辽 源 职 业 技 术 学 院
毕业综合实训报告
题目:矿井通风设计
专业班级: 高矿电0831
设 计 人: 任 丹 鹏
指 导 人: 刘 温 暖
2011年5月27日
辽 源 职 业 技 术 学 院
毕业设计(论文)评阅人评语
评 阅 人: (签字)
评阅日期: 年 月 日
辽 源 职 业 技 术 学 院
毕 业 设 计(论文)答 辩 评 语 第 号
日 期: 年 月 日
提交设计(论文)学生:
提交毕业设计(论文)答辩材料:
1)、设计(论文)说明书共 页
2)、设计(论文)图 共 页
3)、指 导 教 师 评 语 共 页
毕 业 设 计 (论文) 答 辩 评 语:
答辩成绩:
综合成绩:
毕业设计(论文)答辩组长: (签字)
组员: (签字)
目录
一、矿井通风设计的内容与要求 5
(一)矿井基建时期的通风 5
(二)矿井生产时期的通风 5
(三)矿井通风设计的内容 6
(四)矿井通风设计的要求 7
二、优选矿井通风系统 7
(一)矿井通风系统的要求 7
(二)确定矿井通风系统 8
三、矿井风量计算 8
(一)矿井风量计算原则 8
(二)矿井需风量的计算 8
1.采煤工作面需风量的计算 8
2.掘进工作面需风量的计算 11
3.硐室需风量计算 13
4.其他用风巷道的需风量计算机 14
四、矿井通风总阻力计算 15
(一)矿井通风总阻力计算原则 15
(二)矿井通风总阻力计算 15
五、矿井通风设备的选择 16
(一)主要通风机的选择 17
六、概算矿井通风费用 21
前 言
通风是关系到煤矿生产安全的重要环节。确保通风系统的稳定可靠,要做到随矿井生产变化即时进行通风系统改造与协调,严格控制串联通风,强化局部通风管理,杜绝局部通风机无计划断电,做到通风系统正规合理、可靠、稳定.
矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。
第一章 矿井通风设计的内容与要求
矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。
矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。
第一节 矿井基建时期的通风
矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。
第二节 矿井生产时期的通风
矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况:
(1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。
(2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。
矿井通风设计所需要的基础资料如下:
矿井地形地质图;矿岩游离二氧化硅(矽)、硫、放射性物质及瓦斯和有害气体的含量;煤岩自然发火倾向性;煤尘爆炸性;矿区气候条件,包括年最高、最低、平均气温、地温、地热增深率及常年主导风向等;矿岩容重、块度、松散系数、含泥量及粘结性;矿区有无老窑旧巷及其所在地点和存在情形;矿井年产量、服务年限、开拓系统、回采顺序、开采方法;产量分配和作业布置,同时作业的工作面数及备用工作面个数;同时开动的各种型号的凿岩机台数及其分布;同时爆破的最多炸药量;同时工作的最多人数等。
第三节 矿井通风设计的内容
(1)确定矿井通风系统
(2)矿井通风计算和风量分配
(3)矿井通风阻力计算
(4)选择通风设备
(5)概算矿井通风费用
此外,根据不同地区或矿井的特殊条件,还需警醒矿井空气温度调节的计算(具体内容见第八章)
第四节 矿井通风设计的要求
(1)将足够的新鲜空气有效地送到井下工作场所,保证生产和创造良好的劳动条件;
(2)通风系统简单,风流稳定,易于管理,具有抗灾能力;
