您当前的位置:首页 > 发表论文>论文发表

智能控制系统设计论文

2023-12-06 09:03 来源:学术参考网 作者:未知

智能控制系统设计论文

基于PLC的智能温室控制系统的设计

摘要:温室环境系统是一个非线性、时变、滞后复杂大系统,难以建立系统的数学模型,采用常规的控制方法难以获得满意的静、动
态性能。根据温室环境控制的特点,设计了一个基于PLC的智能温室控制系统。
关键谝:PLC;智能控制:温室控制
智能温室系统是近年逐步发展起来的一种资源节约型高
效设施农业技术。本文在吸收发达国家高科技温室生产技术
的基础上,对温室温度、湿度、CO,浓度和光照等环境因子控
制技术进行研究,设计了一种基于PLC的智能温室控制系统。
1智能温室控制算法的研究
1.1温室环境的主要特点
温室环境系统是一个复杂的大系统,建立精确的控制模
型很难实现。由于作物对环境各气候因子的要求并不是特别
的精确,而是一个模糊区间,比如作物对温度的要求,只要温
度在某一时间段在某一区间内,该作物就能很好地生长,因
此,也没有必要将各种参数进行精确控制。温室气候环境作
为计算机控制系统的控制对象,有以下特点:非线性系统、分
布参数系统、时变系统、时延系统、多变量藕合系统。
1.2智能温室控制对象微分方程
智能温室温度微分方程为:
式中,为智能温室的放大系数;为智能温室的时间常数;
为智能温室内外干扰热量换算成送风温度的变化量;为智
能恒温室室内温度。
2系统总体结构与硬件设计
2.1系统总体结构
2.1.1控制系统设计目标
温室控制系统是依据室内外装设的温度传感器、湿度传
感器、光照传感器、CO,传感器、室外气象站等采集或观测的
温室内的室内外的温度、湿度、光照强度、CO,浓度等环境参
数信息,通过控制设备对温室保温被、通风窗、遮阳网、喷滴灌
等驱动/执行机构的控制,对温室环境气候和灌溉施肥进行
调节控制以达到栽培作物生长发育的需要,为作物生长发育
提供最适宜的生态环境,以大幅度提高作物的产量和品质。
2.1.2控制模式
以时间为基准的变温管理。根据一天中时间的变化实行
变温管理,根据作物的生长需要将l天分成4个时间段,4个时
间段中根据不同的控温要求对温室进行控制。1天中4个时间
段的分段方法用户可以灵活的更改,而且4个时间段中的温度
设定值用户也可以设定修改。
不同季节的控制模式不同,只是自动控制系统启动的调
节机构不相同,但不同季节的控制目的是相同的,即将环境参
数调控到设定的参数附近。随着季节的变化,以及随作物生
长阶段的变化,各时间段所需要的温度也是变化的,这时可通
过修改设定温度值来调整温室的温度控制目标。
2.1-3控制方案
本系统采用自动与手动互相切换控制两种方式来实现对
温室的自动控制,提高设备运行的可靠性。在运行时可通过
按钮对这两种控制方式进行切换。手动控制简单可靠,由继
电器、接触器、按钮、限位开关等电气元器件组成。自动控制
模式采用计算机自动控制。通过传感器对环境因子进行监测,
并对其设定上限和下限值,当检测到某一值超过设定值,便发
出信号自动对驱动设备进行开启和关闭,从而使温室环境因
子控制在设定的范围内。其运行成本较低,可大大节约劳动
力,降低劳动者的劳动强度。
2.2系统的硬件组成
为了实现智能温室的环境监控,本设计建立了温室环境
控制参数的长时间在线计算机自动控制系统。实现了温室内
温度、湿度、CO,浓度、光照强度等参数的长期监测。并可根据
智能温室温湿度的需求,对天窗、侧窗、降温湿风扇、风机、湿
帘、内外遮阳网等设备自动控制。采用计算机作为上位机安装
有组态t6.02监控软件,能将数据汇总、显示、记录、自动形成
数据库,并实现了温室调控设备的自动设置与远程监控。为了
确保系统的可靠性,温室设备的控制采用手动/自动切换方
式,即在某些特殊情况下系统可以切换成手动,使用灵活方
便。
3系统的软件设计
3.1温室控制系统PLC软件的设计
根据基本要求和技术要求列出以下几点:(1)防止接点误
动作:可利用自锁电路加以解决;(2)系统自诊断功能:PIG本
身具有此项功能;(3)风机控制:温室设有一组风机,能同时启
动与停止,当温室内的温度超出预定值时,受PLC的控制先是
4个侧窗自动打开,延时5s后风机启动,再延时5s后湿帘水泵
启动,从而使温室的温度降低;(4)侧窗控制:温室中设有4个
侧窗,侧窗受电机控制,通过电机限位的设定来控制侧窗行
程。解决方法类似上一点,但考虑到程序的精炼性,可配合
PGI的中断功能命令加以解决;(5)系统自动/手动控制:可利
用一个开关量作为PLC的输入信号,实现控制程序的转换;
(6)湿帘泵控制;(7)遮阳网控制;(8)CO,补气(控制;(9)补光灯控制;(1O)可扩展性:在PLC中预留一定的存
储空间和端口即可解决。
3.2控制系统软件设计
系统中对风扇、天窗、侧窗、环流风机、遮阳幕和湿帘泵的
控制是通过PLC发出开关指令,通过交流接触器控制相关机
构的启停。由于PLC检测系统具有较高的灵敏度,能够把温
室内的扰动快速反应出来,同时由于温室较大的传递滞后,执
行机构动作频繁,从而影响使用寿命。为此,在程序中加有时
间可调的延时模块,使用时可根据具体情况调整延时,使控制
效果达到最佳。
3.3系统的组态监控软件的设计
组态软件是可从可编程控制器以及各种数据采集卡等设
备中实时采集数据,然后发出控制命令并监控系统运行是否正
常的一种软件包。其主要功能如下:
(1)远程监视功能。它可以通过通讯线远程监视多座温
室的当前状态,包摇‘户外温度、光照强度、风速、风向、雨雪信
号、室内温度、室内湿度、控制器温度、三组独立通风窗的位置
和开关状态、内外遮阳幕的位置和开关状态以及一级二级风
扇、湿帘、微雾、加热器、环流风扇、补光灯、C0,补气阀、水暖
三通阀的状态和多种形式的报警监视,还能监视各灌溉阀的
照强度、风速、室内温度、室内湿度、CO,浓度、水暖温度等全
月的、全周的、全日的和本时段的最大值、最小值和平均值。
(3)温室设备运行记录功能。它能在线记录各温室设备
状态变化时的时间、当前状态和位置、当前目标温度、室内温
度、目标湿度和室内湿度,并能打印输出。
(4)远程设定功能。可以通过通讯线远程修改可编程控
制器的全部设定参数。
(5)生成曲线图功能。它能以平面图或立体图的方式同
时绘制任意时刻的户外温度、光照强度、风速、目标温度、室内
温度、目标湿度、室内湿度、CO,浓度、水暖温度等全年的、全
月的、全周的、全日的变化曲线并打印输出。
4结语
本文通过分析温室执行机构的相应动作对环境因子的影
响,将可编程控制技术、变频技术、组态监控技术和传感器技
术应用于温室控制系统的设计,开发了基于PLC的智能温室
控制系统。圜
状态
(2)数据统计功能。它可以统计任意时刻的户外温度、光[2]

