您当前的位置:首页 > 发表论文>论文发表

中国煤层气杂志社官网

2023-12-09 01:40 来源:学术参考网 作者:未知

中国煤层气杂志社官网

8.3.1 煤层气产业发展前景

目前,除了井下瓦斯抽放利用已形成一定规模并获相应效益外,地面煤层气勘探开发仍处于探索阶段,尚未进入工业性规模开发阶段。但是,展望未来,我国煤层气产业具有良好的发展前景。

根据最新的预测结果,我国烟煤和无烟煤煤田中,在埋深300~2000 m范围内煤层气资源量为31.46×1012m3。在世界上,前苏联煤层气资源量为(17.0~113.3)×1012m3,美国为(9.7~11.7)×1012m3(据Boyer,et al.,1998),我国煤层气资源量位居世界第二位。由石油天然气系统进行的全国第二轮油气资源评价结果显示,我国有38×1012m3的常规天然气资源量,其中陆地有30×1012m3、海域有8×1012m3(据陈永武,2000);可见,在我国陆地范围内,煤层气资源量比常规天然气还要大。值得指出的是,在计算煤层气资源量时,褐煤、不可采煤层和煤层围岩等均未参与计算。但事实上,褐煤中含有一定量的煤层气,如我国沈北矿区褐煤的气含量Cdaf达6.47cm3/g,美国鲍德河盆地褐煤的气含量(Cdaf)虽只有0.03~2.3cm3/g,由于煤层单层厚度达67 m之巨,因而同样实现了商业性开发;我国褐煤广泛分布,大多煤层厚度都很大,故其中的煤层气资源潜力是不小的;另根据煤矿通风和井下瓦斯抽放实践,在不可采煤层和围岩中的煤层气资源量通常是可采煤层的10%~20%。若将上述3个范畴都包括在内,我国煤层气资源量将会更加巨大。

丰富的资源量为我国煤层气产业的形成和发展提供了雄厚的物质基础和资源保证。

8.3.2 国家能源战略和煤矿安全的需要

随着社会的进步和发展,在21世纪,人们将更加重视可持续发展战略。为实现国民经济持续、快速发展,必须坚持保护和建设生态环境、净化家园,节约和有效地利用能源资源。为此国家将大力推进开发和使用天然气等洁净能源。另外,从国家石油安全战略考虑,必须减少国民经济和人民生活对石油资源的依赖程度,开拓替代能源。我国人均拥有天然气产量不足20 m3,相对发达国家(如英国人均达1300 m3以上)差距很大,天然气消费量在一次能源消费结构中比例小,仅占2%左右,这种局面远远不能适应国民经济的发展和人民生活水平提高的需要。要改变这种被动局面,只靠常规天然气是不能解决问题的,国家在大力加强常规天然气开发的同时,十分重视煤层气这种非常规天然气的开发利用问题。因此,煤层气在未来我国的能源构成中将具有广阔的发展空间。

从煤矿安全生产角度看,煤层气(俗称煤层瓦斯)是煤矿安全生产的最大隐患,常常造成惨重的灾害事故,而且随着矿井的延伸,问题会变得更加严重。在采煤前及采煤过程中,如果从地面预先将煤层气开采出来,就会大大减少矿井瓦斯灾害的隐患;同时还大大降低了采煤过程中甲烷(CH4)这种强烈温室效应气体的排放量,对保护大气环境具有重要作用。

因此,利用地面采气技术开发利用煤层气资源,是解决矿井瓦斯灾害的一条有效途径,特别是对矿井深部,意义更为突出。

8.3.3 国家重视煤层气的开发利用

国家对煤层气资源的开发利用工作十分重视。江泽民总书记为煤层气开发题词:“依靠科技进步,发展煤层气产业,造福人民。”代表了国家和人民对煤层气产业化的殷切期望和高度重视。

1999年,由国土资源部、国家计委等5部委联合下发的《矿产资源储量评审认定办法》文件中,将煤层气与石油、天然气和放射性矿产同样对待,列为由国家统一管理的矿种。自20世纪80年代以来,国家在煤层气管理、产业政策、资源综合利用、价格政策及对外合作勘探开发等方面先后制定并实施了一系列措施和优惠政策(孙茂远,1998),扶持和鼓励煤层气产业的发展。

为了集中各方面的力量,加速我国煤层气资源的开发利用,经国务院批准,于1996年5月组建了中联煤层气有限责任公司。这是一个跨地区、跨行业,集煤层气开采、利用和输送于一体的主干公司,并被授予对外合作进行煤层气勘探、开发和生产的专营权。中联公司的成立,标志着我国煤层气勘探开发已进入了有序发展的全新历史阶段,也为我国煤层气产业的形成和发展提供了强有力的组织保证。

1990年,沈阳市煤气总公司引进美国技术,在辽宁省红阳矿区施工红阳一号煤层气井,进行煤层气资源风险勘探,开创了我国利用现代煤层气技术之先河。此后,国内煤炭、石油、地矿系统各有关单位和中联公司与联合国开发计划署(UNDP)、美国和澳大利亚的有关公司等,在我国各地进行煤层气勘探开发试验工作,先后在柳林、石楼、潘庄及晋城、潘庄及大城建成了6个小型煤层气试验开发井网,均获得工业性气流;由中联公司在枣园地区施工的TL-007 井,单井最高产气量达16000 m3/d。另外,正在建设中的还有新集、淮北、临兴、盘江和丰城等小型试验开发井网。这些小型开发井网起到了试验和示范作用。

