在日常学习、工作生活中,大家都接触过论文吧,通过论文写作可以培养我们的科学研究能力。还是对论文一筹莫展吗?以下是我为大家整理的数学论文作文4篇,希望对大家有所帮助。
一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。
算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000
答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.
简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!
今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。
”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5/1=5
30*5=150(小时)200小时>150小时
还可以这样算:
5/1=5
200/5=40(小时)30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:
5/200*100=0.025*100=2.5
1/30*100≈0.033*100=3.3
3.3>2.5
或者这样算:
200/5*100=40*100=4000
30/1*100=30*100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:“生活处处有数学”这个道理。
生活中,处处有数学,只要你善于观察,就一定能发现它蕴含的无穷奥秘。
我很喜欢数学,平常很爱探究,数学是我生活中的'一部分,也是我唯一的爱好。我梦想就是成为一名数学家,成为一名伟大的数学家。
在四年级时,数学老师周老师教了我们商不变的规律,刚学习这个规律的我感到很好奇,有一些不相信。
商不变的规律就是:在除法中,被除数和除数同时扩大若干倍或缩小若干倍,商不会变,但余数会变。
我围绕着这个规律展开了实验。我用40和6两个数进行了实验。40除以6等于6,余数是4,。我将40和6同时扩大相同的倍数100,变成4000除以600,我计算了一下,商是6,余数是400,它的商没有变,余数扩大了相同的倍数100,变成了400。我吃了一惊,商居然真的没有变,还是6,而余数却变了。
我还是有一些不相信,又用50和4试验了一下。50除以4等于12,商是2。这次我将50和4同时扩大到原来的2倍,变成100和8,100除以8,商是12,余数是4。商还是没有变,但余数扩大了相同的倍数2倍,变成了4。我彻彻底底的震惊了,再一次体会到了数学的神奇。
五年级时,我又接触到了方程,方程其实就是含有未知数的等式。在学习商不变的规律后,我再次对方程产生了浓厚的兴趣。我找了许多方程来做,并学会从中发现规律。
3x?2=302计算方法是:先将302减去2,变成3x=302-2,那么3x=300,再将300除以3,变成x=300÷3,结果变成x=100。没想到只需几步就可以将这个方程解开,得到答案。
我又找了一个方程来计算。5x-6÷3=38,先将6÷3算出变成5x-2=38,再将38?2等于40,式子就变成了5x=40,最后将40除以5等于8,结果就是x=8。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
让我们一起来探索数学的奥秘吧!
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
怎么样,数学是不是很重要? 所以,我要提醒你一定要学好数学哦!
这是我的博客中的一篇文,复制给你做参考:
自然数的因数
我们知道,每个自然数(不包括0和1)都有2个以上的因数,因数最少的是质数(也叫素数),质数的因数是1和它本身。非质数的自然数也叫合数,它们都含有3个以上(含3个)的因数。
1、怎样求一个数有多少个因数?
对于一个已知的自然数,要求出它有多少个因数,可用下列方法:
首先将这个已知数分解质因数,将此数化成几个质数幂的连乘形式,然后把这些质数的指数分别加一,再相乘,求出来的积就是我们要的结果。
例如:求360有多少个因数。
因为360分解质因数可表示为:360=2^3×3^2×5,2、3、5的指数分别是3、2、1,这样360的因数个数可这样计算出:
(3+1)(2+1)(1+1)=24个。
我们知道,360的因数有 1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360正好24个,可见上述计算正确。
2、怎样求出有n个因数的最小自然数?
同样拥有n个(n为确定的数)因数的自然数可以有多个不同的数,如何求出这些数中的最小数?
这是与上一个问题相反的要求,是上一题的逆运算。
比如求有24个因数的最小数是多少?
