程毕业论文题目
★ 通信工程毕业论文题目
★ 通信工程毕业论文选题
★ 通信工程的毕业论文参考范文
★ 通信工程专业毕业论文参考文献
★ 通信工程的毕业论文(2)
★ 通信工程方面毕业论文
★ 通信工程专业毕业论文
★ 通信工程的毕业论文范例
★ 通信工程的毕业论文范例(2)
个人觉得03无线与移动通信系统最好。因为无线通信,最具有通信味道。既然是选择通信专业,那么最好就要选择最具有通信色彩的研究方向,要从软件、硬件到系统结构都有认识,才最具有宏观认识。那么从个人角度观点,谈一下对这些方向的看法,仅供参考。
01通信网络技术,和计算机系有交叉,偏重软件部分,对整个系统程,理解程度不够。
02光纤通信,和光电子学科有相似之处。而且感觉在通信领域上,光纤通信一直不算是研究的热点重点。
03无线与移动通信,呵呵,这个就不用说太多了吧?手机已经太普及了,那么无线通信就是基础。其实,仔细想一下,只要不是“有线”连接的通信,那么也许都可以归到“无线”。嗯,当然这样讲不是准确,不过无线通信应用的确非常的广泛。
04多媒体通信,嗯,未来无线通信都是多媒体通信,完全可以在无线通信中学到涉及到,个人感觉不需要单独来学习。当然无线通信设计的深度也许没有单独学多媒体深吧。
05卫星通信技术,比较偏重军口,航天部门。虽然民用也有,但感觉还是。。。不如无线通信领域应用面广,民用军用都离不开。
06通信抗干扰技术,在无线通信领域中,有很多研究内容就是关于抗干扰的,要知道无线通信中离不开信道和多用户干扰的,所以觉得抗干扰可以并入无线通信的大方向。
07通信中的信息安全技术,嗯,是重要的问题,但感觉还是有点单一。。。
08通信专用IC技术,比较偏重硬件了,很有用也很实际,但我不知道现在国内专用IC技术发展的如何。现在实验室做硬件,大多数还是采用FPGA,DSP等,所以研究生程度能做到什么程度,也说不好。不过,听说做硬件的,将来越来越吃香,不过也要看个人。
09图像传输与处理,目前这个方向,大多数还是在研究编码等技术,嗯,也是很有用很有趣的技术,但系统性还是。。。但GE等公司的,医疗电子等部门,对图像处理方向,很喜欢吧?呵呵,猜测的。
10现代通信中的信号处理,感觉比较偏重理论研究,数学味道可能比较浓。但是要知道信号处理是一切的基础,学好信号处理技术,简直太重要了!如果将来读博的话,那么信号处理技术更是基础和入门了。
呵呵,只是从个人观点发表看法,最后的选择,还是要看你个人的兴趣爱好,还有未来的职业规划和定位了。可以选择好的导师,跟着研究。清华大学的王京老师,北邮大学的张平老师,还有西电、东南、成电、哈工大的老师等等,都是不错的选择。
最后祝考研顺利。