您当前的位置:首页 > 发表论文>论文发表

趣味数学小论文六年级

2023-12-07 12:47 来源:学术参考网 作者:未知

趣味数学小论文六年级

像你这种人啊,只能这样,荣誉掌握在自己手中而不是别人手中。
要你这样的话,区区25连个P都换不了。
你这样肯定没有任何前途(继续这样的话)绝对是一块无用的料子。
自己去反省。

除非加分

数学是来源于生活,而应用于生活中的。曾经有人说:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。特教学生所学的数学与现实生活的联系就更密切了,因为,他们将来不可能凭知识去和正常人竞争,而是要凭体力或操作去争饭吃,因此,特教学生的数学课不仅选材要密切联系学生生活实际,而且,“数学教学还必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会”,使他们有更多的机会从周围熟悉的事务中学习数学和理解数学,体会到数学就在生活中,感受到数学的趣味和作用,体验到数学的魅力。

在教学过程中如何创设良好的学习环境,让生活中的问题走进数学课堂教学,我认为可以从以下几点来考虑:

一、结合生活实际,编写组织教材,提高学生用数学思维来看待实际问题的能力。

数学教育是要学生获得作为一个公民所必需的基本数学知识和技能,为学生终身可持续发展打好基础,必须合理改编教材,把生活中的鲜活题材引入数学的大课堂。然而,现行教材中,往往出现题目老化,事例过时,离学生的生活实际较为遥远的情况,如:加工零件、养猪、区粮店买粮食等方面的知识,与信息技术发展迅猛的今天相比,教材的更新显然不能适应新的形势的要求。

因此,教师在教学中要联系生活实际,吸收并引进与现代生活实际、科技等密切相关的具有时代性、地域性的数学事例来整理、改编教材,重新组织教材内容。这样就把教材中缺少生活气息的题材改编成了学生感兴趣的、有趣的生活中的问题,使学生积极主动的投入到实际生活中,从而提高学生用数学的思维来看待实际生活问题的能力。

二、注重接触生活,培养学生发现数学问题的能力。

为了使学生在学习数学知识的时候,初步接触和逐渐掌握数学概念,不断增强数学意识,就必须在数学教学过程中加强实践活动,使学生有更多的机会接触生活和发现生活中的数学问题,认识现实生活中的问题和数学问题之间的密切联系。

这样让学生自己发现问题,解决问题,对学生更富有魅力,对于提高学生应用数学知识的能力和增强学生解决问题的积极性都十分有好处。

三、 设生活情景,提高学生解决问题的能力。

数学教材中的问题多是经过简单化或数学化了的问题,为了使学生更好的了解数学的思维方式,提高学生对应用题的分析、解决的能力,教师必须善于发现和挖掘生活中的一些具有发散趣味的问题。这样可以让学生从生活中学到很多知识,同时也激发了学生学习的兴趣,提高解题的技巧,培养学生根据实际情况来解决问题的能力。

总之,数学问题解决的方法很多,它们之间既有联系也有区别,教学中教

师应该结合生活实际,抓住典型事例,教给思考的方法,让学生真正体会到数学学习的趣味性和实用性,使学生发现生活中处处有数学,数学和生活是紧密相连的,并且喜欢数学,让数学课堂教学适应社会实际,从而,培养出真正能适应未来社会需要的人才。

六年级的数学小论文。是体现出生活中数学的重要性。只要是好的肯定会采纳。

可以自己删减删减。
数学论文

一、数学技能的含义及作用
技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。
数学技能在数学学习中的作用可概括为以下几个方面:
第一,数学技能的形成有助于数学知识的理解和掌握;
第二,数学技能的形成可以进一步巩固数学知识;
第三,数学技能的形成有助于数学问题的解决;
第四,数学技能的形成可以促进数学能力的发展;
第五,数学技能的形成有助于激发学生的学习兴趣;
第六,调动他们的学习积极性。

二、数学技能的分类
小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。
l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。
2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。
第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。
第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动 作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。
第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。

三、数学技能的形成过程
1.数学操作技能的形成过程。
数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。
(1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。
(2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一