它可以统计任意时刻的户外温度、光
14O
[参考文献】
邓璐娟,张侃谕,龚幼民.智能控制技术在农业工程中的应
用.现代化农业,2003(12):1~3
申茂向等.荷兰设施农业的考察与中国工厂化农业建设的思
考.农业工程学报,2000,16(5)

基于单片机智能温度控制系统毕业设计论文_

建议你去"幸福校园"看看 里面有些样子 你可以参考
第一章 前言
本论文介绍单片机结合DS18B20设计的智能温度控制系统,系统用一种新型的“一总线”可编程数字温度传感器(DS18B20),不需复杂的信号调理电路和A/D转换电路能直接与单片机完成数据采集和处理,实现方便、精度高、功耗低、微型化、抗干扰能力强,可根据不同需要用于各种温度监控及其他各种温度测控系统中。
美国DALLAS最新单线数字温度传感器DS18B20,具有微型化低功耗、高性能、可组网等优点,新的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持 “一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20的测温分辨率较高,DS18B20可直接将温度转化成串行数字信号,因此特别适合和单片机配合使用,直接读取温度数据。目前DS18B20数字温度传感器已经广泛应用于恒温室、粮库、计算机机房。测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,误差为±0.5°C。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20可以程序设定9~12位的分辨率,精度为0.0625°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS18B20使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

机电系统智能控制毕业论文怎么写?结合粮仓温度控制系统好写吗?