小型开发井网显示出在中国利用地面技术开采煤层气的可行性,并积累了大量生产资料和丰富的实践经验,特别是在晋城矿区高变质无烟煤中利用地面垂直井技术采气获得成功,大大拓展了人们的视野。所有这些都为今后大规模工业性开发进行了有效的技术储备。

我国进行地面煤层气勘探开发试验工作已有10余年的历史,但至今仍停留在打勘探井和小型试验开发井网的水平上,未能进入大规模工业性开发利用阶段。究其原因,主要是投入不足和下游工程(特别是输气管道)不配套。美国至1995年底共有6700口煤层气生产井,年产气量达270×108m3;而我国截至1999年底,共打各类煤层气井156口,其中进行过采气试验的井(包括地面垂直井和采动区井)只有99 口;采出的气体全部排空,故煤层气产量为“零”。相比之下,我国煤层气井数量很少,相应的投入就更少。在这种状况下,很难实现煤层气开发利用的实质性突破。

天然气输送管道缺乏是制约我国煤层气发展的重要外部条件。在已有的和正在建设的小型煤层气试验开发井网范围内,除大城地区有地域性的天然气输气管道外,其他地区都没有。这种局面严重地抑制着对煤层气进一步投入和勘探的热情。若能解决煤层气远距离输送的通道问题,必将大大激发人们对煤层气勘探开发投资的热情。

伴随着国家实施西部大开发战略,由塔里木盆地至上海的“西气东输”工程已全面开工。这条长4200 km的输气管道,将经过榆林、长治和淮南等地,这些地区都是煤层气资源条件很好的地区,也是目前我国煤层气勘探开发的热点区域。“西气东输”工程的建设,为相关地区煤层气开发利用提供了一个大发展的良好契机。

8.3.4 开发前景评价

在对各主要地区分别评价和全国总体认识的基础上,按照分层次、分阶段和综合评价的原则,以煤层发育富集程度、煤层气资源量规模、地理位置及市场条件、煤层气勘探开发程度为依据,以含气带为单位,对于开发前景进行了分类评价。

Ⅰ类:指资源条件和经济地理位置俱佳,目前煤层气勘探效果显著,作为优先开发的含气带。此类含气带有沁水、鄂尔多斯盆地东缘、渭北、徐淮和淮南等5个含气带。这5个含气带的煤层气资源量为8.90×1012m3,占全国总资源量的28.29%。

Ⅱ类:指资源量丰富,但地区经济发展相对滞后,或地形条件不利,煤层气勘探工作很少,或煤层气勘探工作尚未开展的含气带,可作为长远规划考虑。这类含气带包括华蓥山、川南、黔北、六盘水、吐-哈、准噶尔南和伊犁等6个含气带。这6个含气带的煤层气资源量为6.81×1012m3,占全国总资源量的21.65%。

Ⅲ类:指资源条件一般,但经济地理位置优势明显,市场需求旺盛,煤层气勘探具有一定基础,煤层气开发利用已取得一定成效的含气带,可根据需要和可能性开展工作。这类含气带包括三江-穆棱河、浑江-辽阳、抚顺、辽西、京唐、冀中平原、豫西、萍乐、湘中、黄陇、鄂尔多斯盆地北部、鄂尔多斯盆地西部、桌-贺和准噶尔东14个含气带。这14个含气带的煤层气资源量为10.60×1012m3,占全国煤层气总资源量的37.73%。

Ⅳ类:为上述各类以外的含气带,资源条件和外部条件较差,在当前技术经济条件下可暂不考虑开发利用其煤层气资源。

在Ⅰ、Ⅱ、Ⅲ类含气带中,优选出沁水盆地北部的阳泉-寿阳地区、沁水盆地南部地区、鄂尔多斯盆地东缘、渭北煤田东段、铁法盆地、大城地区、淮北矿区、淮南矿区、丰城矿区和盘江矿区等有利区块,作为煤层气地面开发的重点工作对象。

建议进一步阅读

1.程裕淇主编.1994.中国区域地质概论.北京:地质出版社

2.赵庆波.2004.中国煤层气地质特征及其勘探新领域.天然气工业,24(5):4~8

3.朱杰,车长波等.2006.我国煤层气产业发展趋势预测.中国矿业,15(11):5~8

4.张新民等.2002.中国煤层气地质与资源评价.北京:科学出版社,65~137、202~219、224~276

煤炭与煤层气综合开发模式研究

一、国外煤层气开发模式

(1)煤矿井下抽采模式。英国、德国等西欧国家煤层气资源量小,吨煤含气量较低,不适合地面开发煤层气,煤层气开发主要采用煤炭采前井下抽采和采空区封闭抽采,无地面开发。

(2)地面开发模式。美国、加拿大、澳大利亚三国煤层气资源丰富,吨煤含气量较高,原生煤发育,主要采用地面煤层气开采模式。2008年,美国地面开发煤层气产量约557×108m3,井下抽采60×108m3;澳大利亚地面开发煤层气年产36×108m3,井下抽采10×108m3;加拿大地面开发煤层气年产86×108m3,井下抽采6×108m3。