6年级数学小论文400字怎么写

内容不太全,因为原文字太多了
笔者安排了这样的课外作业“自己引导学生捕捉生活现象,
发现数学问题,
将数学教学与生活接轨,
让学生从生活中寻找数学素材,
感受生活中处处有数学,
数学处处有美感,缩短数学与生活的距离,扩大了学生的认知视野,拓展了学生的思维空间,既满足了学习和理解数学知识的需要,又体
会了数学的价值,培养了数学兴趣,何乐而不为呢
?
为了使数学更接近生活,让数学教学充满生活气息和时代色彩,真正调动起学生学习
数学的积极性,培养他们的自主创新能力和解决问题的能力是刻不容缓的教育使命。





















沈闸中心小学
-----
李清莹

“数学是人们生活、
劳动和学习必不可少的工具”

“对数学的认识不仅要从数学本质的观点去领悟,
更要从数学活动的亲身实践中去
体验”
。这充分说明了数学来源于生活,又运用于生活,数学与学生的生活经验存在着密切的联系。面向
21
世纪的数学教学,我们的理念
是“人人学有用的数学,有用的数学应当为人人所学,不同的人学不同的的数学”

“数学教育应努力激发学生的学习情感,将数学与学生
的生活、学习联系起来,学习有活力的、活生生的数学”


《新课标》又指出:
“数学教学必须从学生熟悉的生活情境和感兴趣的事物出
发,为他们提供观察与操作的机会,使学生体会到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感。
”如何根据教材的特点,
把枯燥的数学变得有趣、生动、易于理解、让学生活学、活用、从而培养学生的创造精神与实践能力呢?通过反复思考,我就从课堂教学
入手,联系生活实际讲数学;把生活经验数学化,把数学问题生活化。
,应充分挖掘数学知识本身所蕴含的生活性、趣味性,调动学生善
于质疑、自主研究,主动寻觅数学与生活之间的密切关系,探索生活材料数学化、数学课堂生活化的教法,使学生轻松愉快地掌握数学。

一、创设生活情境,激发学生学习数学的兴趣

布鲁纳说过,
“学习的最好刺激就是对学习材料的兴趣”
。通过创设生活情境,将学习任务与情境相联系,可以激起儿童浓厚的兴趣和
情感,使学生能主动积极、全身心地投入到学习中。创设生活情境的方法一般是通过游戏、故事造境,环境营造,媒体辅助等来联系生活、
模拟生活。

1.
巧用游戏、故事造境

爱玩好动是孩子的天性,寓数学知识于游戏活动和故事情境中,学生在玩中学,学中玩,学生学得有趣、学得愉快、学得主动、学得
深刻。如在教学《猜数游戏》一课中的“想一想”时,教师引导学生讲《小老鼠背土豆》的故事,通过拓展故事情节,很自然地引出了许
多的数学问题。教师让学生互相提问、解答,要求学生把问题说完整,在互动中培养学生的数学意识。学生在生动活泼的实践中亲身经历
了探究知识的过程,始终体验着学习的成功和乐趣从而在不知不觉中学到数学知识。

2.
环境营造,媒体辅助

心理学告诉我们,生动、具体、形象的事物,色彩鲜艳的对象,容易引起儿童的兴趣。由于电教媒体具有生动、形象的特性,能把抽
象的内容变得生动、形象,在数学教学中如果能充分利用电教媒体来模拟或再现生活场境,营造氛围,能够调动起学生学习的积极性和主
动性,加深学生对所学知识的认识和体验。如在教学《青蛙吃虫》一课时,教师利用媒体播放青蛙在稻田里吃害虫的过程,学生被生动、
形象的生活画面深深地吸引住了,
他们从大青蛙和小青蛙的对话中知道了大青蛙吃了
56
只害虫,
小青蛙吃了
30
只害虫。
这时教师让就
“青
蛙吃害虫”提数学问题,学生由于有了“兴趣”
,思维一下就活跃起来,很自然地提出了许多数学问题,学习更为主动、积极。

二、探究生活问题培养学生数学综合素养

“让讲台成为舞台、让教室成为社会、让学生成为演员、让教师成为导演”
,将数学与生活、学习、活动有机结合起来,将学生运用
数学的过程趣味化、生活化,使学生感受到数学源于生活,从而激发学生学习数学的兴趣和欲望,培养学生的数学综合素养。

