力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!
浅析物理力学的产生及其发展
摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。
关键词:物理力学;产生;发展
一、物理力学发展需要解决的问题分析
在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。
在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。
针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。
在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。
还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。
二、新技术不断推动物理力学的发展
物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。
人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。
本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。
参考文献:
[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).
[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).
[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。
[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).
浅析力学在机械中的应用
[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。
[关键词]力学 弹性力学 断裂力学 工程力学 机械
力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。
一、力学
力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。
力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。
二、力学在机械中的应用
力学在机械中的应用广泛,其典型应用主要有以下几种:
1.弹性力学在机械设计中的应用
弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。
齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。
2.断裂力学在机械工程中的应用
断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。
首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。
其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。
再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。
最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。
3.工程力学在机械修理中的应用
工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。
三、结语
当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。
参考文献
[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).
[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).
[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).
[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).
提要
物体在受到外力(去掉外力性质的重力—引力及合外力不为零的情况下)的时候其内部到底发生了什么情况?这才是区别物体是否是广义惯性运动状态的根本标准。这涉及到牛顿力学物体概念内涵的改变。如果把熵状态(熵空间)作为力学思维的出发点,许多纠缠不清的问题都好解决。
前言
——把简单的事情搞复杂了,太累;把复杂的事情搞简单了,贡献。——摘自某电视广告词。
无论是维护还是反对广义相对论的人,其实都面对的是一团“乱麻”,说它对,也说不清对在哪,说它错,也说不清错在哪,那是因为没有一个“对的理论参考系”。我的惯性力学三定律,也许提供了此“参考系”。相对论的产生,就是把空间问题(也是场的问题)引进到物理学里来,无论如何,这是一个进步。但是,仅把“运动”当作出发点,来定义空间,总觉得有点犯了循环逻辑错误的嫌疑,因为运动(速度)本身就是由时间与空间(距离)来定义的。用时间与空间来定义时间与空间,就好象是自己拽自己的头发把自己拽起来一样,不解决问题。因为“运动”仅是物体对它物的位置关系,而位置关系仅是物体属性对外关系体现的一方面,不是全部。反过来,又仅以运动与空间角度来认识“属性”,就犯片面性的错误了。广义相对论还是正在“探索”过程中的不成熟的不能算作真正理论的理论。
我在我以前的文章里说过,物体的广义惯性的对它物关系的体现有两种,一个是力(作用关系),一个是运动(位置关系)。而许多人总是在运动(机械运动)上来思考什么惯性啊、引力啊、什么等效原理啊、什么参考系等等,这是片面的,是许多问题纠缠不清的根源之所在。又把“运动”关系当作出发点来思考,或仅以“运动”角度以为就可以解决什么属性问题,就是本末倒置了。通常说“标”与“本”的关系,在力学里,仅从“运动”角度来解决力学问题,就是“治标”,不是治本。广义相对论就是如此错误之大成者。永远要值得注意的是,关系是某物属性的体现,不是属性本身。抛开了某物及某物的属性,而要解决属性问题,是解决不了的。广义相对论就是抛开了物体这一最基本的前提,仅用什么度规什么坐标系(参考系)的变换来解决惯性及“引力”等问题,引得许多人到如今还在争论不休,就是此原因。我们还是回到“物体”本身上来,回到体现其属性的另一个关系——力作用关系上来。就容易解决许多纠缠不清的问题。在我这里,同样的物理常识,就有了不同的思维方式。我在此是在重新调整力学的思维方式。
一、受力的物体内部到底发生了什么情况?
