通信电源技术是保证通信系统正常运行的重要条件。我整理了通信电源技术论文,欢迎阅读!
通信电源技术探讨
摘 要 通信电源由直流供电系统,交流供电系统,接地系统,监控系统,防雷系统组成。电源的安全、可靠、是保证通信系统正常运行的重要条件。蓄电池组,高频开关电源,UPS是通信电源的重要组成部分。
关键词 蓄电池组;高频开关电源;UPS
中图分类号:TN86 文献标识码:A 文章编号:1671-7597(2013)18-0035-02
1 蓄电池组
1.1 蓄电池的结构及工作原理
蓄电池通常是指铅酸蓄电池,它是电池中的一种,属于二次电池。它的工作原理是:充电时利用外部的电能,使内部活性物质再生,把电能存储为化学能,需要放电时再次把化学能转换为电能输出。
1.1.1 蓄电池的充电
蓄电池充电时,负极会析出氢气,正极会析出氧气。析出的氧气到达负极,与负极起下述反应。正极析氧,在正极充电量达到70%时就开始了。
充电过程2PbSO4+2H2O=Pb+PbO2+2H2SO4
1.1.2 蓄电池的放电
蓄电池作为应急备用能源,其价值和性能是通过放电来实现的,蓄电池放电过程中的化学反应:
放电过程Pb+PbO2+2H2SO4=2PbSO4+2H2O
1.2 蓄电池的维护
在维修过程中,应经常检查蓄电池的外观,极柱。若发现电池槽,盖发生破裂,以及结合部渗漏电解液,极柱周围出现爬酸现象要及时更换电池。2 V蓄电池在投入运行后的前五年,12 V蓄电池在投入运行后的前两年,每年应以实际负载进行一次核对性放电试验,放出标称容量的30%-40%。2 V蓄电池在投入运行后的第六年起,12 V蓄电池在投入运行后的第三年起,每年应进行一次容量试验。
2 高频开关电源
2.1 开关整流器监控单元的原理
开关整流器监控单元的单片机电路对电源参数进行实时采集。缺相检测和网压检测电路对三相交流输入进行缺相检测和电网电压检测,检测到的缺相信号和电网电压信号送给单片机电路进行处理。单片机接受键盘指令,采用LCD显示电源实时数据和控制菜单。辅助电源提供开关整流器内部控制电路所需要的各种电源。温度检测电路检测主散热器温度,送给单片机系统。单片机系统根据主散热器温度,通过风扇控制电路控制风扇的工作状态。
2.2 负荷均分的概念
一套高频开关电源系统至少需要两个高频开关电源模块并联工作,大的系统甚至需要多达数十个电源模块并联工作,这就要求并联工作的电源模块能够共同平均分担负载电流,即均分负载电流。目前高频开关电源均采用PWM型均流方式,是一种数字式调整均流方式,具有均流精度高,动态响应特性好,抗干扰性较好,模块控制数多的优点。
2.3 负荷均分的原理
US为系统取样电压,Ur为系统基准电压,两者比较后产生误差电压UD,UD与三角波比较产生一个脉宽调制方波信号,其波宽受UD大小控制。这个方波信号送至每个整流模块,通过模块内光耦,隔离,整形,放大后与模块电流比较。这个比较信号再与模块内的预先设定参考电压值相叠加,调整模块的输出电流,改变模块的输出电压,使每个模块的输出电流相等。
3 UPS电源
不间断供电电源系统(UPS)是能够持续稳定不间断向负载供电的一类重要电源设备。从广义上说UPS包括交流不间断电源系统和直流不间断电源系统。长期以来,已习惯于把交流不间断电源系统称为UPS。
3.1 UPS原理
交流市电电源输入由整流器转换为直流电源。逆变器将此直流电源或来自电池的直流电源转换为交流电提供给负载。市电中断时,由电池通过逆变器给负载提供后备电源。市电电源还可通过静态旁路向负载供电。需要对UPS维修保养时,可将负载切换到维修旁路供电,负载电源不中断。