  车辆自动变速器及其控制技术和自动巡航控制技术都是智能汽车
非常重要的内容,是目前我国智能汽车发展急需解决的核心技术之一。论文选择在我国很有发展前景的集自动巡航控制和电控机械式自动变速器于一体的复合控制系
统作为研究对象,针对系统研制开发中的一些关键技术难题进行了研究。
    论文主要由六部分内容组成:

  (1)概括介绍了智能汽车及其先进的控制系统的主要内容、现状和发展方向;介绍了目前智能汽车自动变速器的主要类型、发展过程和特点;阐述了AMT国内外
的研究现状和发展趋势及我国AMT目前需要解决的技术问题;介绍了自动巡航控制技术及其目前应用现状;阐述了论文研究方向提出的背景、课题的来源和论文的
主要研究内容以及研究的意义。
  (2)阐述了作者参与研制开发的AMT控制系统具有的基本功能和设计要求;介绍了该系统的结构、主要组成部分和基本工作原
理,并针对AMT系统设计中的几个关键内容:电子控制单元ECU设计;液压动力源设计;离合器、选换挡及节气门控制单元的设计;AMT控制系统的抗干扰设
计;AMT控制系统的故障诊断和容错控制设计,详细阐述了作者的设计思想和研究成果,独立自主地设计和研制出了与桑塔纳2000型轿车适配的、具有自主知
识产权的、便于国产化的AMT硬件系统。目前整个硬件系统已运行四年多时间、汽车在各种路况下已行驶10万多公里,试验证明所设计的硬件系统不仅满足了整
个控制系统的要求,而且具有较高的可靠性和性能价格比。
  (3)阐述了模糊控制和仿人智能控制的基本思想和重要的理论基础知识;分析了他们的特点和适用范
围;概括了模糊控制系统和仿人智能控制系统的设计内容和设计方法;并针对模糊控制的不足之处,将仿人智能控制技术与模糊控制相结合,提出了一种仿人智能模
糊控制器,给出了该控制器的结构和控制算法。仿真分析和实际应用证明,仿人智能模糊控制器的设计不需要对象精确的数学模型,且实现比较简单,实时控制效果
好。它具有响应速度快、超调小、鲁棒性强等优点,具有一定的应用价值。
  (4)针对作者研制的电液式节气门执行器的控制问题进行了研究。分析了被控对象的控
制技术难点;介绍了电液式节气门执行器的控制系统结构,提出了基于多模态的仿人智能控制器,给出了控制器的结构和控制算法,以及在桑塔纳2000样车上获
得的试验测试结果;为了进一步提高电液式节气门执行器位置控制系统的性能,又将作者提出的仿人智能模糊控制应用于该系统,给出了基于查表法的仿人
智<WP=6>能模糊控制器的设计方法和单片机实现的控制程序框图。通过实车试验测试结果和几年的实际应用表明,仿人智能模糊控制技术应用于
电液式节气门执行器的位置控制系统,可以很好地保证执行器的快速性和平稳性,可以获得较高的位置控制精度,完全能够满足工程应用要求。
  (5)阐述了AMT
车辆自动巡航控制的定义和研究AMT车辆自动巡航智能控制技术的重要意义;详细论述了作者参与研制的AMT车辆自动巡航智能控制系统的组成和具有的主要功
能;研究分析了国内外在自动巡航控制方面所采取的一些控制策略及其优缺点,在此基础之上,根据作者研制的具有巡航控制功能的AMT系统的特点以及作者对智
能控制的研究成果,提出了节气门位置控制内环采用仿人智能模糊控制,车速控制外环采用模糊控制的新型双闭环自动巡航智能控制系统。给出了控制系统结构和控
制器的设计方法。实车试验测试结果表明,采用作者提出的双闭环自动巡航智能控制系统,在自动巡航控制过程中,不仅消除了游车现象,而且节气门控制响应快、
无抖动现象,巡航控制的各项功能都能实现并达到较高的控制精度。

  (6)论文的最后一章对全文的主要研究内容进行了总结,介绍了论文的主要研究成果、主要创新点和论文存在的不足以及今后继续研究的方向。

毕业论文 题目:交通灯控制系统设计

交通灯智能控制系统设计1.概述

当前,在世界范围内,一个以微电子技术,计算机和通信技术为先导的,以信息技术和信息产业为中心的信息革命方兴未艾。而计算机技术怎样与实际应用更有效的结合并有效的发挥其作用是科学界最热门的话题,也是当今计算机应用中空前活跃的领域。本文主要从单片机的应用上来实现十字路口交通灯智能化的管理,用以控制过往车辆的正常运作。

2.过程分析

图1是一个十字路口示意图。分别用1、2、3、4表明四个流向的主车道,用A、B、C、P分别表示各主车道的左行车道、直行车道、右行车道以及人行道。用a、b、c、p分别表示左转、直行、右转和人行道的交通信号灯,如图2所示。

交通灯闪亮的过程:

路口1的车直行时的所有指示灯情况为:
3a3b2p绿3c红+4a4b4c 3p全红+1c 绿1a1b4p红+2c绿2a2b1p红

路口2的车直行时的所有指示灯情况为:
4a4b3p绿4c红+ 1a1b1c 4p全红+ 2c绿2a2b1p红+3c绿3a3b2p红

故路口3的车直行时的所有指示灯情况为:
1a1b4p绿1c红+ 2a2b2c 1p全红+3c绿 3a3b2p红+4c 绿4a4b3p红

故路口4的车直行时的所有指示灯情况为:
2a2b1p绿2c红+3c3a3b2p全红+4c绿4a4b3p红+1c绿1a1b4p红
图1:十字路口交通示意图 图2:十字路口通行顺序示意图 图3:十字路口交通指示灯示意图 图4:交通灯控制系统硬件框图 3、硬件设计

本系统硬件上采用AT89C52单片机和可编程并行接口芯片8155,分别控制图2所示的四个组合。AT89C52单片机具有MCS-51内核,片内有8KB Flash、256字节RAM、6个中断源、1个串行口、最高工作频率可达24MHz,完全可以满足本系统的需要 ;与其他控制方法相比,所用器件可以说是比较简单经济的。硬件框图如下: 电路原理图 [PDF]4、软件流程图 图5:交通灯控制系统流程图 5、交通灯控制系统软件
ORG 0000H
LJMP MAIN
ORG 0100H
MAIN:
MOV SP,#60H
; LCALL DIR ;调用日期、时间显示子程序
LOOP:
MOV P1,#0FFH
LJMP TEST
LCALL ROAD1 ;路口1的车直行时各路口灯亮情况
LCALL DLY30s ;延时30秒
MOV P1,#0FFH ;恢复P1口高电平
LCALL RESET ;恢复8155各口为高电平
LCALL YELLOW1 ;路口1的车直行-->路口2的车直行黄灯亮情况
LCALL DLY5s ;延时5秒
LCALL RESET ;恢复8155各口为高电平
MOV P1,#0FFH ;恢复P1口
LCALL ROAD2 ;路口2的车直行时各路口灯亮情况
LCALL DLY30s ;延时30秒
LCALL RESET ;恢复8155A 、B口为高电?
MOV P1,#0FFH ;恢复P1口高电平
LCALL YELLOW2 ;路口2的车直行-->路口3的车直行黄灯亮情况
LCALL DLY5s ;延时5秒
LCALL RESET ;恢复8155A 、B口为高电?
MOV P1,#0FFH ;恢复P1口高电平
LCALL ROAD3 ;路口3的车直行时各路口灯亮情况
LCALL DLY30s ;延时30秒
LCALL RESET ;恢复8155A 、B口为高电?
MOV P1,#0FFH ;恢复P1口高电平
LCALL YELLOW3 ;路口3的车直行-->路口4的车直行黄灯亮情况
LCALL DLY5s ;延时5秒
LCALL RESET ;恢复8155各口为高电平
MOV P1,#0FFH ;恢复P1口高电平
LJMP TEST
LCALL ROAD4 ;路口4的车直行时各路口灯亮情况
LCALL DLY30s ;延时30秒
SETB P1.5 ;恢复P1.5高电平
SETB P1.4 ;恢复P1.4高电平
MOV DPTR,#0FFFFH ;恢复8155各口为高电平
LCALL YELLOW4 ;路口4的车直行-->路口1的车直行黄灯亮情况
LCALL DLY5s ;延时5秒
SETB P1.6 ;恢复P1.6高电平
SETB P1.3 ;恢复P1.3高电平
MOV DPTR,#0FFFFH ;恢复8155各口为高电平
LJMP LOOP
;路口1的车直行时各路口灯亮情况3a3b2p绿3c红+4a4b4c3p全红+1c绿1a1b4p红+2c绿2a2b1p红
ROAD1:
MOV DPTR,#7F00H ;置8155命令口地址;无关位为1)
MOV A,#03H ;A口、B口输出,A口、B口为基本输入输出方式
MOVX @DPTR,A ;写入工作方式控制字
INC DPTR ;指向A口
MOV A,#79H ;1a1b4p红1c绿2a2b1p红
MOVX @DPTR,A
INC DPTR ;指向B口
MOV A,#0E6H ;3a3b2p绿3c红4a4b3p红
MOVX @DPTR,A
MOV P1,#0DEH ;4c红2c绿
RET 6、结语

本系统结构简单,操作方便;可现自动控制,具有一定的智能性;对优化城市交通具有一定的意义。
本设计将各任务进行细分包装,使各任务保持相对独立;能有效改善程序结构,便于模块化处理,使程序的可读性、可维护性和可移植性都得到进一步的提高。
6、参考资料
[1] 韩太林,李红,于林韬;单片机原理及应用(第3版)。电子工业出版社,2005
[2] 刘乐善,欧阳星明,刘学清;微型计算机接口技术及应用。华中理工大学出版社,2003
[3] 胡汉才;单片机原理及其接口技术。清华大学出版社,2000 返回首页关闭本窗口

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页