有人说受力(接触力,像磁性力另说,而外力性质的重力与虚构性质的惯性力是在此我要重新认识的“作用”。)物体发生了形变,但这是外在的问题,此外在的形变也有因为物体内部的情况的变化引起的因素。受合外力为零(接触力)的物体也形变。我们要看看在受到合外力为零与不为零情况下的物体的内部到底发生了什么情况。我现在举几个现象方面的例子:先用水性质的物体来说明一下。
1.有“重”的情况:
(1)在地面上的装满水的容器,当该容器在水平方向上,受外力的作用(也有加速度),此容器中的水里就压强梯度情况发生。
(2)在离心机中的装满水的试管,在离心机转动的情况下,其水里也有压强梯度情况发生。
(3)静止在地面上的装满水的容器,在垂直发生方向上,其水里也有同样的压强梯度情况的发生。此容器的外力就是地面对其支撑的力。
2.“失重”的情况:
(1) 在地面上以静止或匀速直线运动的装满水的容器,水平方向上,水里没有压强梯度情况的发生。此情况没有外力作用之。
(2)处在自由落体运动状态下的装满水的容器,其水里没有压强梯度情况的发生。此情况没有外力作用之。
(3)在公转的太空实验室里装满水的容器,其水里没有压强梯度情况的发生。此情况没有外力作用之。
(4)在车厢里的地板上,有此装满水的容器,假设此容器与其地板之间没有摩擦力,当此车厢突然在水平方向上加速时,在车厢里的人看来,此容器有加速运动(在地面上的人看来,此容器还是静止的),但其容器里的水在水平方向上没有压强梯度情况的发生。此容器没有外力作用之。
说明:
(1)在原来的力学里,有“重”的情况的(1)与(2)的压强梯度被解释为虚构的惯性力(也被称为没有来源的力)造成的。其(3)的压强梯度被解释为“引力”(也是虚构的力)造成的。在我这里,其压强梯度不被解释,是认识的出发点(公理化。如果除了虚构的惯性力与引力的原因的解释,而有其他的原因的解释,我的此出发点不成立。)。是表示其物体有外力作用之,也是表示对此外力有反作用力,其反作用力就是其物体的广义惯性力。反过来,其物体有外力作用之,必有物体内部的此“压强梯度”情况的发生。其外力或其广义惯性力与此“压强梯度”在量上有正比关系。“失重”的情况也“统一”理解为没有外力作用之。
(2)气体也有此“压强梯度”情况的发生;固体的此“压强”表现为“胁强”。
(3)离心机里的此“压强梯度”的二阶导不为零。
(4)把此“压强梯度”的“唯象”性,变为抽象的ρ梯度(就是我的惯性力学三定律里的P内),是新的物理量,物理单位名称为“坦”。
(5)于是,原来牛顿力学的“刚性”的与“没有内部结构”的物体概念就变为有不是“绝对刚性”与有“内部结构”内涵的物体概念。
(6)当一辆汽车突然撞在“刚性”障碍物上时,此汽车就撞坏了,是由于其负加速度突然非常变大,依我的广义惯性运动定律,其汽车的P内也突然变大,也就是其质量部分的胁强变化突然变大,就造成了车体的破坏。其前面(被撞的部位)之所以被破坏得厉害,是因为汽车不是绝对刚性的物体(有一定的弹性)。
(7)在实践上,人们在说战斗机里发生的“失重”与“超重”时,已经没有了所谓的“引力与惯性离心力”原因的区别,已经都统一为“重力”的说法了。所以,我的“理论”容易被一般人理解,不是“超玄”的。完全可以直接代换中学力学里的“牛顿相应的定律”。在中学力学教材里独立的“失重与超重”问题,就不必讲了,此内容已经包含在惯性力学三定律里了。
(8)在爱因斯坦的“等效原理”里说什么“在惯性系(所谓的自由空间等)里与在引力场里的局部惯性系(某加速值的)里的所有的物理规律是相同的或所有的实验结果是相同的等同类不同方式的说法,比形而上学还形而上学。实际上只有一个“现象”是相同的,就是此“压强梯度”现象。如此的比形而上学还形而上学的“等效原理”,带来的直接错误后果就是把“光束与升降机的运动速度合成思维实验”带到了“动力学”里,也随带着把狭义相对论的理论带到了“动力学”里,于是,就繁衍出了什么“一级近似、强引力场、光线引力弯曲、引力透镜、黑洞”等劳什子。而爱因斯坦实际上是用“广义惯性”(用度规)在重力场里的“广义惯性运动”(测地线)