3.2 UPS幷机系统特点
并联UPS软件和硬件与单机模式完全一致。幷机系统的配置可通过参数设置软件实现。幷机系统各单机的参数设置要求一致。幷机控制电缆形成闭环连接,为系统提供可靠性和冗余。双母线控制电缆连接在两个母线的任两个UPS单机之间。智能幷机逻辑为用户提供最大灵活性。例如,可按任意顺序关闭或启动幷机系统中的各单机。可实现正常模式和旁路模式之间的无缝切换,并且可以自动恢复。即过载消除后,系统会自动恢复到原来的运行模式。可以通过各单机的LCD查询幷机系统的总负载量。
3.3 UPS单机并联的要求
多个单机并联组成的UPS系统相当于一个大的UPS系统。但是具有更高的系统可靠性。为了保证各单机使用度相同并符合相关配线规定,应满足以下要求。
1)所有单机必须容量相同并且并接到相同的旁路电源。
2)旁路电源和整流输入电源必须接到相同的中线输入端子。
3)如安装漏电检测仪器(RCD),必须正确设置并且安装在共同的中线输入端子前。或者该器件必须监控系统的保护地电流。
4)所有的UPS单机的输出连接到共同的输出母线上。
3.4 UPS特殊工作模式
3.4.1 旁路模式
正常模式下,如遇逆变器故障,逆变器过载或手动关闭逆变器,静态开关将负载从逆变器侧切换到旁路电源侧。如此时逆变器相位与旁路相位不同步,静态开关将负载从逆变器输出切换到旁路电源输出,但会出现负载电源短时中断。该功能可避免不同步交流电源的并联引起大环流。负载电源中断时间可设置,通常小于3/4周期。例如:频率50 Hz时,中断时间小于15 ms:频率60 Hz时,中断时间小于12.5 ms。
3.4.2 并联冗余模式
为提高系统容量或可靠性,或既提高系统容量又提高可靠性,可将数个UPS单机设置为直接并联,由各UPS单机内的幷机控制逻辑保证所有单机自动均分负载。幷机系统最多可由4个单机并联组成。
3.4.3 频率变换器模式
UPS可设置为频率变换器模式。提供50 Hz或60 Hz的稳定输出频率。输入频率范围40 Hz-70 Hz。该模式下,静态旁路无效,电池为可选。根据是否需要以电池模式运行来确定是否选用电池。
3.4.4 自动开机模式
UPS提供自动开机功能,即市电停电时间过长,电池放电至终止电压导致逆变器关机后,如市电恢复,经过延时后,UPS会自动开机。该功能及自动开机延时的时间可由调试工程师设置。
3.4.5 电池模式
由电池经过电池升压电路通过逆变器给负载提供后备电源的运行模式为电池模式。市电停电时,系统自动转入电池模式运行。负载电源不中断。此后市电恢复时,系统又自动切换回正常模式,无需任何人工干预,并且负载电源不中断。
3.5 UPS高级功能
UPS提供电池维护测试功能。电池定期自动放电,每次放电量为电池额定容量的20%,实际负载必须超过UPS标称容量的20%。如果低于20%,则无法执行自动放电维护。自动放电间隔时间30天-360天可以自行设置。电池自检可禁止。
在线式UPS中,无论市电是否正常,都由逆变器供电,所以市电故障瞬间,UPS的输出不会间断。另外由于在线式UPS加有输入EMC滤波器和输出滤波器,所以来自电网的干扰能得到很大的衰减。
参考文献
[1]孙法文.浅谈化工生产供电系统UPS的选配[J].中氮肥,2005.
[2]金灵伟.基于DPS的串并联在线补偿式UPS的设计研究[D].湖南大学,2004.
[3]曾建华.阀控式密封铅酸蓄电池最佳性能的实现[J].蓄电池,2006.
[4]刘南平.通信电源[M].西安电子科技大学出版社,2005.