1.
写“数学日记”

学生运用语言表达出自己在数学学习中的新思想、新发现,可以帮助学生系统地思考问题、探究问题,深化对问题的理解,找到成功
的感受和体验,增强学习数学的自信心,在教学中让学生编写“我和数学”的故事,写“数学日记”
,可以培养对数学的感受能力,深化
理解所学的数学知识,引导学生感受数学就在身边,数学与生活联系紧密。如让学生写在家里
,
爸爸妈妈用到了哪些数学知识,上商店买
东西,又用了哪些数学知识„„通过记“数学日记”
,既让学生探究了生活中的数学,明白了数学知识不仅有用,而且在生活中时时处处
都在用,又培养了学生的综合素养;而教师通过阅读学生的“数学日记”
,也可以了解学生有没有较强的“学数学,用数学”的意识,使
以后的教学更有针对性。

2.
开展数学实践活动

应用数学知识解决实际问题是数学教学的出发点和归宿点,新教材将“书本世界”与学生的“生活世界”沟通起来,使学生感受到数
学就在身边,让学生进行数学实践,是让学生在实际的生活情境中去感受、去验证、去应用,调动学生多种感官参与学习活动的过程,从
而获得丰富的直接经验,以达到培养学生数学综合素养的目的。活动的主题可以依据教材进行,也可以是教师提出的或学生自己提出的,
但必须贴近学生的生活。如:调查“学生一周用几只铅笔,一共需多少钱”

“家里每星期买菜要付出多少钱”

“对最近数学测验同学的得
分情况进行调查”等等。通过一系列的数学实践活动,不仅可调动学生学习数学的积极性和主动性,同时也培养了学生的实践能力和其它
综合素养。

三、数学教学方法生活化

数学教学方法生活化是数学教学生活化的一个关键。因此,教学中要尽可能使用生活化的教学方法,提高教学效果

前苏联数学教育家斯托利亚尔曾说过:数学教学也就是数学语言的教学。课堂中
,
师生的交往主要是通过言语交流。同一堂课,不同
的教师教出来的学生接受程度不一样,
这主要取决于教师的语言素质,
尤其是数学教学中如何将抽象化的数学让学生形象地去理解和接受。
一个看似枯燥无味的数学,实则里面蕴藏着生动有趣的东西,教师如果没有高素质语言艺术是不能胜任的。鉴于此,数学教学语言生活化
是学生引导理解数学、
学习数学的重要手段。
教师要结合儿童的认知特点、
兴趣爱好、
心理特征等个性心理倾向,
在不影响知识的前提下,
对数学语言进行加工、装饰,使其通俗易懂、富有情趣。如,认识“<”

“>”
,教师可引导学生学习顺口溜:大于号、小于号,两个兄
弟一起到,尖角在前是小于,开口在前是大于,两个数字中间站,谁大对谁开口笑。区别这两个符号对学生来说有一定的难度,这个富有
童趣的顺口溜可以帮助学生有效的区分。又如把教学长度单位改成“长长短短”
,教学元、角、分改成“小小售货员”
,比大小说成“排排
队”等等,学生对这些生活味十足的课题知识感到非常好奇,感到学习数学很有趣。

四、数学教学运用生活化

数学应用于实际,才会变得有血有肉、富有生气,才能让学生体验到数学的价值和意义,确立用数学解决实际问题的意识和信心。

以,作为数学教师要避免从概念到概念、从书本到书本,变数学练习的“机械演练”为“生活应用”
。引导学生用数学的眼光去观察、分
析、解决生活中的问题,通过在生活中用数学,增强学生对数学价值的体验,强化应用数学的意识。

1
、用数学眼光观察生活问题。

生活是数学的宝库,生活中随处都可以找到数学的原型。经常让学生联系生活学数学,引导学生用数学的眼光观察生活问题,不仅有
利于培养学生用数学的眼光认识周围事物的习惯,而且有利于培养学生探索的意识。如,认识“圆”以后,让学生到自己生活的环境中去
观察哪些物体的面是圆的?学习了“圆柱的侧面积和体积”之后,让学生观察生活中哪些物体是圆柱体”
。学习了“轴对称图形”后,让
学生找一找、说一说,你见过周围那些物体是轴对称图形?又如,在学习了普通记时法与
24
时记时法后,老师可以让学生去找找生活中
哪些地方哪些部门是用
24
时记时法的,哪些地方、哪些部门又是用普通记时法的。