来定义引力场(弯曲时空),本来是“同一关系”,其定义结果——弯曲时空的前提(广义惯性)已经解释了“引力”,结果被人(爱因斯坦本人在此也糊涂)错误地理解为几何性质造成了引力的因果关系。如果还有人以为我的惯性力学三定律是什么广义相对论的什么级近似情况的定律,那实在是为广义相对论的继续存在找借口。不能为了“光”一定存在在力学里,把我们的认识搞混(昏或浑)了。我的惯性力学三定律是已经吸取了广义相对论的合理内核的结果。
(9)参考系是“观察”及“失重与有重”是体验,但这都是感性表达,而理论必须是客观性与理性的表达,于是,用此“压强梯度”现象与“ρ梯度”来说明与表达,这就是客观性与理性。(牛顿第一定律的物体的状态也是表示物体的失重状态)
二、空间问题
1.物体的内部空间问题
物理意义的空间与物体的内部空间的涵义是什么?这是困扰爱因斯坦一生的问题,(见爱因斯坦晚年对他的早年著作《狭义与广义相对论浅说》第十五版的附录)当物体有体积的时候,就应该说有内部空间。但是,爱因斯坦就在此问题上拿不定主意。比如一只两头没有盖(有盖也可以)的大油桶,你说此大油桶占据了什么空间,是圆柱体积?我想通了,是油桶的质量部分占据的空间才是物理意义上的物体内部空间。 爱因斯坦的“物体具有空间的广延性”,应该就是此涵义。P内就是指此空间结构。
爱因斯坦之所以没有总结出此惯性力学三定律,其原因是把注意力用在了参考系的变换,而忽略了物体的内部空间性,而他到了晚年认识到“物体(不是物质)具有空间的广延性”时(见《狭义与广义相对论浅说》第十五版的附录说明),就已经说明了他开始注意到了物体的内部空间(物体质量部分所占据的空间)性问题,但他已经来不及总结出此惯性力学三定律了。
2.物体的外部空间的问题
地球有重力场,地球也是物体,地球的内部空间也可以定义为物质质量部分占据的空间。地球的此空间,也有此质量部分的“压强梯度”现象(中聚度,如在地球的大气层与海洋中也有此压强梯度。),也可以说P内,但是,具有物理性质的重力场(空间)可以延伸至月球轨道之外,而与质量无关。为了解决此问题,只得承认有一个独特的有物理意义的空间——重力场。而此空间的物理量P外与P内的物理单位相同。P内与P外对距离的积分,还可以理解为有的书中所说的“内势与外势”问题。于是,就一定应该有具有重力场的物体与不具有重力场物体之分情况。只有此种区分,许多问题都顺理成章。进而,重力场必须是有范围的。否则,许多悖论都出现了,许多“应该”发生的“异常现象”没有发生就无法解释。比如:“九星连珠”现象的发生,按理(万有引力)应该有异常现象发生,结果,什么异常现象都没有发生。而按我的结论,就可以很好地说明为什么没有异常现象发生。所以,我说的“只有整体天体才具有重力场,而重力场是有范围的”,是合乎情理的。
3.引力场概念必须抛掉
只要承认在任何物体之间有所谓的引力,引力场概念就没有存在的意义。只要承认任何物体之间有引力作用,广义相对论也不成立,我的惯性力学三定律也不成立。有“引力”的作用,就没有“场”的“作用”(属性问题),这是不相容的。然而,奇怪的是,多年来学术界竟可以同时运用之。爱因斯坦把把统一场论问题留给了后人,而后人又把此问题转化为四种相互作用力的怎样统一的问题。而通常的解决此不相容的办法是假设什么微粒子的传递,复杂了,麻烦了。靠假设的“东西”(不是某客观东西的抽象)建立的理论,不是理论。
4. 熵空间