(3)发生事故时,风流易于控制,人员便于撤出;
(4)有符合规定的井下环境及安全检测系统或检测措施;
(5)通风系统的基建投资省,营运费用低,综合经济效益好。
第二章 优选矿井通风系统
第一节 矿井通风系统的要求
(1)每一矿井必须有完整的独立通风系统。
(2)进风井口应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。
(3)箕斗提升井或装有胶带运送机的井筒不应兼做进风井,如果兼做进风井使用,必须采取措施,满足安全的需要。
(4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近,当通风机之间的风压相差较大时,应减小共用风路的风压,使其不超过任何一个通风机风压的30%。
(5)每一个生产水平和每一采区,都必须布置回风巷,实行分区通风。
(6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。
(7)井下充电室必须用单独的新鲜风流通风,回风风流应引入回风巷。
第二节 确定矿井通风系统
根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。矿井通风系统应具有较强的抗灾能力,当井下一旦发生灾害性事故后所选择的通风系统能将灾害控制在最小范围,并能迅速恢复正常生产。
第三章 矿井风量计算
第一节 矿井风量计算原则
矿井需风量,按下列要求分别计算,并采取其中最大值。
(1) 按井下同时工作最多人数计算,每人每分钟共计风量不得少于4m³;
(2) 按采煤、掘进、硐室及其他实际需要风量的总和进行计算。
第二节 矿井需风量的计算
1.采煤工作面需风量的计算
采煤工作面的风量应该按下列因素分别计算,取得最大值。
1) 按瓦斯涌出量计算
Qwi=100 Qgwi Kgwi
式中 Qwi——第i个采煤工作面需要风量,m³/min
Qgwi——第i个采煤工作面瓦斯绝对涌出量,m³/min
Kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,它是该工作面瓦斯绝对涌出量的最大值和平均值之比。生产矿井可根据各个工作面正常生产条件时,至少进行5昼夜的观测,得出5个比值,取其最大值。通常机采工作面取Kgwi=1.2~1.6;炮采工作面取Kgwi=1.4~2.0;水采工作面取Kgwi=2.0~3.0。
2) 按工作面进风流温度计算
采煤工作面应有良好的气候条件。其进风流温度可根据风流温度预测方法进行计算。其气温与风速应符合表7-4-1的要求。
表7-4-1 采煤工作面空气温度与风速对应表
采煤工作面进风流气温/℃ 采煤工作面风速/m•s-1
<15
15~18
18~20
20~23
23~26 0.3~0.5
0.5~0.8
0.8~1.0
1.0~1.5
1.5~1.8
采煤工作面的需要风量计算:
Qwi=60 Vwi Swi Kwi
式中 Vwi——第i个采煤工作面的风速,按其进风流温度从表7-4-1中选取,m/s;
Swi——第i个采煤工作面有效通风断面,取最大和最小控顶时有效断面的平均值,m2
Kwi——第i个工作面的长度系数,可按表7-4-2选取。
表7-4-2 采煤工作面长度风量系数表
采煤工作面长度/m 工作面长度风量系数Kwi
<15
50~80
80~120
120~150
150~180
>180 0.8
0.9
1.0
1.1
1.2
1.30~1.40
3) 按使用炸药量计算
Qwi=25×Awi
式中 25——每使用1kg炸药的供风量,m3/min;
Awi——第i个工作面一次爆破使用的最大炸药量,kg;
4) 按工作人员数量计算
Qwi=4×nwi
式中 4——每人每分钟应供给的最低风量,m3/min;
nwi——第i个采煤工作面同时工作的最多人数,个。