根据上一问题解决过程的启示,可以这样做,先将24分解因式,把24表示成几个数连乘积的形式,再把这几个数各减去1,作为质数2、3、5、7......的指数,求出这些带指数的数连乘积,试算出最小数即可。具体做法是:
因为:24=4×6, 24=3×8, 24=4×3×2,
现在分别以这三种表示法试求出目标数x:
(1)、24=4×6,4-1=3,6-1=5
X=2^5×3^3=864
(2)、24=3×8,3-1=2,8-1=7
X=2^7×3^2=1152
(3)24=4×3×2,4-1=3, 3-1=2, 2-1=1
X=2^3×3^2×5=360
综合(1)、(2)、(3)可知360是有24个因数的最小数。
可以自己删减删减。
数学论文
一、数学技能的含义及作用
技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。
数学技能在数学学习中的作用可概括为以下几个方面:
第一,数学技能的形成有助于数学知识的理解和掌握;
第二,数学技能的形成可以进一步巩固数学知识;
第三,数学技能的形成有助于数学问题的解决;
第四,数学技能的形成可以促进数学能力的发展;
第五,数学技能的形成有助于激发学生的学习兴趣;
第六,调动他们的学习积极性。
二、数学技能的分类
小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。
l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。
2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。
第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。
第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。
第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。
三、数学技能的形成过程
1.数学操作技能的形成过程。
数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。
(1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。
(2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。
(3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。
(4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。
2.数学心智技能的形成过程。
关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。
(1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。
(2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。
(3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。
(4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。
四、数学技能的学习方法
1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。
2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷12.5,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效
上幼儿园的时候,老师就开始教授数字,鸡蛋形状的0 ,火柴棍一样的1,水上游的鸭子的2,发育畸形的耳朵3,三角小红旗招展的4,称钩子的5,体育老师的哨子6,农民的锄头7,七个葫芦娃的8,一把勺子的9,是每个小孩的必须课程。
今天已经少有孩子知道火柴棍是个什么样的玩意,杆秤之后有磅秤电子称地秤,七个葫芦娃早就被名侦探柯南虹猫蓝兔喜羊羊和大灰狼取代,农民用的也都是大中小型的拖拉机收割机。
为什么0 就只能像鸡蛋,不能像鸭蛋鹅蛋鸵鸟蛋?为什么2只能是鸭子,不能是大雁天鹅和鸳鸯?为什么 4必须是三角的小红旗,不能是小蓝旗小白旗么?为什么8就不像老爸夏天出门戴的太阳镜?关于数字的十万个为什么我不能回答给朋友的小女儿。因为自己一向不曾有过正形,实在不是模范形象,误人子弟是绝对不可饶恕的大过。
被教育着开始数数,从1到100,三两岁的年纪能够单独的完成了,厉害!父母的脸面都从这个位十位百位的数字上获得了。
上到小学就开始学习加减乘除。个位数的计算用两只手的指头就足以应付了。
苹果和糖果的分配是最常用的例子,谁取得多少,失去多少,孩子的心里就有了计算。高明一点的老师会讲到礼让的故事,却不是每一个孩子都在心里滋长那样品格。毕竟还有别人教育着他们:一旦你的失去了,就成为别人的了。
大一点的就把数手指头变成了数指关节,顺便就开始了人体构造的第一课学习。手脚都不够用的时候就是黄豆花生一类的工具,但经常性的缺失,因为它们的普遍功用是作为食物。
之后是乘除。九九乘法表是关于数字最普遍最常用的规律,必须要倒背如流才能顺畅的使用,正用是乘,反用是除。颠倒的算计中,有无相生的哲学原理的体现。古人智慧可嘉。
加法的倍数运算,一斤白菜三毛六,三斤白菜多少钱?还有四斤呢?五斤呢?六斤呢?春晚出来的著名的数学运算,把已经上初中的妹妹给折腾了一把,口算心算都难一笔清。佩服那个孩子耳濡目染的彻底!
到菜市场买菜她总是可以拿个计算器的,找对了数字,按几下,出来的数值又快又准。
你要拿计算器上菜市场买菜?
有人还拿手提电子秤呢?要不去超市也行,直接称完价钱就出来了。何必劳神费心的去计算呢?
开始懂得什么是平均分配。1/X,就是把一个完整的事物平均的分为多少分之后的其中一份。这个X越大,这一份就越小;X越小,这一份就越大。无赖的想法就是,干脆不要分配最好了,那样的最大!