有重力场的空间与无重力场的空间是我的理论的前提,是思维的出发点。但是,最好是用“负熵空间与熵空间”(不是狭义的熵)来理解此出发点。因为此空间具有物理意义。有了我的惯性力学三定律,有了熵空间与负熵空间,与其分别对应的原来的绝对空间、欧氏空间、平直时空与惯性系及原来的弯曲时空、非惯性系与引力场这些概念也就没有存在的必要了。
离心分离机之所以有"分?quot;效应,也说明其试管在旋转的情况下,试管内部空间是负熵空间。而放在地球重力场内的静止的"试管"中也有此"分离"效应。
重力场可类比静电场,但又不是静电场。但有人把重力场(引力场)当作“电磁场”来看待,又弄出个什么“引力波”来,是没有客观事实根据的。
5.有关的若干问题
(1)什么绝对运动、相对运动、加速系、绝对时间、相对时间、平直时空、弯曲时空等等,统统撵回到纯运动学那里去;坐标系是描述用的;参考系是操作性问题,不是力学思考的前提问题。把参考系与坐标系也“撵”回到纯运动学那里去。物理就是研究物质的道理,抽象的空间、时间与运动的“本身”没有物理。去掉物体的抽象运动,是形式的问题。不能说空间有物理的属性,弯曲时空有“引力属性”是错误的。弯曲时空是不能证明存在与否的,因为是形式,是抽象的。物质的物理与其形式(空间时间与运动)是同一性关系(内容与形式的关系),不是因果关系。
在操作上,有重力场的空间有确定的参照物,而没有重力场的空间就是熵空间。通过我的广义惯性运动定律的加速度a可以转换出其他的运动形式,如a=v2/r等,然后再运用什么坐标系与参考系来描述。绝对参考系问题是具体问题具体分析的问题。如有绝对方向参考系,飞机上的“陀螺仪”就是例子。
(2)牛顿的惯性定律实际上包含两个涵义:物体在惯性运动状态时有“被动性”(无外力情况下),而在非惯性运动状态时(有外力的情况下)又有了要改变非惯性运动状态的主动性(能动性)。这才叫对立统一。然而人们只注意了“被动性”方面。
(3)自由落体运动(包括抛体运动),都是广义惯性运动。
(4)把物体的惯性问题与坐标系什么参考系结合起来,叫什么惯性系,这是把“关系”直接赋予了属性的逻辑错误。要把运动状态本身与为了描述运动状态的参考系问题分离开来。
(5)静止在空间中的卫星才可以用“引力定律”计算其“力”,但此力不是“引力”,是其卫星的广义惯性力,此广义惯性力的反作用力的外力应该是某一个阻止卫星下落的另一个实在“力”。宇宙中的天体运动都是广义惯性运动。而与其广义惯性力抗衡的外力,除了碰撞和爆炸等外力外,几乎没有恒定的其它外力与之进行“强”相互作用。所以,计算正在公转运动的行星“引力”是错误的。
(6)当我说“战斗机飞行员已经体验了等效原理的所有内涵”时,有人也许会问:战斗机是在地球的重力场内飞行的,重力场是大范围的ρ非均匀空间,而大范围的ρ均匀空间的等效原理的情况没有算在内,怎么能说战斗机飞行员已经体验了等效原理的所有内涵?回答是:因为地面的水平方向的空间也是ρ均匀空间,重力等势面是二维ρ均匀空间。
(7)像这样的提法:“一个观察者,当他的加速度计读数为零时,他不能辨别他是否在外层空间相对于恒星匀速运动,还是在地球重力场中自由降落因而相对于恒星作加速运动。”这是马赫哲学的提法。把恒星当作了“绝对参考系”。这是抽象的理论与具体问题分不开的错误,容易造成思维的混乱。
(8)之所以我说可能仅在恒星、大行星及部分的整体性的卫星周围存在重力场。也是考虑了重力场内的天体的广义惯性运动一般都是圆锥曲线运动,而拿不准星团、星系内的天体的运动是否是属于这样的运动,从而也拿不准其是否也具有重力场。但从星系内的星体的运动速度角度来看,不符合“引力”定律。因此,我倾向于星团和星系空间不是“重力场空间”的认识。它们仅是类似“流体力学旋涡效应”。接着,就不得不说星系内的真空空间不是“真空”。无论怎样的“真空”,在星系这样大空间范围内,仍然有“流体效应”。