5) 按风速进行验算
按最低风速验算各个采煤工作面的最小风量:
Qwi≥60×0.25×Swi
按最高风速验算各个采煤工作面的最大风量:
Qwi≤60×0.25×Swi
采煤工作面有串联通风时,按其中一个最大需风量计算。备用工作面也按上述要求,并满足瓦斯、二氧化碳、风流温度和风速等规定计算需风量,且不得低于其回采时需风量的50%。
2.掘进工作面需风量的计算
煤巷、半煤岩和岩巷掘进工作面的风量,应按下列因素分别计算,取其最大值。
1) 按瓦斯涌出量计算
Qhi=100×Qghi×Kghi
式中 Qhi——第i个掘进工作面的需风量,m3/min;
Qghi——第i个掘进工作面的绝对瓦斯涌出量,m3/min;
Kghi——第i个掘进工作面的瓦斯涌出不均匀和备用风量系数,一般可取1.5~2.0。
2) 按炸药量计算
Qhi=25×Ahi
式中 25——使用1kg炸药的供风量,m3/min;
Ahi——第i个掘进工作面一次爆破使用的最大炸药量,kg。
3) 按局部通风机吸风量计算
Qhi= ∑Qhfi×Khfi
式中 ∑Qhfi——第i个掘进工作面同时运转的局部通风机额定风量的和。各种通风机的额定风量可按表7-4-3选取。
Khfi——为防止局部通风机吸循环风的风量备用系数,一般取1.2~1.3。进风巷道中无瓦斯涌出时取1.2,有瓦斯涌出时去1.3。
表7-4-3 各种局部通风机的额定风量
风机型号 额定风量/ m3•min-1
JBT-51(5.5KW)
JBT-52(11KW)
JBT-61(14KW)
JBT-62(28KW) 150
200
250
300
4)按工作人员数量计算
Qhi=4×nhi
式中nhi ——第i个掘进工作面同时工作的最多人数,人。
5)按风速进行验算
按最小风速验算,各个岩巷绝境工作面最小风量:
Qhi≥ 60×0.15×Shi
各个煤巷或半煤巷掘进工作面的最小风量:
Qhi≥ 60×0.25×Sdi
按最高风速验算,各个掘进工作面的最大风量:
Qhi≤ 60×4×Shi
式中Shi——第i个掘进工作面巷道的净断面积,m2。
3.硐室需风量计算
各个独立通风硐室的供风量,应根据不同类型的硐室分别进行计算:
1) 机电硐室
发热量大的机电硐室,按硐室中运行的机电设备发热量分别进行计算:
Qri= 3600×∑N×θ
ρ×Cp×60×Δt
式中Qhi——第i个机电硐室的需风量,m3/min;
∑N—机电硐室中运转的电动机(变压器)总功率,kw;
θ—机电硐室的发热系数,可根据实际考察由机电硐室内机械设备运转时的实际热量转换为相当于电器设备容量做无用功的系数确定,也可按表7-4-4选取;
ρ—空气密度,一般取1.2kg/ m3;
Cp—空气的定压比热,一般可取1kJ/(kg•K);
Δt—机电硐室进、回风流的温度差,℃。
表7-4-4机电硐室发热系数(θ)表
机电硐室名称 发热系数
空气压缩机房 0.20~0.23
水泵房 0.01~0.03
变电所、绞车房 0.02~0.04
采区变电所及变电硐室,可按经验值确定需风量:
Qri=60~80 m3/min
2) 爆破材料库
Qri=4×V/60
式中 V—库房容积,m3
但大型爆破材料库不得小于100 m3/min,中小型爆破材料库不得小于60 m3/min。
3) 充电硐室
按其回风流中氢气浓度小于0.5%计算
Qri=200×qrhi
式中qrhi ——第i个充电硐室在充电时产生的氢气量,m3/min。
4.其他用风巷道的需风量计算机
各个其他巷道的需风量,应根据瓦斯涌出量和风速分别进行计算,采用其最大值。
1) 按瓦斯涌出量计算
Qoi=133×Qgoi×kgoi
式中Qgoi——第i个其他用风巷道的瓦斯绝对涌出量,m3/min;
koi ——第i个其他用风巷道瓦斯涌出不均匀的风量备用系数,一般可取kgoi=1.2~1.3.