点击下页还有更多>>>通信电源技术论文
直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值。本设计给出的稳压电源的输出电压范围为0~18 V,额定工作电流为0.5 A,并具有"+"、"-"步进电压调节功能,其最小步进为0.05 V,纹波不大于10 mV,此外,还可用LCD液晶显示器显示其输出电压值。
1系统硬件设计
本系统由电源模块、调压模块、D/A转换模块、显示与键盘模块组成,图1所示是该直流数控稳压电源的结构原理框图。
1.1系统电源模块
在图1中,220 V市电经220 V/17.5 V变压器降压后得到的双17.5 V交流电压,经过一个全桥整流后可得到±21 V两路电压,其中一路+21 V电压供给调整管,作为电源对外输出,另一路经三端稳压器7815得到+15 V,再经过7805得到+5 V的电压。-21 V的电压则经三端稳压器MC7915得到-15 V电压,以作为系统本身的工作电源。
1.2电压调整模块
该稳压电源中的电压调整模块电路如图2所示。其中调整管采用复合管形式(由Q1、Q3组成),以实现大电流输出,由于该设计要求Iomax=0.5 A,Iomin=0 A,Pm=(Vimax-Vomin)Iomax=(18-0)×0.5=9 W,因此,本电路中的调整管可选TIP41(其Icmax=6 A>Iomax=0.5 A;Pcw=65 W>9 W,VCEOmax=100 V>18 V),当然,也可以选用2N5832。
电路的比较放大采用运放NE5534来设计,该器件具有共模抑制比高,响应速度快和压摆率高的特点。设计时可由R10、R11A、R12组成分压取样电路,并要求R10/(R11A+R12)=1/4,即当输出电压存在△UO=0.05 V时,△Ua=0.04 V,这与DAC的输出(10/255=0.04V=1LSB)变化一致。事实上,经过DAC转换以将电流转换为电压并进行电压放大后,即可将得到的10 V电压送比较器NE54534的同相端作为比较的基准电压。由于DAC0832是8位的D/A转换器,故有255步进。由此,当CPU控制DAC变化1LSB时,其对应Va的变化为0.04 V,故Uout的可调变化量为0.05 V(步长)。NE5534和Q1、Q3及取样电路构成的负反馈电路可实现调节输出电压的目的(稳压)。
电路中的过流保护由R9与02完成。当Io>0.7A时,VR9=R9Io≥1×0.7=0.7 V,此时Q2导通,并对调整管Q3的基极分流,使TIP41的导通电阻增大,输出电压降低,从而达到过流保护的目的。必要时,也可接入一红色发光二极管作为过流指示。该系统的短路保护采用保险管来完成。
1.3 D/A转换模块
本系统中的数模转换电路如图3所示。它由DAC0832、两级低漂移的运放μA714及VREF电路组成。DAC0832和运放U3A将CPU发出的8位二进制数据转换成0~-5 V的电压,然后经运放U3B反向放大2倍,以得到0~10 V电压。因此,该DAC的转换分辨率为10/(28-1)=0.04 V,即CPU输出给DAC的数据变化为1 Bit,DAC输出电压的变化为0.04 V。VREF电路为DAC提供基准电压,调节R5A,可使基准电压保持为5 V。
1.4显示与键盘模块
本电源中的电压显示与键盘电路如图4所示。当输出电压经R13限流和R14取样后,即可送如TLC2453-1进行模数转换。图4中的TLC2453-1为11通道、12位串行A/D转换器,具有12位分辨率,转换时间为10μs,有11个模拟输入通道,3路内置自测试方式,采样率为66 kbps,线性误差±1LSBmax,同时带有转换结果输出EOC,并可单、双极性输出。通过其可编程的MSB或LSB前导可编程输出数据长度。TLC2453-1的时钟频率选用4.1 MHz,电源输出电压Uo的取样信号从IN0输入,芯片的I/O时钟端、数据输入端、转换数据输出端、片选端分别与AT89S51单片机的P2.3、P2.2、P2.1、P2.0相连,然后经单片机处理后从P0口输出,在经排阻9A472J驱动后送字符型液晶显示屏SMC1602A显示输出电压。电路中AT89S51单片机的晶振频率选用12 MHz,P1.0~P1.3接调压按钮。增加电压时,粗调用按键S1,步进为1 V,细调用S2,步长为0.05 V;减小电压时,粗调用S3,步长为1 V,细调用S4,步调为0.05 V。这样,经过它们的有机结合便可将输出电压调节到所需的电压。
2系统软件设计
本电路的主程序流程如图5所示。
3 结束语
本文给出的直流数控稳压电源采用硬件组成的闭环反馈模式来进行稳压。电路中采用共模抑制比高、响应速度快、压摆率高的NE5534作比较器,从而提高了稳压的可靠性和精度;而采用12位A/D转换模块完成电压的测量,并用LCD液晶显示,则提高了测量的准确性和直观显示能力。本电路的开机预置输出电压为5 V,并可采用步进方式调节输出电压,最小步进为0.05 V。经过测试,本电路的输出电压范围可达到0~18V,额定电流可达到0.5A,可应用于实验教学与工程实践中。
图你自己去下面链接看