您当前的位置:首页 > 发表论文>论文发表

数学小论文题目五年级

2023-12-06 01:30 来源:学术参考网 作者:未知

数学小论文题目五年级

数学是整个小学 教育 教学的重点和难点,同时也是很多学生的弱项,小学数学教师如何提高教学质量,激发学生学习兴趣,是贯穿于整个教学中的主要任务。下面我给大家带来小学数学论文题目与选题参考,希望能帮助到大家!

小学数学论文题目

1、小学低年级数学游戏 教学 方法 的案例研究

2、以学习为中心的小学数学教学过程研究

3、激发小学生数学学习兴趣的实践研究

4、农村小学与初中数学教学衔接问题的研究

5、小学低年级学生数学学习兴趣的培养

6、游戏化教学在小学数学教学中的应用与研究

7、激发兴趣对小学生数学探究能力影响的研究

8、小学数学教学中信息技术应用策略研究

9、《几何画板》在小学平面图形上的教学应用研究

10、小学高年级学生数学直觉思维能力培养的研究

11、培养小学第一学段学生计算能力的策略研究

12、交互式电子白板在小学数学教学中的应用研究

13、基于学习共同体的学校教研组建设调查研究

14、小学阶段教师对数学评价任务的认识研究

15、小学低年级数学游戏教学方法的案例研究

16、中美小学阶段数学课程标准比较研究

17、小学 四年级数学 教师课堂提问有效性调查研究

18、农村小学 三年级数学 体验式教学调查与实验探究

19、农村小学与初中数学教学衔接问题的研究

20、小学课堂环境改善的行动研究

21、网络环境下小学数学主题教学模式应用研究

22、培养小学生数学学习兴趣的教学策略研究

23、小学五年级 儿童 数学学习策略干预对改善其执行功能的研究

24、小学生数学 创新思维 的培养

25、促进小学生数学课堂参与的教学策略研究

26、使学生真正成为学习的主人

27、改革课堂教学的着力点

28、谈素质教育在小学数学教学中的实施

29、素质教育与小学数学教育改革

30、浅谈学生数学思维能力的培养

31、浅议表象积累与培养学生的思维能力

32、也谈学生创新意识培养

33、实施创新教学策略 培养学生创新意识

34、谈谈计算教学的改革

35、小学数学数与计算教学的回顾与思考

36、小学数学教材结构的研究与探讨

37、 小学数学应用题的研究

38、 改进教学方法培养创新技能

39、21世纪我国小学数学教育改革展望

40、面向21世纪的小学数学课程改革与发展

41、不拘一格育“鸣凤”