所以,以“引力”为原因来描述天体起源过程,真是牵强附会的提法,而原始星云各粒子"小质量"之间不会达到足以吸引其它粒子的“能力”。在此方面问题上,笛卡儿的“旋涡理论”也许还有它的存在价值。
(9)当我们说产生重力场是整体天体的功能时,可用导电(直流电)螺线管产生磁场的类比来理解其不依赖中心“质量”的机制。而仅对于重力场本身,我们只要能够测量与描述它就够了。目前热核聚变控制问题是靠外因的控制方式,从整体科学的角度,最好是用系统自我控制方式才能解决。太阳就是自我控制方式的热核聚变,重力场的产生机制问题的解决,就与此相关。
(10)天狼星的视曲线的运动被解释为有密度非常大的伴星(白矮星)存在。掉过来的看法,则是其伴星也许仅是一般类似地球密度的行星,因其公转运动与天狼星无“力”的关系,其视曲线运动需另外解释。
(11)没有发现距离很近,且体积与质量都相等的两个星体互相公转的现象存在。天文观测发现某恒星亮度周期变化,说明有不发光的星体公转,可以类似日食现象。但不能说明是同样的星体。在宇宙中发现的两棵很近的恒星,实际距离很大,并不互为公转。所以,只有一种质量很大的中心星体,而绕其公转的星体体积相对来说又很小的现象存在。这说明如果水星体积与太阳体积同样大,那么会造成内部压强梯度不均匀分布的情况出现,于是,不是被这压强不均匀性所撕裂,也会落到太阳上去。客观上,天体在起源与演化过程中,自然就避免了这种情况的发生。如果水星的体积与太阳体积一样大,则会碎裂,因为会造成其内部的ρ梯度值方向的不平行情况。所以,要保证在重力场内的天体公转的广义惯性运动状态,还有其自身线度及与中心整体天体距离的限制(因为重力场的ρ梯度分布是不均匀的)。星体产生重力场也有尺度的限制,超过了,就爆炸。小了,就不能形成。行星是重力场产生后,有火山不断爆发的阶段及吸收大量星体撞击阶段。
(12)当有人说“苹果自由下落运动是惯性运动”时,有人就反驳道:“重力是万有引力,惯性是运动状态。”这是目前普遍典型的错误认识。“重力是万有引力”的错误自不必说。而“惯性是运动状态”错误认识的实质是把“关系当作了属性”,同时,又是抛开了惯性的另一个在“关系”方面的体现——“力”。
(13)在我的理论里,只有“卡文迪斯实验”与之不相容(实际上与广义相对论也不相容),除了此实验,一切都顺理成章。在此,我完全有理由声明:“卡文迪斯实验”是个伪事实。是一个人云亦云,以讹传讹的伪事实。也许是卡文迪斯本人的测量误差造成的,也可能是卡文迪斯有意的在欺骗公众。这也许是科学历史上最大的“欺骗事件”。如果此实验出现在牛顿发现“万有引力”之前,还有余地承认它。可是,此实验是发生在万有引力被发现之后,是“马后炮”,是“事后诸葛亮”,就有理由否定它了。
(14)有人说:1.新理论必须比现有的理论能解释更多的观察事实;2.新理论必须能够推出现有理论全部成功的结论;3.新理论建立的基础必须比现有的理论的基础更深刻、更基本。又有人说,一个好的理论,至少满足三个条件:1.与实验事实符合;2.能解释现有现象;3.能预测新的现象。
我的惯性力学三定律满足了“新理论必须能够推出现有理论全部成功的结论”条件,因为,该三个定律能推导出牛顿第二三定律、自由落体定律、牛顿引力定律、浮力定律与包含了爱因斯坦的“等效原理”。我的惯性力学三定律本身就满足了“新理论建立的基础必须比现有的理论的基础更深刻、更基本”的条件。我的此三定律与重力场仅产生于整体天体的结论,已经解释了大量的现有现象(也算被我的理论排除的原来理论解释的现象)。我的新理论仅与“卡文迪斯实验”不符合(是伪事实),其它都符合。实际上,“能够预测新的现象”条件是非常重要的条件,也就是说有指导“实践”的意义。我的理论能预测人类能够制造“重力场”,接着,就能够解决“热核控制”等实际问题。