2
、用数学方法研究生活问题。

生活中的许多问题包含着数学知识。
引导学生运用数学方法研究问题,
不仅使学生感受成功和自身价值的存在,
而且可绽放绚丽的创
造之花,让学生真正由“读书虫”向社会实用型人才发展。如,教学三角形的稳定性后可以让学生解释一下:我们住的房子的屋顶为何要
架成三角形的?木工师傅帮同学修理课桌为何要在桌脚对角处钉上一根斜条?教学平行四边形的特性请学生说明:
为什么拉栅门要做成平
行四边形的网格状而不做成三角形?又如,学习了利息计算后,让学生计算:把
1000
元钱存入银行,怎样存款更合算?学生先要调查银
行利率,选择存款时间、存款方法,再计算利息,找到最合理的存款方法。再如,在学生初步认识了圆形后,可以引导学生往深层次思考:
“为什么生活中那么多物体的形状都设计成圆形,圆形有什么特别之处?”

3
、用数学知识解决生活问题。

通过创造条件,引导学生运用所学的数学知识和方法解决日常生活中的实际问题,不断提高学生运用数学能力。如,学习了有关面积
计算的应用题后,学生学会量窗户的长和宽,算出它的面积,而后再导入生活,引导学生实际计算做窗帘要用多少米布。这就应考虑到窗
帘要比窗户长一些,宽一些,如果是面积较大的,用两幅窗帘面对拉,两幅窗帘中间还应考虑应有的重叠部分等等。又如:学习“正方形
的认识”后设计如下情境:这是一块打碎成两块的正方形玻璃,要照原样配一块该怎么办?在没有尺的情况下,应带哪块玻璃?还是两块
都带去?这样的“生活化”教学活动,学生既增长了知识,又学会了思考和解决问题,大大地锻炼学生的与实践创新能力。

五、借助生活实际,培养应用意识,做到学以致用

《小学数学课程标准》中指出:
“学生能够认识到数学存在与现实生活中,并被广泛应用与现实世界,才能切实体会到数学的应用价
值。
”把所学的知识运用到实际生活中,是学习数学的最终目的。重视知识的应用,让学生运用所学数学知识,分析、解决一些简单的实
际问题,使学生感受到数学知识与生活实际的密切联系,可以激发学生形成学数学用数学的意识,培养正确的数学观。因此,每一次学完
新课后,
我就编一些实际应用的题目,
让学生练习,
培养学生运用所学的知识解决实际问题的能力。
如我在教学:
“你喜欢什么体育运动?”
的实践活动课中,先真正让学生了解周围人都喜欢什么体育运动,初步让学生体会到收集,整理信息方式。通过这样的活动,有效地培养
学生处理信息的能力。

总而言之,数学教学一定要充分考虑数学发展进程中人类的活动轨迹,贴近学生熟悉的现实生活,充分挖掘生活资源,将数学教学生
活化,让学生感受生活化的数学,使学生有更多的机会从周围熟悉的事物中去学习数学和理解数学。让日常生活课堂化,让课堂教学生活
化,使课堂教学充满了对智慧的挑战和对好奇心的满足,焕发了师生的生命活力。数学教学生活化,能够更好地引导学生在生活中体验、
感受数学,学好数学、用好数学,这是符合“以人为本”的教学理念的,必将更积极、生动、活泼地促进学生的全而发展。使学生感受到
我们生活的世界是一个充满数学的世界,从而更加热爱生活,热爱我们的数学。

让小学数学课堂与生活同行

王贞平

新课标要求教学中不仅要注意数学知识的生活化,
同时也注意生活问题的数学化。
让小学数学课堂与生活同行,
是解决生活中数学问
题的有效途径之一,那么,在实际教学中如何让数学课堂与小学生的生活同行呢?