42、使学生真正成为学习的主人

43、 改革课堂教学的着力点

44、谈素质教育在小学数学教学中的实施

45、素质教育与小学数学教育改革

46、 浅谈学生数学思维能力的培养

47、浅议表象积累与培养学生的思维能力

48、也谈学生创新意识培养

49、《9和几的进位加法》教学设计

50、实施创新教学策略 培养学生创新意识

51、10以内加法整理和复习

52、改良“有余数除法计算”教法

53、给学生创新的时间和空间

54、和谐愉悦 主动探索--一年级《统计》教学片断评析

55、小学数学教育--教师之家--教师培训

56、面向21世纪的数学素质及其培养

57、能被3整除的数的特征

58、数学教学中培养学生创造思维能力

59、改进几何初步知识教学的初步探索

最新小学数学论文题目

1、基于DEA-Tobit模型的中国西部农村小学效率研究

2、中美职前小学教师教育中数学课程的比较研究——以上海师范大学和纽约城市大学为例

3、小学教育专业数学教学中应用现代教育技术探索

4、基于数学 文化 观的小学教育专业高等数学课程研究

5、数学史与小学数学教学:历史文化向度的思考——以竖式乘法为例

6、关于小学教育专业初等数论课程例题和练习题的几点思考

7、小学教育专业数学课程整合的策略

8、小学教育专业数学课教学突出专业特点的研究

9、小学教育专业(本科)高数类课程建设和教学改革的思考

10、高师小学数学教育类课程改革的路径选择

11、小学教育专业理科高等数学教学改革实践

12、用初等数论知识巧解小学数学题

13、Floyd算法在中心小学选址上的应用

14、小学教育本科专业数学课程教学研究

15、师范院校小学数学教育专业课程设置的现状及对策研究

16、学教育专业有效高等数学教学的探讨

17、关于小学教育本科专业数学课程目标的思考

18、整合数学类课程,提高小学教育专业本科学生的数学素养

19、小学教育专业数学核心课程体系探析

20、地方高校小学教育专业数学课程改革研究——以湖北科技学院为个例

21、浅谈微积分学习对提高小学数学教师素质的作用

22、基于数学文化观的小学教育专业高等数学课程研究

23、论高等数学与小学数学思维上的相通性

24、高师小学数学微格教学的 反思 与实践

25、新建本科院校小学教育专业数学分析教学初探

26、小学教育专业数学分析课程教学的几点思考

27、初中起点六年制本科小学教育专业(数学方向)高等代数课程的教学探索

28、小学教育专业本科生高等数学学习状况的调查研究

29、师范数学教学与小学数学教师学科知识相关性的调查研究

30、五年制师范小学教育专业《高等代数》教材初探

31、实践取向小学教育理科方向高等代数课程建设的探索与实践优先出版

32、高等数学与小学数学的链接点

33、学习义务教育教学大纲改革小学数学教学

34、小学教育专业微积分教学设计探讨——以《微分的概念》教学设计为例

35、高等数学与小学数学相关性的研究

36、对高师小学教育专业《高等数学》的思考

37、九年义务教育小学数学教学大纲审查说明

38、对小学教育专业数学类课程体系建构的思考

39、小学职前教师概率课程教学研究

40、试论高等数学课程体系改革——以小学教育专业为例

小学生数学论文题目与选题

1、浅议表象积累与培养学生的思维能力

2、浅谈学生创新意识培养

3、实施创新教学策略

4、改良“有余数除法计算”教法 小学数学数与计算教学的回顾与思考

5、小学数学教材结构的研究与探讨

6、小学数学应用题的研究

7、改进教学方法培养创新技能

8、21世纪我国小学数学教育改革展望

9、面向21世纪的小学数学课程改革与发展

10、改革课堂教学的着力点

11、谈素质教育在小学数学教学中的实施

12、素质教育与小学数学教育改革

13、浅谈学生数学思维能力的培养

14、改革课堂教学的着力点

15、谈素质教育在小学数学教学中的实施

16、素质教育与小学数学教育改革

17、浅谈学生数学思维能力的培养

18、浅议表象积累与培养学生的思维能力

19、谈学生创新意识培养

20、实施创新教学策略

21、谈谈计算教学的改革

22、信息技术与小学数学课程整合的研究与实践

23、运用CAI技术,优化素质教育

24、合理运用学具提高数学课堂教学效率

25、略谈“问题解决”与小学数学教学

26、渗透数学思想方法提高学生思维素质

27、引导学生参与教学过程发挥学生的主体作用

28、优化数学课堂练习设计的探索与实践

29、实施“开放性”教学促进学生主体参与

30、数学练习要有趣味性和开放性

31、“五、四、三自主式学法指导”教学模式初探

32、引导学生主动参与教学活动

33、改进几何初步知识教学的初步探索

34、多媒体课件在优化课堂教学中的功能及其策略研究

35、创新从习惯抓起

36、培养学生的创新意识要处理好的几个关系

37、让学生在数学学习中获得持续发展

38、小学数学创新学习的实验与研究

39、小学数学课题教学中学生创新意识的培养

40、浅谈小学数学总复习的“步步反馈,逐层提高”法

41、入情才能入理激情方能启思

42、实施“生活数学”教育培养自主创新能力

43、数学作业批改中巧用评语

44、提高元认知水平培养自学能力

45、“圆的面积”的教案

46、圆柱的认识

47、运用多媒体辅助教学优化数学教学方法

48、组织课堂讨论优化课堂教学

49、重视学生获取知识的思维过程

50、小论文巧算圆的面积

51、倒推转化巧拿硬币

52、联系生活实际提高课堂效率

53、数学教学中如何调动学生的学习积极性

54、根据心理学的理论进行计算法则教学

55、简单应用题教学再探

56、创设情境,培养学生创造个性

57、数学教学中培养学生创造思维能力

58、启动学海搁浅之舟-- 转化数学学习后进生的体会

59、学生“四会”能力的培养

60、联系实际,强化操作,努力优化数学教学

小学数学论文题目与选题参考相关 文章 :

★ 小学数学教学论文参考(2)

★ 小学数学课题研究论文范文

★ 数学教育毕业论文题目参考选题大全

★ 小学数学应用题论文(2)

★ 小学数学课题方案

★ 小学数学教育专业毕业论文

★ 小学数学建模的优秀论文范文

★ 浅谈小学数学教育教学论文

★ 班主任教育论文题目选题大全

小学五年级数学小论文

认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。
五年级数学小论文:勾股定理
1、证明一个三角形是直角三角形
2、用于直角三角形中的相关计算
3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作—— 周髀算经 的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的 九章算术一书 中,勾股定理得到了更加规范的一般性表达。书中的 勾股章 说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是33+4。

适合五年级写的数学小论文一篇(400字 加标题)

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!

有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

模糊不过vncjhvb

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页