二、中国先采气后采煤开发模式设想

(一)现行的煤炭与煤层气开发模式无法根本杜绝瓦斯灾害

煤层气是造成煤矿瓦斯突出和爆炸的罪魁祸首,近10年来,全国每年煤矿安全事故死亡人数大多在5000人以上,占全球煤炭行业死亡人数的80%,其中由瓦斯灾害引起的人员死亡一般在2000人以上,近两年虽有所下降,但仍远高于世界平均水平。

长期以来,煤矿抽排工作主要采取“边掘边抽、边采边抽、采后抽放”等方法治理瓦斯,瓦斯抽采在煤矿开采、掘进一并进行,危险性很大,恶性瓦斯爆炸事故难以根本杜绝,同时导致矿井煤层气抽采率低且抽采瓦斯浓度偏低,利用率低下。

实践证明,传统瓦斯治理方式不能从根本上杜绝瓦斯灾害,随着煤层气地面开发技术的日臻成熟,使得通过地面钻井开发煤层气成为可能,通过地面与井下协同开采,不同阶段各有侧重,最大限度地降低煤矿瓦斯含量,从根本上杜绝煤矿安全事故,最大限度地利用资源,保护环境,可以收到良好的安全效应、资源效应、环境效应和社会效应。

随着煤层气产业的快速发展,煤层气的开发利用也存在两个误区:一是煤矿企业把煤层气当作有害气体对待,抽采煤层气是为了保障煤矿安全生产,忽视了煤层气巨大的资源效应、环境效应和社会效应。二是近几年煤层气开发没有考虑对后续采煤的影响,将对后续的煤炭开采带来安全隐患。因此,如何理顺煤炭生产与煤层气开发利用之间的协调关系,建立井下抽采与地面开发相结合的煤层气开发模式,使煤炭产业和煤层气产业得到协调有序发展是摆在面前的亟待解决的问题。

(二)中国应走井下抽采与地面开发相结合的煤层气开发模式

中国煤层气产业发展应借鉴北美地面开发煤层气和西欧煤矿区井下抽采煤层气的成功经验,依据不同地区的煤层气地质特点和煤炭开采程度,采取煤层气地面开发与井下抽采相结合的道路,是实现中国煤炭与煤层气综合开发利用的有效途径。

因此,中国煤层气与煤炭综合开发应该遵循的原则:一是不同地质条件区别对待,采取不同开采方式,不能一刀切。二是煤矿生产区和煤矿规划区区别对待,煤矿生产区以保安全为主,在确保煤炭安全生产前提下尽可能开发利用煤层气;煤矿规划区严格按照先采气后采煤开发程序执行。

1.不同地质条件区别对待,采取不同开采方式

中国煤层气地质条件复杂,开发难易差别大。地质条件简单,煤体结构保存较好的地区,煤层气地面开发较易;而构造条件复杂,煤体结构遭到严重破坏的地区,煤层气地面开发较难。因此,应根据不同地质条件区别对待。

对吨煤含气量高于6m3/t的煤体结构保存较好的原生结构煤发育的含气区,应先采气后采煤;煤体结构保存较差的构造煤发育区及低含气区,应以井下抽采为主,先抽后采。

2.吨煤含气量高于6m3/t且原生结构煤发育的煤矿生产区和规划区区别对待

煤炭生产区:以保障煤炭生产安全为主,在确保煤炭安全生产前提下尽可能开发利用煤层气,如果安全生产得不到保证,应无条件停止煤矿开采,采用地面钻井及井下采前预抽等方法降低煤层含气量,使之达到安全标准后方可进行煤炭开采。

煤炭规划区:对于含气量大于6m3/t的原生结构煤发育的煤炭规划区,应严格按照先地面采气后井下采煤的开发程序进行,即:①利用保护煤层的地面钻完井的增产措施,预抽原始煤层的煤层气;②开采期抽采,利用采掘工作的超前压力,开采卸压,进行井下煤层气抽采;③采空区及废弃矿井的煤层气抽采,主采煤层开采之后,卸压更为充分,通过地面钻井、埋管及巷道抽采煤层气;④矿井通风煤层气的回收利用(图5-18)。

图5-18 中国煤层气开发模式流程示意图

煤层气地面开发技术

综合国内外煤层气产业化发展历程,煤层气开发领域逐渐扩展,已从最初的中煤阶气肥煤逐步扩展到低煤阶褐煤和高煤阶贫煤、无烟煤;同时,煤层气开发技术也不断发展,初步形成针对不同地质条件下煤层渗透性、力学性质、井壁稳定性的煤层气开发技术系列,针对中国煤层气地质特点(表8-12),逐步探索适合我国煤层气勘探开发的工艺技术。

1.中低煤阶高渗区空气钻井裸眼/洞穴完井开采煤层气技术

低煤阶区煤层渗透率一般大于5×10-3μm2,中煤阶高渗区煤层渗透率也能大于5×10-3μm2。对于此类高渗煤层的煤层气开采,不需压裂改造(低煤阶煤层机械强度低,压裂易形成大量煤粉堵塞割理),可对煤层段裸眼下筛管完井或采用洞穴完井方式,根据煤层在应力发生变化时易坍塌的特点造洞穴,扩大煤层裸露面积,提高单井产量;同时对高渗透煤层采用空气钻井,既可提高钻速,又可有效减小煤层污染。

