一下是我整理的几则数学小故事,可以用来做数学报的素材!大家一起学习吧!
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。
丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
阿拉伯数字的由来
小明是个喜欢问问题的孩子。有一天,他对0-9这几个数字产生了兴趣:为什么它们被称为“阿拉伯数字”呢?
于是他就去问他的当数学老师的妈妈:“0-9既然叫‘阿拉伯数字’,那么肯定是阿拉伯人发明的了,妈妈对吗?”
妈妈摇摇头,说:“阿拉伯数字实际是印度人发明的。大约在1500年以前,印度人就已经用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就可以写成。后来,由于各国之间的接触,这些数字传入阿拉伯,阿拉伯人觉得它们很简单,于是在自己的国家开始广泛使用并且把他传到全欧洲。就这样,它们慢慢地就成了我们今天使用的数字。因为阿拉伯人在传播这种数字方面,起的作用很大,人们也就习惯了称这种数字为‘阿拉伯数字’。”
小明高兴地说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”小明和妈妈都笑了。
儿歌比赛
数学学校举行儿歌比赛,大象老师做裁判。
小猴聪聪第一个举手。聪聪清了清嗓子,开始朗诵道:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”
聪聪刚刚说完,小狗佳佳兴起手,说:“我的儿歌和聪聪的很相似。”大象老师说:“好!那我们听听你的儿歌。”佳佳大方地走上台,朗诵道:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”
大家为他们的精彩表演鼓掌。大象老师说:“他们的儿歌主我们明白了进位加法和退位减法,所以,我们觉得他们两个人都得冠军,好不好?”大家同意老师的意见,高兴的鼓掌祝贺他们俩。
日记本引他走向成才路
雅各布·伯努利是欧洲著名的数学家,他于1654年出生在瑞士的巴塞尔。
从13岁开始,雅各布悄悄地写起了日记,他把自己在学习中所取得的收获及遇到的难题,统统记了下来。翻开他的日记,有阅读书报杂志的体会,有与别人讨论数学问题时得到的启发,有解决数学难题突发的奇想……日记成了雅各布学习数学的问题集,解决问题的思路集、办法集,研究数学问题的收获集、成果集。
雅各布对数学的执著追求,终于使他走上了研究数学的道路。他33岁就成为巴塞尔大学数学教授。
小熊开店
小熊不喜欢学习,。一天,它忽然觉得做生意挺有意思,于是在学校旁边开了一个水果店。小兔和小猴是它的同学,它们商量好,要整整这个不爱上学的懒家伙。
它们来到小熊的水果店。
“桃子怎么卖呀?”小猴问。
“第一筐里6元3公斤,第二筐里6元2公斤。”小熊说。
小猴又说:“如果我从两筐拿5公斤,就要付你12元,对吗?”
小熊点点头。
“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,是不是?”小猴说。
“正是,正是。”小熊讲。
于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。
到了晚上,小熊结账,怎么算怎么亏本。它想,除了小猴,没有其他人来买过东西呀。第二天,小兔来找小熊,小熊把情况和小兔说了。小兔笑着说:“这都是因为你学习不好,我们来教训你一下。”说完,就把少给的钱补给了小熊。
小熊惭愧地低下了头。从此以后,小熊每天上课都认真。它们三个成了好朋友。
数学博士的“错误”
时间王国的全体国民刚刚举行完一次数学考试,时间博士邀请数学王国的对对博士来做阅卷指导。对对博士高兴地拿起一份试卷,可是他越看越生气,这是为什么呢?原来他在检查试卷的时候,发现所有人的试题都做错了,例如:
7+6=1;6+6=0;3-7=8
对对博士把问题反映给时间博士,时间博士看着试卷,笑着对他说:“博士,他们做的并没有错误。因为在时间王国中晚上12点就是0点,所以6=6=0;7点钟再过6小时是13点,也就是1点,即7+6=1;3-7就是表示3点钟前7个小时是8点钟”
对对博士一拍脑袋,说:“对呀!哎,看来我这个博士还得继续学习啊。”
事故讲完了,小朋友们,你认识钟表吗?你会计算时间吗?让我们一起来学习“时间”。
在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱……
下面就是一个小故事,是一个数字之间的故事。
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”
0的兄弟姐妹们一口齐声的说:“好啊。”
8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”
老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”
在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?
华罗庚的故事
1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志.看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑.最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员.”
熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才.他当即做出决定,将华罗庚请到清华大学来.
从此,华罗庚就成为清华大学数学系助理员.在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间.说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯.他当然没有什么特异功能,只是头脑中一种逻辑思维活动.他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题.碰到难处,再翻身下床,打开书看一会儿.就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了.华罗庚被人们看成是不寻常的助理员.
第二年,他的论文开始在国外著名的数学杂志陆续发表.清华大学破了先例,决定把只有初中学历的华罗庚提升为助教.
几年之后,华罗庚被保送到英国剑桥大学留学.可是他不愿读博士学位,只求做个访问学者.因为做访问学者可以冲破束缚,同时攻读七、八门学科.他说:“我到英国,是为了求学问,不是为了得学位的.”
华罗庚没有拿到博士学位.在剑桥的两年内,他写了 20 篇论文.论水平,每一篇都可以拿到一个博士学位.其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”.
华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业.他抛弃了世人所追求的金钱、名利、地位.最终,他的事业成功了.
华罗庚把科学研究与实际应用紧密结合起来.华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献.
.对不起,只能这么短了.
数学手抄报的故事内容:
小欧拉智改羊圈
小欧拉的爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米。父亲感到很为难,小欧拉却向父亲说,只有稍稍移动一下羊圈的桩子就行了。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。后来,欧拉成为了数学史上著名的数学家
该数学故事全文内容为:
在神秘的数学王国里,胖子“0”与瘦子“1”这两个“小有名气”的数字,常常为了谁重要而争执不休。瞧!今天,这两个小冤家狭路相逢,彼此之间又展开了一场舌战。
瘦子“1”抢先发言:“哼!胖胖的‘0’,你有什么了不起?就像100,如果没有我这个瘦子‘1’,你这两个胖‘0’有什么用?”
胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?”
“哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!‘1+0’还不等于我本身,你哪点儿派得上用场啦?”
“去!‘1×0’结果也还不是我,你‘1’不也同样没用!”“0”针锋相对。
“你……”“1”顿了顿,随机应变道,“不管怎么说,你‘0’就是表示什么也没有!”
“这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?再比如,直尺上没有我作为起点,哪有你‘1’呢?”
“再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”“1”信心十足地说。听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个‘0’来占位,你可怎么办?”
眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。这时,“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,‘1’、‘0’有哪个数比我大?”“这……”胖子“0”、瘦子“1”哑口无言。
这时,“9”才心平气和地说:“‘1’、‘0’,其实,只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。“这才对嘛!团结的力量才是最重要的!”“9”语重心长地说。
扩展资料:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分。
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。
数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。