2) 按最低风速验算
Qoi≥ 60×0.15×Soi
式中Soi——第i个其他井巷净断面积,m2。
5.矿井总风量计算
矿井的总进风量,应按采煤、掘进、硐室及其他地点实际需要风量的总和计算:
Qm=(∑Qwt+∑Qht+∑Qrt+∑Qot)×km
式中∑Qwt—— 采煤工作面和备用工作面所需风量之和,m3/min;
∑Qht—— 掘进工作面所需风量之和,m3/min;
∑Qrt—— 硐室所需风量之和,m3/min;
∑Qot—— 其他用风地点所需风量之和,m3/min。
km—— 矿井通风(包括矿井内部漏风和配风不均匀等因素)系数,可取1.15~1.25。
第四章 矿井通风总阻力计算
第一节 矿井通风总阻力计算原则
(1)矿井通风总阻力,不应超过2940pa。
(2)矿井井巷的局部阻力,新建矿井(包括扩建矿井独立通风的扩建区)宜按井巷摩擦阻力的10%计算,扩建矿井宜按井巷摩擦阻力的15%计算。
第二节 矿井通风总阻力计算
矿井通风总阻力是指风流由进风井口起,到回风井口止,沿一条通路(风流路线)各个分支的摩擦阻力和局部阻力的总和,简称矿井总阻力,用hm表示。
对于有两台或多台主要通风机工作的矿井,矿井通风阻力应按每台主要通风机所服务的系统分别计算。
在主要通风机的服务年限内,随着采煤工作面及采区接替的变化,通风系统的总阻力也将因之变化。为了使主要通风机在整个服务期限都能满足需要,而且主要通风机有较高的运转效率,需要按照开拓开采布局和采掘工作面接替安排,对主要通风机服务期内不同时期的系统总阻力的变化进行分析,当根据风量和巷道参数(断面、长度等)直接判定出最大总阻力路线时,可按该路线的阻力计算矿井总阻力,当不能直接判定时,应选几条可能最大的路线进行计算比较,然后确定该时期的矿井总阻力。
在矿井通风系统总阻力最小时称通风容易时期。通风系统总阻力最大时称为通风困难时期。对于通风容易和困难时期,要分别画出通风系统图。按照采掘工作面及硐室的需要分配风量,再由各段风路的阻力计算矿井总压力。
为便于计算和查验,可用表7-4-5的格式,沿着通风容易和困难时期的风流路线,依次计算各段摩擦阻力hft,然后分别计算得出容易和困难时期的总摩擦阻力hfe和hfd,再乘以1.1(扩建矿井乘以1.15)后,得两个时期的矿井总压力hme和hmd。
通风容易时期总阻力 hme=(1.1~1.15)hfe
通风困难时期总阻力 hmd=(1.1~1.15)hfd
上面两式中hf按下式计算:
hf= hfi
式中 hfi= Qi2
第五章 矿井通风设备的选择
第一节 矿井通风设备是指主要通风机和电动机。
(1) 矿井必须装设两套同等能力的主通风设备,其中一套做备用。
(2) 选择通风设备应满足第一开采水平各个时期工况变化,并使通风设备长期高效率运行。当工况变化较大时,根据矿井分期时间及节能情况,应分期选择电动机。
(3) 通风机能力应留有一定的余量,轴流式通风机在最大设计负压和风量时,轮叶运转角度应比允许范围小5°;离心式通风机的选型设计转速不宜大于允许最高转速的90%。
(4) 进、出风井井口的高差在150m以上,或进、出风井井口标高相同,但井深400m以上时,宜计算矿井的自然风压。
第二节 主要通风机的选择
(1)计算通风机风量Qf
由于外部漏风(即井口防爆门及主要通风机附近的反风门等处的漏风),风机风量Qf大于矿井风量Qm
Qf=k Qm
式中 Qf—— 主要通风机的工作风量,m3/s;
Qm——矿井需风量,m3/s;
K——漏风损失系数,风井不做提升用时取1.1,箕斗井做回风用时取1.15;回风并兼做升降人员时取1.2。