一、让教学内容与生活问题密切联系起来

教学中寻找与生活中密切相关的问题,
当教学内容成为学生迫切需要解决的问题时,
他们对数学知识的应用和对数学的兴趣就会油然
而生。如教学“除数是二位数乘法估算”时,学生得出这样的结论:先要把两个因数后面的尾数省略,求出近似数,再估算。教师于是让
学生估算:同学们
12
人一组去郊游,现在要去买
12
份肯德基套餐,每份
11
元,请你帮助算一算大约要带多少钱?学生很快估算出是
100

(10
×
10=100

)
,即大约要带
100
元钱。此时,有一个学生说:
“带
100
元钱是买不回
12
份肯德基套餐的。
”大家想想也是,那是不是
刚才用的估算方法错了呢?一石激起千层浪,在争执中,学生畅谈了自己的想法,不仅满足了学生的好奇心和求知欲,而且培养了学生敢
于质疑和务实创新的精神。

二、从学生生活经验出发进行教学

新课标指出:
“数学课程应强调从学生已有的生活经验出发„„数学活动必须建立在学生的认知水平和已有的知识经验基础之上”


就是说,数学教学活动要以学生的发展为本,要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源。例如我给学生出了这
样一道题:王大妈交水电费带回一张发票,换衣服时忘了取出,不慎搓洗掉一角,能看到的数据如下:电
160
度,水
25
吨,每吨
1.70
元,
总共交了
138.5
元。你能帮王大妈算出一度电多少钱吗?学生很快就找到了等量关系:总费用一水费
=
电费,列式算出
(138.5-1.70
×
25)+160=0.60
元。这一环节充分利用小学生已有的认知,激活了他们的生活经验,使学生的生活经验再一次得以生动展现。激活学生的生
活经验、沟通知识与实际之间的良性互动,从而使学生体会到学习数学的有用性和重要性。

三、在现实生活中去用所学的数学知识

“数学是人们生活、劳动和学习必不可少的工具。
”在社会生活中处处离不开数学,处处都在应用数学。所以教师应该充分利用学生
已有的生活经验,
引导学生把所学的数学知识应用到现实中去,
以体会数学在现实生活中的应用价值。
如教学
“正方形面积的计算”
一课,
当学生由长方形面积计算公式推导出正方形的面积计算公式后,教师便出示了一道操作题:教学楼墙上的“名人名言”是一块块正方形瓷
砖拼成的,请你动手求出一块瓷砖的面积,然后数数总共有多少块瓷砖,最后算出整个“名人名言”板块的面积,让学生体会数学就在身
边。在这个过程中也进一步巩固了学生所学的数学知识。

四、向学生布置生活化作业

数学生活化作业是指作业内容紧密联系生活或者是生活本身,
完成作业的过程必须经历生活实践,
有利于培养学生从生活中发现数学
问题、在生活中应用数学等能力的数学作业。例如:在学习“小数的大小比较”后布置如下作业:
(1)
到超市或商店摘录
10
种商品的价钱,
再自由比较各种商品的价格高低,用“>”

“<”或“=”号连接,最后把所有商品的价格从高到低依次排列。
(2)
到书上或其他地方寻

10
条数据
(
至少有
4
条数据是小数
)
,再把你认为可以比较大小的加以比较,并做好记录。再如:在学习“统计”后布置如下作业:
(1)
了解班里同学爱吃水果的情况,再制成统计表或统计图。
(2)
观察生活的各个方面,对自己感兴趣的项目做一次小统计,并制作条形统计
图,提出数学问题。这类作业虽然跟常规作业相似,但它的内容来自生活,完成时需要学生通过生活实践。

总之,为了更好的让数学与小学生的生活同行,我们广大数学老师应深入学习研究,不断转变教学理念、创新教学方法,这是我
们每一个教育工作者和数学教师的义务和责任,也只有这样才能更好的让数学走进小学生的生活。

浅谈小学数学教学与现实生活问题的融合

之所以要数学教学生活化,是因为数学问题源于生活,同时又服务于生活,生活是教育的出发点和最终归宿。为此教育首先要植根于
生活的土壤,才不至于成为“无源之水,无本之木”
。如果我们教育的学生只能解决书本上前人提炼好的数学问题,而不能解决生活中的
实际问题,那将是我们教育最大的失败。因此,我们在教学中,要多方面找数学素材,多让学生到生活中找数学,想数学,真切地感受到
生活中处处有数学。如何使数学教学生活化?我想可以从以下几方面入手:

一、生活问题数学化

在实际生活中有各种各样的问题需要我们去妥善处理、
科学解决,
而实际生活又是千变万化、
千头万绪的,
有各种各样有关和无关的、
有用和无用的变量交织在一起,这就给人们处理事物,解决问题造成一定的困难,要处理和解决好这些问题就必须抓主要矛盾,要抓主要
矛盾就必须排除那些无关、无用的变量,在一种特定的,理想环境中去研究解决问题的方法。所以数学也就随之孕育而生,数学正是排除
了生活中那些无关和无用的变量,把生活放置在理想化的状态下研究其普遍存在的规律和关系的科学,形成的是在一定的条件下处理和解
决问题的方法和策略,
然后把数学研究的成果应用于社会实践,
以此处理和解决实际生活中的各种具体问题,
并使解决问题的方法更合理、
处理问题的结果更准确、处理问题的速度更快捷。

例如,教学中“鸡图同笼”问题:

鸡兔关在同一个笼子里,共有
10
个头,
28
条腿。

问:笼子里几只鸡,几只兔?

分析:这个题是一个基本的鸡兔合笼问题,把这个问题放置在理想化的状态下研究即全部是鸡,那么应该有腿:
2*10=20(

)
,比实
际上少了
28-20=8
(条)

为什么少了
8
条腿呢?是由于把兔看成鸡的缘故。
每把一只兔看成一只鸡就少了
2
条腿,
所以
8
里面包含有
8/2=4
(只)兔,则鸡有:
10-4=6
(只)
。通过此题还有类似的“蛐蛐”问题等等都是生活中遇到的问题把它数学化不但解决了问题,而且给了
我们很多捷径的技巧。所以“生活问题数学化”顺应了自然发展的规律,是人们处理和解决实际问题的需要。

又如:
在学完
“直角”
以后,
我们可以让学生在家里找找有哪些关于直角的物品。
有的学生找到了电视机、
床、
书桌、
窗户、


„„

在教学“线段”时,我利用课余时间,带着同学们一起到校园里到处寻找线段,同学们兴致勃勃,去教室门口找,去操场上找,还

着我的手要去洗手间找。这次活动不仅使学生学到活生生的数学,感受到数学存在于生活中,而且使学生经历了一次愉悦的成功的情感体
验。

通过长时间的这样的练习,
让学生在经历生活历程中感悟数学,
实现了学生以自己的方式自主建构的目的,
培养了学生从数学的角度
观察生活的意识,提高了学生以生活经验理解数学的能力。

二、数学教学生活化

数学教学方法生活化是数学教学生活化的一个关键。因此,教学中要尽可能使用生活化的教学方法,提高教学效果。

首先,我们可以选择运用生活化语言教学。课堂中,师生的交往主要是通过言语交流。同一堂课,不同的教师教出来的学生接受程度
不一样,这主要取决于教师的语言素质,尤其是数学教学中如何将抽象化的数学让学生形象地去理解和接受。一个看似枯燥无味的数学,
实则里面蕴藏着生动有趣的东西,教师如果没有高素质语言艺术是不能胜任的。鉴于此,在实际教学中我们要结合儿童的认知特点、兴趣
爱好、心理特征等个性心理倾向,在不影响知识的前提下,对数学语言进行加工、装饰,使其通俗易懂、富有情趣。

其次,
在实际教学中为了帮助学生理解和掌握数学知识,
特别是一些学生理解困难的知识,
我们就需要创设一个与学生所要学习的知
识联系紧密的生活情境来辅助教学,使学生在一定的生活情境中体验数学、应用数学,知道数学知识的前因后果、来龙去脉,让学生不但
知其然,而更知其所以然。例如:如学习“
10
的组成”时,可创设一个分苹果的情境:妈妈买来
10
个苹果,要你分给自己和弟弟吃,你
准备怎么分呢?为什么?这样课堂气氛非常活跃,
每个学生都在积极思考,
既让学生对
10
的组成有了清晰的认识,
又在课堂中渗透了
“人
文”精神,让学生懂得人与人之间的尊重和友爱。