广义相对论似乎也满足该条件,但是,其一,把牛顿力学借口为“近似”,就原封不动地退回到中学教科书中去,没有满足“新理论建立的基础必须比现有的理论的基础更深刻、更基本”的条件;其二,没有“比现有的理论能解释更多的观察事实”;其三,仅预测了太阳的星光偏转现象,而此现象可有另外的解释。其它的预测,如引力波、黑洞等,到目前还没有证实;其四,到目前还没有表现出具有指导实践意义的事例。可以说,广义相对论仅有一句话有意义,就是“物体的同一性质按照不同的处境或表现为‘惯性’,或表现为‘重性’”这句话。也就是这一句话,才有“一字千金”的份量,在科学的历史上有“永垂不朽”的价值,从而,把人类对大自然的认识向前推进了一大步。
广义相对论也许还有一个价值,让许许多多的物理人跟着学了一遍连“数学系”都当作“选修科目”的黎曼几何,不白学,也许还有“书到用时方狠少”的意义。如果黎曼在天有灵,应该对爱因斯坦感激涕零。
体育运动中的力学知识
想必在同学之间一定有很多热爱体育运动的吧,可就在你们挥洒汗水的时候,有没有想到过于物理的联系呢?其实在体育运动和体育训练中的各种运动器械上,都存在着运动者的举、压、推、拉、跑、蹬、踢、打、击、投、弹跳等力的作用。与力有关的这些运动都包含着丰富而深奥的物理知识,如果运动者懂得这些知识并加以运用,必会提高自己的运动成绩和竞技水平。特别是在提倡素质教育、重视学生能力教学的今天,如果我们学生能在课外积极地了解有关的这方面知识,必会提高我们参入运动的积极性。因为这样不仅可以锻炼身体的目的,还可以使我们感到学有所用、学有所得,便于巩固学到的科学文化知识,既然这样又何乐而不为呢。下面我们来谈谈物理知识在体育运动中的一些应用。
一、物理中的“速度”
物理学里,速度是用来反映物体运动快慢的物理量。运动场上的各种运动几乎都有一个速度快慢的问题。所以各种球类运动中的“快攻战术”就是利用速度的定义,快速奔跑、快速移动、摆脱对手、寻求空挡,达到完成“快攻”的目的。所谓“快攻”,就是运动员在运动过程中增大运动速度,即进行加速运动。根据牛顿第二定律,运动员进行加速运动,必须用力;如果运动员在运动过程中匀速运动,则不需要用力。在激烈的比赛中,为了达到目的,某一方队员常常利用这方面的知识来实施战术,俩队员相互配合,采取一队员在运动过程中不断加速,给对方比赛队员施加心理压力,迫使对方队员也加速,消耗对方队员的体力或造成对方队员犯规;而另一队员则进行匀速运动,保存体力,达到最后胜利的目的。例如,2000悉尼奥运会上,我国优秀运动员王丽萍就是靠队友的配合而获得20公理竞走冠军的。
二、物理中的“摩擦力” 物理学里,摩擦力的大小跟压力的大小和接触面的粗糙程度有关。任何物体在运动过程中都要受到摩擦力的作用,参入各种运动的运动者和运动器械也会受到摩擦力的作用。 有些运动项目,为了提高运动者的成绩,需要增大摩擦力。例如,在百米赛跑中,运动者必须穿着底上带有鞋钉的跑鞋;还有体操运动员和举重运动员在比赛之前,总是要在手上抹些镁粉,这样做的目的都是为了增大摩擦力便于提高运动成绩。采取的方法都是增大接触面的粗糙程度来增大摩擦力的。特别是体操运动员在杠上做回环动作时,手握杠又不能太紧(即不能增大手对杠的压力来增大摩擦),所以,在手上抹些镁粉来增大摩擦就显得尤为重要。还有球类运动的一些器械,在制造时,都考虑到了增大摩擦的因素。例如,足球守门员戴的手套、篮球表面上的花纹、乒乓球正胶球拍胶皮上的胶粒长短和反胶球拍胶皮上的粘性度、铅球表面铸造得很粗糙等,都是采取增大接触面的粗糙程度来增大摩擦力的。三、 物理中的“惯性” 任何物体都具有惯性,运动着的物体具有继续保持运动状态的性质。惯性即有利,又有害。运动员在运动场上进行的各种项目的运动,有时要利用惯性,有时又要防止惯性,才能提高运动成绩和竞技水平。例如,跳高、跳远及标枪运动中的助跑过程,且标枪运动员在投标枪之前,手臂要尽量向后伸摆,这些必要的动作都是为了利用惯性。而运动员在跑到百米冲刺的终点时,不能及时停下来,还得逐渐减速地跑一段距离;篮球运动员在进行三步上篮时,投篮的一瞬间不能正对篮环中心,否则由于惯性,反而投不中,而是要落后篮环中心一点投球,这些都是为了防止惯性。还有投掷铁饼的选手,为了提高比赛成绩,在规定的圆圈内做加速旋转动作,目的是为了增大铁饼出手时的初始速度;而铁饼出手后,为了确保自己不离开圆圈内,还得继续转几圈,所以,铁饼选手为了获得好的成绩,即要利用惯性,又要防止惯性。