(1)煤层气空气钻井技术

空气钻井的主要优点是可实现欠平衡钻井,煤层损害小、钻速快、钻井周期短,综合钻井成本低。但空气钻井也存在局限性,并不是任何地层都适用。由于空气不能携带保持井眼稳定的添加剂,所以不能直接用空气钻穿不稳定地层。当钻遇含水层时,岩屑及更细的粉尘会变为段塞。由于液体在环空中出现,会润湿水敏性页岩,这会导致井塌而卡钻。而且湿岩屑会黏附在一起在钻杆外壁上形成泥饼环,不能被空气从环空中带上来,当填充环空时,阻止了空气流动并产生卡钻。而且随着这些间歇的空气大段塞沿着井眼向上运移,它们会堵塞地面设备并且对井壁产生不稳定性效应。因此,空气钻井的关键在于保持井壁的稳定性。

(2)煤层气洞穴完井技术

裸眼洞穴完井作为一种新兴的完井方法,目前在国外如美国圣胡安盆地、粉河盆地的一些煤层气田开发中应用取得了意想不到的良好效果,特别是在高渗透率、超高压的煤层气田开发中得到很好的应用效果。该技术在2007年新疆昌吉地区昌试1井进行了试验,取得了一定的效果。

2.中高煤阶中渗区大井组直井压裂技术

中高煤阶中渗区煤层渗透率一般0.5~5 ×10-3 μm2 ,采用套管射孔加砂压裂提高单井产量效果最明显。其技术关键在于钻大井组压裂后长期、连续抽排,实现大面积降压后,煤层吸附的甲烷气大量解吸而产气。同一口井比未压裂时的产量提高数十倍。适用于沁水盆地南部、鄂尔多斯盆地东南缘、宁武盆地南部、准噶尔盆地东南缘、二连盆地等。

3.中高煤阶多分支水平井技术

该技术主要适用于机械强度高、井壁稳定的中高煤阶含煤区,通过钻多分支井增加煤层裸露面积,沟通天然割理、裂隙,提高单井产量和采收率,效果相当显著。同时,对于低渗(<0.5×10-3μm2)薄煤层(<2m)地区,也是解决单井产量低、经济效益差的主要技术手段。经试验晋城地区樊庄区块羽状水平井单井平均日产气1.6×104m3,潘庄地区单井日产量达10×104m3,比单井直井产量平均提高6~10倍。适用于沁水盆地南部、宁武盆地南部、鄂尔多斯盆地东南缘中高煤阶区。

表8-12 煤层气勘探适用技术分析表

4.U型钻井及水平井钻井技术

钻遇煤层水平段长1~2km,然后与另一直井进行末段两井间穿针对接,比单井直井产量提高2~3倍。适用于沁水盆地南部、宁武盆地南部、鄂尔多斯盆地东南缘、准噶尔盆地东南缘、吐哈盆地三塘湖等中高煤阶区。

5.超短半径水力喷射钻井技术

在煤层中分几段沿360°方向水力喷射钻进100~200m,单井产量可提高2~5倍。适用于沁水盆地南部、鄂尔多斯盆地东南缘、阜新盆地、霍林河盆地、准噶尔盆地东南缘等各类煤阶煤层分布区。

煤层气选区评价参数标准和方法体系

一、煤层气选区评价参数标准的建立

参考国外煤层气目标评价标准、参数及中国煤层气高产富集的基本条件,从中国煤层气勘探开发实际地质条件出发,优选出资源丰度、煤阶、煤层厚度、含气量、地解比、吸附饱和度、煤层原始渗透率、有效地应力、煤层埋深、构造条件及水文地质条件等11项关键参数。

(一)煤层气资源规模及丰度

国家标准《石油天然气资源/储量分类》规定,常规天然气大、中、小型气田的资源量规模分别为大于300×108m3、50×108~300×108m3和小于50×108m3,考虑到煤层气采收率低的事实,上述界限分别设为1000×108m3、200×108~1000×108m3和小于200×108m3。

与煤层气目标资源规模相比,资源丰度的意义更为重要,一井多层或多段开发可以弥补含气量偏低之不足,煤层累厚大而含气量偏低的目标区同样有较大的开发价值。同时,资源丰度作为唯一指标,亦可避免多重指标造成的不协调矛盾,从而可使煤层气区带含气性类型的确定具有唯一性。

煤层气储层与常规储层相比,属低孔隙度、低渗透率、低丰度储层。储量丰度受控于煤层厚度、含气量及煤层密度、灰分含量等因素。具有煤层气开发价值的地区,资源量丰度应在中等以上。如美国圣胡安盆地资源丰度为1.28×108m3/km2,中国沁水煤层气大气田资源丰度大于2.00×108m3/km2,美国黑勇士盆地资源丰度为0.38×108m3/km2,中国鄂尔多斯盆地东部大宁—吉县地区煤层气资源丰度为2.85×108m3/km2,中国宁武盆地南部煤层气资源丰度为2.10×108m3/km2,中国准噶尔盆地南部昌吉地区煤层气资源丰度为1.06×108m3/km2,中国霍林河盆地煤层气资源丰度为2.40×108m3/km2。而目前勘探尚未获得工业性开发的一些盆地或地区,如中国江西丰城、云南恩宏、东北三江—穆棱河盆地、淮南、淮北等地区,煤层气资源丰度均小于0.50×108m3/km2。