如在教“千克和克”时,让学生到生活中观察几件物品的包装,记下他们的重量,在交流时,同学们提出了许多现实的问题,如:方
便面袋上印着总量:
70
克,面饼:
65
克,从而知道调料袋和包装袋重
5
克。食用盐包装袋上印着净含量:
500
克±
10
克等实际问题。

教“比例的意义和性质”时,可以这样设计:人体上有许多有趣的比例,你们知道吗?边划边讲,脚底长与身高的比是
1

7
,如果
你是一名侦探的话,只要发现罪犯脚印就可以估计罪犯的身高了。这些都是用身体的比组成的一个个有趣的比例,今天我们来研究“比例
的意义和性质”
。或者是:出示五星红旗,美丽的雅典神庙、古埃及的金字塔以及发型设计,问这些美吗?知道为什么这么美?然后介绍
希腊数学家利用线段找到世界上最美丽的几何比—黄金分割,引起学生的注意力,揭示课题。

总之,数学教学生活化是教育现代化对数学教学提出的新要求,我们在数学教学中必须立足于学生的现实生活,及时收集与学生的
生活密切相关的数学问题,通过对现行教材资源的有效整合和合理利用,使数学教学贴近学生的生活实际,这样,生活问题数学化,数学
问题生活化,培养学生学会从生活汇总提出数学问题,然后再把这些问题移进课堂,促进了学生教学情感、态度、价值观的形成以及学生
的数学学习能力和生活能力与心理素质的协同发展,使学生在“生活”和“数学”的交替、互动中更加热爱数学、热爱生活。

小学六年级数学小论文(最好是联系实际问题)给的好分多~

数学小论文一
关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”

这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。

历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”

那么,究竟什么是数学呢?

伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。

数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。

纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。

应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。

高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。

体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。

广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。

各门科学的“数学化”,是现代科学发展的一大趋势。
数学发展史

此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。

数的出现

一、数的概念出现

人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。

数字与符号的起源与发展

一、数的出现

很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。
而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。

二、符号的出现

加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简
单,直到17世纪中叶才全部形成。
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。

1、加号(+)和减号(-)

加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。

2、乘号(×、·)

乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。

3、除号(÷)

除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。

4、等号(=)

等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。

分数

一、分数的产生与定义

人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.
分数一般包括:真分数,假分数,带分数.
真分数小于1.
假分数大于1,或者等于1.
带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。
注意 :
①分母和分子中不能有0,否则无意义。
②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)

二、分数的历史与演变

分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。
在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。
公元前1850年左右的埃及算学文献中,也开始使用分数。
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数.
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的.
最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。
《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法.
在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。

几何

一、公式

1、平面图形

正方形: S=a² C=4a
三角形: S=ah/2 a=2S/h h=2S/a
平行四边形:S=ah a=S/h h=S/a
梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a
圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏
半圆: S=∏r²/2 C=∏r+d=5.14r

顶点数+面数-块数=1

2、立体图形

正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a
长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)
圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r²
其它柱体:V=S底h
锥体: V=V柱体/3
球: V=4/3∏r³ S表=4∏r²

顶点数+面数-棱数=2

数论

一、数论概述

人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0)
对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。
人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。
数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。

二、数论的发展简况

自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。
自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。
在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。
到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。
在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。
由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。

三、数论的分类

初等数论
意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。
解析数论
借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。
代数数论
是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。
几何数论
是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。
计算数论
借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。
超越数论
研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。
组合数论
利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。

四、皇冠上的明珠

数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。
简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题……

五、中国人的成绩

在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。

名著录

《几何原本》 欧几里得 约公元前300年
《周髀算经》 作者不详 时间早于公元前一世纪
《九章算术》 作者不详 约公元一世纪
《孙子算经》 作者不详 南北朝时期
《几何学》 笛卡儿 1637年
《自然哲学之数学原理》 牛顿 1687年
《无穷分析引论》 欧拉 1748年
《微分学》 欧拉 1755年
《积分学》(共三卷) 欧拉 1768-1770年
《算术探究》 高斯 1801年
《堆垒素数论》 华罗庚 1940年左右

任意选一段吧!!!

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页