四、物理中的“功能原理”及“机械能守恒”
所谓功能原理,就是外力对物体做的功等于物体机械能的增加。当没有外力对物体做功时,
物体机械能不变,即机械能守恒。机械能又包括动能、重力势能和弹性势能,且物体在运动
过程中,动能、重力势能和弹性势能可以相互转化。例如,跳水运动员为了获得足够的高度,
在起跳前,必须用力向下蹬跳板,将跳板的弹性势能最终转化为自己的重力势能,便于在空
中做旋转动作。在举重运动中,运动员对杠铃做的功等于增加杠铃的重力势能与增加自己的
重力势能之和。由于杠铃比较重,运动员要想获得成功,一般要经过三个阶段。在第二个阶
段中,由于杠铃增加的高度最大,运动员需做的功也最多,难度当然最大。所以,我们经常
看到,运动员在完成第二个阶段的瞬间,都要将双脚前后分开,这样做的目的是为了降低一
点高度,减少一点重力势能的增量,便于杠铃能举过自己的头顶。为了顺利地完成第三个阶
段,双脚也不能分得太开,否则会增加最后阶段的难度。还有跳高、跳远以及各种投掷体的
运动等都含有此方面的知识内容。
物理中的“冲量”及“转动惯量”
物理学里的冲量等于作用在物体上的力与力的作用时间的乘积,作用在物体上的冲量等于动量的改变量。当动量的改变量一定时,如果力的作用时间越长,则作用在物体上的力越小。冲量定律的这种特例在各种体育器械及运动中的应用非常普遍。例如,供跳高运动员着地用的海绵垫、供跳远运动员着地用的沙坑,都是为了延长力的作用时间,从而减小运动员着地时受到的作用力,确保运动员着地时不受损伤。还有在篮球运动中,运动员在接已方队员传过来的篮球时,双手往往要伸前顺着来球的运动方向后移接球。这样做的目的也是为了延长篮球对手的作用力时间,从而减小篮球对手的作用力大小,便于稳稳地接住飞来的篮球。我们还经常看到,在比赛场上,有经验的运动员在场地上摔倒时,会顺势翻滚来延长着地的时间,从而减小地面对人体的作用力。在羽毛球、乒乓球、网球、排球等运动中,选手们在击球的瞬间,球的运动情况都含有冲量定律的内容。 如果物体受到某一力矩的作用,此物体就会围绕某一固定轴旋转。当转动惯量一定时,力矩越大,则旋转越强烈。例如,乒乓球选手拉的弧圈球,都是设法引用球拍给乒乓球以摩擦,对乒乓球施一力矩的作用而产生的。现在,国际乒联决定,改“小球”为“大球”后,由于“大球”的转动惯量比“小球”的转动惯量大,所以,球的旋转没有以前强烈。还有足球运动员射门和排球运动员发球时,为了造成对方球员接球的难度,都会适当地给球一力矩的作用,使球产生旋转。还有铁饼选手在投掷的一瞬间,也要给铁饼一力矩的作用,使铁饼在空中加速旋转,从而提高比赛成绩。 如果正在旋转着的物体,不受力矩的作用,则转动惯量与角加速度的乘积是一恒量。当旋转着的物体转动惯量增大时,物体的旋转就会减慢。跳水运动员落水和体操运动员着地时,都要利用到这方面的知识。因为,他们在空中都要进行旋转动作,跳水运动员要获得最佳的落水效果,落水时,必须尽量避免旋转;而体操运动员要保证着地时立稳,也要避免旋转,所以,他们在入水和着地的瞬间,都采用伸长四肢的办法来增大身体的转动惯量,从而减小旋转速度。确保顺利完成比赛。兴趣,最终达到培养创造性复合型人材和增强全体国民的体能的目标要求。
五、借足球讲解压强知识