(2)计算通风机风压
通风机全压Htd和矿井自然风压HN共同作用克服矿井通风系统的总阻力hm、通风机附属装置(风硐和扩散器)的阻力hd及扩散器出口动能损失Hvd。当自然风压与通风机风压作用相同时取“-”;自然风压与通风机负压作用反向时取“+”。根据提供的通风机性能曲线,由下式求出通风机风压:
Htd=hm+hd+Hvd±HN
通产离心式通风机提供的大多是全压曲线,而轴流式通风机提供的大多是静压曲线。因此,对抽出式通风矿井:
离心式通风机:
容易时期 Htd min=hm+hd+Hvd±HN
困难时期 Htd max=hm+hd+Hvd±HN
表7-4-5 矿井通风阻力计算表
时期 节点序号 巷道名称 支护形式 a/
Ns2m-4 L/M U/M S/m2 S3/s6 R/
Ns2m-8 Q/
m3s-1 Q2/
m6s-2 hfi
/pa V/
ms-1
容易时期
hfi=∑hfi= pa
困难时期
hfi=∑hfi= pa
轴流式通风机:
容易时期 Htd min=hm+hd-HN
困难时期 Htd max=hm+hd+HN
通风容易时期为使自然风压与通风机风压作用相同时,通风机有较高的效率,故从通风系统阻力中减去自然风压HN;通风困难时期,为使自然风压与通风机风压作用反向时,通风机能力满足,故通风系统阻力中加上自然风压HN。
(3)初选通风机
根据计算的矿井通风容易时期通风机的Qf、Hsd min(或Htd max)和矿井通风困难时期通风机的Qf、Hsd max(或Htd max)在通风机特性曲线上,选出满足矿井通风要求的通风机。
(4)求通风机的实际工况点
因为根据Qf、Hsd max(或Htd max)和Qf、Hsd min(或Htd max)确定的工况点,即设计工况点不一点恰好在所选择通风机的特性曲线上,必须根据通风机的工作阻力,确定其实际工况点。
1) 计算通风机的工作风阻
用静压特性曲线时:
Ssd min=
Ssd max=
用全压特性曲线时:
RTd min=
STd max=
2)确定通风机的实际工况点
在通风机特性曲线图中做通风机工作风阻曲线,与风压曲线的交点即为实际工况点。
(5) 确定通风机的型号和转速
根据各台通风机的工况参数(Qf、Hsd、η、N)对初选的通风机进行技术、经济和安全性比较,最后确定满足矿井通风要求,技术先进、效率高和运转费用低的通风机的型号和转速。
(6)电动机选择
1)通风机输入功率按通风容易及困难时期,分别计算通风机所需输入功率Nmin、Nmax。
Nmin= Qf Hsd min/1000ηs Nmax= Qf Hsd max/1000ηs
或Nmin= Qf Htd min/1000ηt Nmax= Qf Htd max/1000ηt
式中ηt、ηs分别为通风机全压效率和静压效率;
2)电动机的台数和种类
当Nmin≥0.6Nmax时,可选一台电动机,电动机功率为
Ne=Nmax•ke/(ηeηtr)
当Nmin<0.6Nmax时,可选两台电动机,其功率分别为
初期 Nemin= •ke/(ηeηtr)
后期按Ne=Nmax•ke/(ηeηtr)计算。
式中 ke——电动机容量备用系数,ke=1.1~1.2
ηe——电动机效率,ηe=0.9~0.94(大型电动机取较高值)
ηtr——传动效率,电动机与通风机直联时ηtr=1,皮带传动时ηtr=0.95。
电动机功率在400~500kw以上时,宜选用同步电动机。其优点是在低负荷运转时,可用来改善电网功率因数,使矿井经济用电;缺点是这种电动机的购置和安装费较高。