对全国29个聚气带(台湾除外)和115个目标区的统计结果表明,资源丰度小于0.50×108m3/km2的聚气带占7%,目标区占12%;资源丰度介于0.5×108~1.5×108m3/km2之间聚气带占57%,目标区占55%;资源丰度大于1.5×108m3/km2的聚气带占36%,目标区占33%。在资源丰度分布直方图(图4-5)上(叶建平等,1998),资源丰度0.5×108m3/km2和1.5×108m3/km2处对应于煤层气区带资源丰度分布曲线上的两个拐点,是资源丰度变化或分布的两条自然分界。由此,分别以资源丰度0.5×108m3/km2和1.5×108m3/km2为界,将煤层气区带划为富气聚气带(目标区)、含气聚气带(目标区)和贫气聚气带(目标区)3种含气类型(表4-2)。

表4-2 中国煤层气目标区资源规模及丰度划分表

图4-5 中国煤层气区带资源丰度累计频率直方图

(二)煤阶

煤的吸附能力随煤阶的变化呈现阶段式、跃变式变化,充分反映出煤化作用控制分子结构、晶体结构和表面物理化学性质,是煤吸附能力的主要控制因素。

因此,由于低煤阶吸附能力较低,决定了低煤阶煤含气量较低,在确定煤层气选区评价标准时低煤阶含气量标准应相应降低,同时煤层厚度标准应相应提高,以弥补含气量的不足(表4-3)。

表4-3 中国不同煤阶划分标准表

(三)煤层厚度

国内外获商业性煤层气流的地区,煤层总厚度均大于10m,主力煤层厚度大于2m,薄煤层分布区的煤层气一般没有商业开采价值。美国圣胡安盆地高产区煤层平均厚15m,低煤阶的粉河盆地煤层厚12~30m;中国沁水煤层气田、鄂尔多斯盆地东部大宁—吉县地区和宁武盆地南部煤层气富集区煤层厚15m左右,韩城地区煤层单层厚度大于1.5 m,准噶尔盆地昌吉地区煤层厚30m左右,霍林河盆地煤层厚度超过50m。

通过统计中国主要煤层气目标区煤层厚度与煤层含气量及单井日产量之间的关系可以得出,中高煤阶煤层单层厚度应大于1.5m,大于5m最有利,低煤阶煤层厚度应大于5m,煤层气开发具有较好效果,大于10m最有利(图4-6、图4-7)。

图4-6 中国中高煤阶煤层厚度与煤层含气量及单井日产气量之间的关系图

图4-7 中国低煤阶煤层厚度与单井日产气量之间的关系图

(四)煤层含气量

国内外已开发的煤层气气田高产区块以较高含气量为主,美国圣胡安、黑勇士盆地重点开发区,平均含气量分别为17.0m3/t、16.6m3/t;中国沁水煤层气田平均为16.0m3/t,最高达30.0m3/t,鄂尔多斯盆地东部大宁—吉县地区煤层含气量平均为16.0m3/t,宁武盆地南部煤层含气量平均为11.0m3/t。而含气量小于8.0m3/t的一些低含气、高饱和地区,如美国尤因塔盆地、粉河盆地单井日产气量也可超过4000m3;中国霍林河盆地煤层含气量平均为5.7m3/t,吸附饱和度超过90%,单井日产气量达到1000m3。

从中国煤层含气量与单井日产量之间的关系可以看出,中高煤阶单井日产气超过1000m3的煤层气井煤层含气量大于5.0m3/t,低煤阶单井日产气超过1000m3的煤层气井煤层含气量大于2.0m3/t。

初步将煤层气选区评价煤层含气量界限中、高煤阶为5.0m3/t以上,大于8.0m3/t最有利,低煤阶煤层含气量大于2.0m3/t,大于4.0m3/t最有利(图4-8)。

图4-8 中国中高煤阶煤层含气量与单井日产气量之间的关系图

(五)煤层气吸附饱和度

吸附饱和度是实测含气量与理论含气量的比值。实测含气量是煤心解吸得到的含气量(包括解吸气、残余气和损失气),需要用绳索式密闭取心技术快速取煤心罐装解吸实测;理论含气量是吸附等温线上与原始地层压力对应的含气量。

一些煤层气高产富集区块均为高饱和度,如圣胡安盆地为90%~98%,黑勇士盆地为92%~99%,低煤阶的粉河盆地超过100%,沁水煤层气田为85%~95%,大宁—吉县地区为80%~100%,宁武盆地南部地区超过85%,昌吉地区为95%~98%,霍林河盆地超过90%;中等饱和度气藏因地解压差大而开采成本高,如鄂尔多斯盆地东部吴堡为60%~80%;低饱和度气藏一般无商业开采价值,如沁水盆地屯留地区,吸附饱和度低于30%,临县—兴县地区也仅为30%~50%。