一个苹果可以很容易平均分成2、4、8、16份,却很难被公平的分成3、6、9或者5、7 份。看似公平的体制,却有除不尽的烦恼。余数,做什么用呢?做公用基金或者变成小数点后的数字。
原来数字不仅仅是整的,还可以带零头的,一块二毛九分钱的肥皂。给他一块三就该找五分。可是一分的货币不流通了,那他就算了吧。如果是一块二毛四分的话,我只要给一块二毛就好了。这个叫做四舍五入。真是个好方法,模糊具体的数额。每次的白白被超市占了一 分钱的便宜。
当一个男人问我年龄的时候,我告诉他说四舍五入的话今年二十岁,明年三十岁。哈哈,那个男人说我相当的幽默。幽默是需要智慧的。当然也可以用在个人所得税的交纳上,多交或者少交,重点就在于如何计算。偷税漏税违法,合理避税没有什么不可以。
除了口算心算,中国最有名的一种计算方法是珠算。古人延续了几千年的计算方法,据说计算机得以发明,其中就有珠算的功劳。上二下五的珠子。一样的珠子却代表不一样的数值,一或者五。一边背九九乘法表,一边拨弄珠子,珠子是很好的计数工具。除了啪啪清脆的响声之外,还必须要相关的口诀,谁能记得那许多。
一个孩子脑子灵活,手指头僵硬的时候是不能合理的应用这样的工具的,一颗珠子就是一次运算,上下增减都是问题。太难!
亿、万亿、兆、万兆,似乎是不是常用的数值,经常被用来做天文学上的运算,计算行星、恒星的距离,黑洞、星云的宽窄,一个光年带的0就够把手写到酸的数值,它们叫做天文数字,庞大得遥远的于生活无关。至今有很多的人都不知道这个数值是怎样得出的。或者是计算机的运行速度概念表达,一般人谁能分清每分钟运行亿次或者万亿次的差别呢?或者用于计算国民GDP,分配到国民们各自的头上也不过最多成千上万。
米、分米、厘米、毫米、微米、纳米……千克、克、毫克、微克…关于10的10倍甚至百倍千倍的乘积或分割。单位!不是老爸上班的地方,而是一种关于某种事物的大小概念。换算,大小的变化的同一实质。
只是恶狠狠的多了一堆扰人头疼的0,不管是在小数点前还是小数点后,带着裂变或聚变的威力来叫人头疼眼花。
加减乘除的混合运算,比如每天买的不同菜色的不同重量之后总共花去的人民币,有较强数字概念的人都是能够轻松的在头脑中完成的。可是几乎所有的财会人员都会一笔一笔的记录在案。
加上大中小的括号,难度无疑增加了,再一次在先乘除后加减的逻辑上增加另一个逻辑,先括号里的在括号外的,而就括号的区分也是有的,先大的还是先小的,这是一个问题!就是逻辑的不断的叠加,最后得到的是一个头昏脑胀的孩子和一个费尽周折也不一定正确的数值。要多大的一个系统才能够用到一个带上大中小括号和加减乘除同时存在的一个运算?答案只有一个,航天工程!
假想设定的数值X、Y、Z,由已知到未知最后使未知成为确知。一元两次的方程式,非常精明的计算。只需要一个已知就可以得出两个甚至三个的未知!赞!算是见微知著,学会这个就可以做成福而摩斯一样的侦探了,却只是用来计算两辆不同车速的汽车的行驶和一家三代中爷爷、爸爸和儿子具体的年龄。开个车试试可以么?直接用问的或者看看户口本也应该是可以得到答案的吧?
以上是当年某人学习的小学的数学的经历,在至今的生活中绰绰有余,还有许多不曾使用到的地方,例如亲眼所见带0 最多的数值就父母在购置房屋时拿出的有5个0的存折;身高体重的测量最多只是精确到毫米和克而已,纳米只是新闻报道的一个高精尖的科学技术的代号;带括号的计算除了在课堂上被老师强制的要求时勉强做过几次之外,生活中无论是计算生活费还是清理银行存款都没有用到过。
都说数学是自然科学王冠上的明珠,数字必然就是构成这颗明珠的化合物,碳酸钴二氧化三铁都可以让这个明珠熠熠生辉。而我们只是需要一些简单的计算,获得一些简单的数值,无须它光彩耀人,只要能够质朴无华的用得上而已。