对于许多足球爱好者来说,香蕉球一定对他们具有很大的吸引力。确实,在国际赛场上,一场关键的比赛,用香蕉球破门,对于球迷来说是最大的享受了。看球绕过人墙,眼见球就要打飞,突然变向,球拐入了死角,守门员没有反应。那么下面就让我们来研究一下这个美妙的香蕉球吧。首先我们要来了解一下伯努利原理:在水流或气流中,如果速度小,压强就打;速度大,压强就小。球员在击球时,用脚的内侧将球搓起来。而当球在空中旋转时,球的两侧就一边速度大,一边速度小。所以根据伯努利原理,球在空中就会受到一个横向的压力差,而在水平方向上,压力的方向与球的运动方向相反,在空中不断在水平方向上减速。所以在观众的眼中,看到的先是按击出方向运动,然后在空中变线,从而出现了美丽的香蕉球。懂了这个道理,也许你也能踢出香蕉球呢!
通过上文的分析,我想同学们一定对力学在运动中的应用有了初步认识吧,但上面的知识只是九牛一毛,希望同学们能在课外积极了解这些知识,这样既能提高自己的竞技水平,同样能锻炼身体,提高效率,在以后的学习生活中助我们一臂之力。
世界上有确定的东西吗?
正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。
海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”
1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,
向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。
据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。
这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。
既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。
从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。
参考文献:
张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页
李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页
资料来源:
这是我们老师给的参考题目,至于资料百度一下就可以了。
参考题目:
1. 惯性质量与引力质量相等的实验验证。
2. 谈谈伽利略的相对性原理。
3. 惯性系与非惯性系中物理学规律之间联系的讨论。
4. 生活中的惯性力,科里奥利力,举例说明自然界中的科里奥利效应。
5. 谈谈角动量守恒及其应用。
6. 质心参照系的利用。
7. 论述“嫦娥一号”奔月的主要过程及其其中的物理学原理。
8. 谈谈刚体中的打击中心问题。
9. 谈谈冰箱的工作原理及如何实现冰箱节能。
10. 论述汽车发动机与热力学的关系。
11. 论述燃煤电厂效率提高的发展趋势。
12. 热力学第一定律及其思考。
13. 热力学第二定律及其思考。
14. 举例说明永动机是不可能制成的。
15. 从热力学第二定律的角度论述生命活动的本质。
16. 谈谈日常生活中的混沌现象。
17. 举例说明乐器中的物理学。
18. 谈谈共振的应用及其危害。
19. 谈谈阻尼振动的应用及其危害。
20. 举例说明多普勒效应及其应用。
21. 杨氏双缝干涉实验的结果及其思考。
22. 谈谈等厚干涉及其应用。
23. 谈谈偏振光的产生及其应用。
24. 全息照相在光学工程中的应用。
25. 物理与新技术(与自己的专业相结合,比如:“物理与航天技术”、“物理与光学技术”、“物理与发动机” 、“物理与生命活动”等)。
希望对楼主有帮助。。