从中国煤层吸附饱和度与单井日产量之间的关系可以看出,单井日产气超过1000m3的煤层气井煤层吸附饱和度均大于50%,产气效果较好的地区煤层吸附饱和度大于70%。因此初步将煤层气选区评价吸附饱和度界于50%以上,大于70%最有利(图4-9)。

图4-9 中国煤层含气饱和度与单井日产气量之间的关系图

(六)煤层原始渗透率

煤层气与常规天然气显著不同,一是煤层同为源岩和产层,煤层气吸附量与其孔隙内表面积直接相关;二是煤层为低孔、低渗储层,其割理发育程度是影响其渗透率并控制产能的关键因数之一。

煤的原始渗透率无法在实验室测定,一般要在井筒中采用注入/压降试井法或DST试井法测试求取。低渗透率煤层分布区的煤层气一般无开采价值,产能高的地区,煤层原始渗透率一般为高—较高。例如,圣胡安盆地高产区块为1×10-3~50×10-3μm2,属中高渗透率;黑勇士、皮申斯及沁水煤层气田、鄂尔多斯盆地东部柳林地区一般为0.5×10-3~5.0×10-3μm2,为较高渗透率。日产气量1000~1500m3的较低工业性气流区,多为中—低渗透率,如陕西吴堡地区、山西沁水盆地东部屯留地区,渗透率0.1×10-3~0.5×10-3μm2。

从中国煤层渗透率与单井日产气量之间的关系可以看出,单井日产气量超过1000m3的煤层气井煤层原始渗透率要大于0.1×10-3μm2,单井日产气量超过2000m3的煤层气井煤层原始渗透率要大于0.5×10-3μm2(图4-10)。

图4-10 中国煤层渗透率与单井日产气量之间的关系图

一般认为低煤阶煤要求渗透性较高煤阶煤高,国外一般低煤阶煤层渗透性达到几十至上百个毫达西,如粉河盆地一般10×10-3~20×10-3μm2,苏拉特一般2×10-3~10×10-3μm2,中国准南一般2×10-3~13×10-3μm2,阜新一般大于0.5×10-3μm2。

(七)有效地应力

有效地应力指煤层压裂最小有效闭合应力,为煤层破裂压力与其抗张强度之差。有效地应力与区域地应力场、煤层埋深有关。煤层气多富集于高地应力下的局部低地应力区。煤层有效地应力低的地区,其煤层渗透率比相同条件下的高应力区的煤层渗透率要高。煤层有效地应力愈大,其压裂难度愈大。煤层地应力超过25MPa时,一般压裂效果差。圣胡安盆地高产区域地应力为3.0~8.0MPa,沁水煤层气田为7.9~9.4MPa,均属最有利区。

通过中国主要煤层气目标区煤层渗透率与有效地应力之间的关系可以得出,煤层地应力应小于25MPa,地应力小于15MPa最为有利(图4-11)。

图4-11 中国主要煤层气目标区煤层渗透率与有效地应力之间的关系图

(八)煤层埋深

煤层埋深是影响煤层有效地应力的重要参数之一,一般随煤层埋深增加,煤层有效地应力随之增加。煤层埋深同时影响煤层渗透率,一般随埋深增大煤层渗透率减小。煤层埋深还影响煤层含气量及含气饱和度。另外,随着煤层埋深增加煤的演化程度也会随之增加(图4-12)。而且,煤层埋深越深,煤层气开采成本和开采难度越大,不利于煤层气开发。

美国圣胡安和黑勇士盆地煤层气高产井煤层埋深一般小于1200m,美国粉河、加拿大艾伯塔盆地煤层埋深300~500m,中国沁水煤层气田煤层埋深一般150~800m、大宁—吉县煤层埋深一般小于1200m。具有工业开采价值的煤层富集区煤层埋深应小于1500m,小于1000m最有利。

(九)地解比

地解比是利用吸附等温线实测含气量对应的临界解吸压力(图4-13)与原始地层压力的比值。临界解吸压力一般利用初期开采井开始出气的井底压力加以校正,此值反映了产气高峰期快慢和高产富集条件。临界解吸压力愈接近原始地层压力,高产富集条件愈优越。

高地解比区如美国圣胡安盆地高产区块为0.93,黑勇士盆地为0.72~0.99;中国大宁—吉县地区为0.60,宁武南部为0.50,昌吉地区为0.70,霍林河盆地为0.90,沁水煤层气田樊庄区块日产气大于2000m3的井临界解吸压力一般超过0.50。中地解比区如中国吴堡、大城地区为0.23~0.25,开采中产气量低(小于2000m3)、递减快。而低地解比区一般反映含气量低、含气饱和度低,不具备煤层气开发条件,如中国河北唐山地区为0.04~0.15。

图4-12 不同地应力下煤层渗透率与煤层埋深之间的关系图

图4-13 中国沁水盆地樊庄区块临界解吸压力与平均日产气量的关系图

初步将煤层气选区评价地解比界于0.20以上,大于0.50最有利。

(十)构造发育状况

构造因素直接或者间接控制着含煤地层形成至煤层气生成聚集过程中的每一个环节,是所有地质因素中最为重要而直接的控气因素。构造发育状况直接影响煤层气的保存,不同类型的地质构造,在其形成过程中构造应力场特征及其内部应力分布状况不同,均会导致煤层和封闭层的产状、结构、物性、裂隙发育状况及地下水径流条件等出现差异并进而影响到煤储层的含气特性。在中国,煤层气保存条件尤为重要,煤层气藏形成后得以保存至今,要求构造条件简单,断层稀少,煤体结构保存完整,同时简单的地质构造也有利于煤层气的开发,近期煤层气开发表明,高产井分布于构造上斜坡带。

(十一)水文地质条件

水文地质条件是影响煤层气赋存的一个重要因素。煤层气以吸附态赋存于煤孔隙中,地层压力通过煤中水分对煤层气起封堵作用。因此,水文地质条件对煤层气保存、运移影响很大,对煤层气的开采至关重要。中、高煤阶生气不成问题,关键是后期保存,因此中、高煤阶煤层气富集区要求水文地质条件简单,处于高矿化度弱径流-滞留区,煤层气井排采过程中易降压,产水量适中,有利于煤层降压解吸。低煤阶如果煤层气成因以生物成因为主,则要求弱径流区,低矿化度有利于晚期生物气生成及水动力承压封堵有利于煤层气的保存,如果以热成因为主则对水文地质条件的要求与中高煤阶相同。

根据以上研究,得出中国煤层气选区评价参数及标准见表4-4。

表4-4 中国煤层气选区评价参数标准表

二、煤层气目标区优选评价方法体系

(一)煤层气目标区优选思路

中国煤层气资源分布地域广,成煤期多,经历的构造运动期次变化很大,成煤环境复杂,成煤规模、构造条件、演化程度复杂,因此中国煤层气目标区具有如下特点:

(1)目标区众多,共有5大聚气区、30个聚气带及115个煤层气目标区。

(2)目标区地理位置分散,在全国范围内除了西藏、台湾及海南等省区外均有分布。

(3)目标区在规模、地质条件及煤层气开发基础等方面存在着很大的差异。根据已有的认识,各目标区开发前景差异也很大。

(4)目标区研究程度参差不齐,有的目标区进行了大量研究,开发工作已经全面展开,有的工作极少。因此,各个目标区要讨论的因素只有部分目标区数据齐全,相当一部分目标区只有部分因素数据。

根据上述特点,煤层气目标区的优选排序应该是多层次的。即不可能按照统一标准来进行全部煤层气目标区的优选排序工作。对于全部目标区,应采用能够获得的因素来进行;对于研究程度较高的目标区,可采用更多的因素。因此,优选工作是递进的。即随着优选层次的上升,优选结果越来越接近实际情况。所以,这里采用的优选方法也可以称为“多层次综合递进优选法”。根据具体情况,可以采用以下4个层次的优选:

第一层次,利用含气量这一关键因素采用“一票否决”进行筛选。

第二层次,利用评价面积-资源丰度组合进行第二次筛选。主要考虑目标区规模和资源量大小对目标区进行筛选,并进一步从煤层气资源因素的角度对煤层气目标区进行优选,考虑的因素包括评价区面积、资源丰度、含气量、吸附饱和度、煤级、地解比、构造条件、水文地质条件和开发基础等。

第三层次,关键因素渗透率组合优选。在该层次中采用渗透率作为关键因素。所以,只有进行过试井的目标区才能参加优选,考虑的其他因素包括目标区面积、资源丰度、含气量、吸附饱和度、煤阶、地解比、构造条件、水文地质条件、渗透率及开发基础因素等。

第四层次,储层压力关键因素二次优选。该层次采用的关键因素为储层压力。只有经过煤储压力试井的目标区才能参加优选,考虑的其他因素包括目标区面积、资源丰度、含气量、吸附饱和度、渗透率、构造条件、水文地质条件和开发基础因素等。

综上可以看出,随着优选排序层次的提高,考虑的关键因素综合性越高、代表性越强,优选结果与实际情况越接近。

(二)煤层气目标区优选方法和模型

为了实现上述优选思路,必须选择恰当的计算方法使评价结果合理化。为此,这里引入3种评价方法:风险系数法、综合排队系数法和区间数模糊综合评判法。

1.风险系数法

该法是国际上对常规油气圈闭进行定量排序的基本方法。在对地质风险因素进行正确分析的基础上,采用概率加的方式对主要控气地质因素进行计算机处理,得出反映各评价单元综合风险大小的地质风险系数,再根据风险系数的大小进行排序。若某一评价单元(i)中包括n个主要风险要素,且某一要素(j)的相对风险概率为Pi为

煤层气开发利用前景和示范工程

式中:fij为第i个评价单元中的第j个风险要素的绝对值;Qj为第j个要素的权重值;fj,max为所有评价单元中第j个风险要素的最大值。

风险概率即为风险系数,其数值分布在0~1之间。由于在算法中引入了归一化过程,因此这里的风险系数只是各评价单元之间相对概率大小的度量或排序依据,而不能将其视为绝对概率。显然,风险系数越大,评价单元的煤层气勘探开发前景就越差;反之则越好。

将所有参评单元风险系数按大小进行排序,便可得到最终的排序结果。采用最优化分割方法对排序结果进行处理,按风险概率的相似性分为若干风险系数组,以利于进一步的勘探风险级别评价及其与“关键因素逐级分析法”的结果进行对比。

2.综合排队系数法

该法是由中国石油资源评价专家武首诚(1994)提出的。他将由地质风险分析筛选出来的风险要素进一步综合为地质风险评价(Ri)和资源量(Qi)两大类,并赋以直角坐标系中x轴和y轴的数量化意义。Y值表示资源量,X值则为其余要素的概率平均值。

根据上述两类系数,计算综合排队系数(Ra),然后由其大小对参评单元进行综合排序。在数学意义上,Ra表示评价单元P(x,y)距具有最大理论潜势的评价单元A(1,1)之远近。因此,Ra越小,资源潜势就越大。在处理过程中将最大资源系数定义为1,因此Ra值分布在0~1之间。

根据煤层气资源及其控气因素有别于常规油气资源的特征,本书对综合优选系数法进行了修改。将x轴重新定义为资源系数,为含气量、资源量、资源丰度和理论饱和度的概率和;y轴则为保险系数Gi,其值等于1-Ri,其中Ri为其余主要风险要素的概率和。

由此得到综合优选系数Ra的表达式:

煤层气开发利用前景和示范工程

资源系数和保险系数中各包括了若干要素,求算这两个系数的原理、方法和上述风险概率值的计算方法相同。

3.区间数模糊综合评判法

模糊综合评判方法是应用广泛的多因素综合评价方法之一,它对用模糊数表示的不确定性评价因素体系,有着良好的处理能力。但是对含有区间数(即一个有界闭区间)表示的评价因素,模糊综合评判已无能为力,其中关键是区间数的排序问题难以解决。关于区间数的排序,本书借助区间数的排序方法构建区间数模糊综合评判的数学模型如下:

设X={x1,x2,…,xm}是因素集,其中xi是评判指标,如“埋深”、“煤厚”等,其中部分因素用区间数表示;Y={y1,y2,…,yn}是评语集,其中yi是模糊语言,如“优”、“良”等,设A是被评判的对象,如煤田的某一块段。评判步骤如下:

单因素评判:由于评判对象A自身的某些不确定性,对A的某因素xi而言,若A为一个准确值,则它属于yj的程度用一个模糊值来表示;若A不确定,则它属于yj的程度用一个区间值来表示。另外,根据普通实数是一个特殊的区间数,把用一个模糊值表示的评判指标也用区间数表示。于是对某一评判因素xi,A属于yj的程度均可表示为区间数[ , ][0,1],i=1,2,…,n;j=1,2,…,m。

于是得到一个区间值模糊映射 f∶x→IF(Y)

煤层气开发利用前景和示范工程

这里,IF(Y)是Y上的全体区间值模糊集。得到区间值模糊综合评判矩阵为

煤层气开发利用前景和示范工程

确定评判指标的权值:设W=(w1,w2,…,wn)ϵF(X),这里F(X)是X 上的全体模糊记。Wi是各因素的权值,本书采用灰色关联法求取各因素的权值,且满足w1+w2+…+wn=1。

煤层气开发利用前景和示范工程

这里

煤层气开发利用前景和示范工程

排序:运用区间数排序方法排列区间数 ,(j=1,2,…,m)设 则被评判对象A最终属于评语yk。

为了实现对煤层气目标区的优选排序计算,必须获得相关的要素数值。煤层气目标区评价中使用的要素,均为具体的数据和区间数据。在进行优选排序时,因要计算其相对风险概率值、综合排队指数及区间数模糊综合评判,故要对同一因素取值相同的单位,即可实现上述赋值。而对一些不能取具体数据的要素,如区间要素,必须规定其模糊级别的分级方法。

为了避免人为因素的作用,这里采用层次分析方法来进行权重确定。利用此法确定因素权重的原理是:对于某一层次某个因素,建立下一层次元素的两两判断矩阵,一次计算该层次因素对于上一层次的相对权重。两两判断矩阵数值的含义如表4-5所示。

这样,对于上一层次的某个元素,下一层次中被支配的n个子元素或要素就构成了一个两两判断矩阵:

A=(aij)n×n

其中,aij为要素i与要素j相对于上一层次要素的比例标度。

表4-5 两两判断矩阵构建中1〜9标度的含义表

下一步,对判断矩阵进行一致性检验。判断矩阵一致性检验方法很多,如特征根法:

煤层气开发利用前景和示范工程

式中:w为权重向量, ;A为判断矩阵; 为A的最大特征根。

一致性指标CI和一致性比例CR的求算方法为

煤层气开发利用前景和示范工程

式中:RI为平均随机一致性指标,可通过查表获得。当CR<0.1时,判断矩阵的一致性是可以接受的。反之,需要对判断矩阵进行适当的修正。

最后计算各层元素对目标层的合成权重:

煤层气开发利用前景和示范工程

式中:w(k)为第二层中元素对总目标的排序向量;w(k-1)为第k层中第nk个元素对第k-1层中第j个元素为准则的排序权重向量。最后需要指出,判断矩阵A需要通过专家调查来获得。

根据上述方法,进行权重计算得到权重系数(表4-6)。

采用风险系数法、区间数模糊综合评判法结合综合排队系数法进行排序。

表4-6 关键因素权重赋值及权系数计算结果表

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页