第六章 概算矿井通风费用
吨煤通风成本是通风设计和管理的重要经济指标。统计分析成本的构成,则是探求降低成本提高经济效益不可少的基础资料。
吨煤通风成本主要包括下列费用:
1. 电费(W1)
吨煤的通风电费为主要通风机年耗电费及井下辅助通风机、局部通风机电费之和除以年产量,可用如下公式计算:
W1=(E+EA)×D/T
式中 E——主要通风机年耗电量,设计中用下式计算:
通风容易时期和困难时期共选一台电动机时,
E=8760(Nemin+ Nemax)/(keηvηw)
选两台电动机时
E=4380(Nemin+ Nemax)/(keηvηw)
式中 D——电价,元/kw•h
T——矿井年产量,t;
EA——局部通风机和辅助通风机的年耗电量;
ηv——变压器效率,可取0.95
ηw——电缆输电效率,取决于电缆长度和每米电缆损耗,在0.9~0.95范围内选取。
2. 设备折旧费
通风设备的折旧费与设备数量、成本及服务年限有关可用表7-4-6计算。
吨煤的通风设备折旧费W2为
W2=(G1+G2)/T
表7-4-6通风成本计算表
序
号
设备名称
计算单位
数量 总成本
总计 服
务
年
限 基本投资折旧费 大修理折旧费
备注
单位成本 设备费 运输及安装费
3. 材料消耗费用
包括各种通风构筑物的材料费,通风机和电动机润滑油料费,防尘等设施费用。每吨煤的通风材料消耗费W3为:
W3=C/T
式中 C——材料消耗总费用,元/a。
4. 通风工作人员工资费用
矿井通风工作人员,每年工资总额为A(元),则一吨煤的工资费用W4为
W4= A/T
5. 专为通风服务的井巷工程折旧费和维护费
折算至吨煤的费用为W5。
6.每吨煤的通风仪表的购置费和维修费用W6
矿井每采一吨煤的通风总费用W为
W= W1 +W2+ W3+ W4+ W5+ W6矿井
结束语
三年的学习已近尾声,我通过三年来的系统学习,使我掌握了坚实的基础理论和系统的专门知识,也使我的业务水平有了很大的提高,而着一切,都是归功于辽源职业技术学院的各位老师的深切教诲与热情鼓励.在即将毕业之际,我要感谢三年来的所有教育我,关心我的老师们,是他们在我学习期间给了我最有力的帮助和鼓励,使我能顺利的完成学业,对此,我表示衷心地感谢!本课题是我在我的导师刘温暖教授的悉心指导下完成的.半年多来,刘教授多次询问课题进程,帮助我开拓研究思路.刘教授以其严谨求实的治学态度,高度的敬业精神,孜孜以求的工作作风和大胆创新的进去精神给我树立了榜样.在此向刘教授致以诚挚的谢意和崇高的敬意。
参考文献
(1)矿井通风与安全 作 者: 何廷山 2009
(2)煤矿开采技术专业及专业群教材 作者 喻晓峰 刘其志
论文关键词:矿山 机电设备 管理
论文摘要:矿山机电工作的管理必须从基础做起,以提高机械设备安全性为中心, 以经济手段为杠杆,扎扎实实的做好矿山机电设备管理工作,确保矿山高效运行、可持续发展,本文就围绕矿山机电设备管理提出一点浅见。
一、矿山机电设备管理的重要性
随着矿山机械化程度的日益提高,矿山机电设备管理工作占据着越来越重要的位置。据相关数据统计,在每年的矿山安全生产过程中,由于机电设备故障造成的事故占总事故的六成,一旦机电设备停止运转,不仅会影响到矿山企业的正常运作和生产,还会对矿山工作人员构成人身安全的威胁,特别是煤矿企业,一旦井下通风设备停止运转,那么就会导致井下通风不良,有害气体大量集聚,从而严重威胁到矿工的人身安全。因此加强机电设备的科学管理工作、正确合理的使用机电设备,对于保证矿山安全、提高企业经济效益都有着十分重要的作用。
二、矿山机电设备管理中存在的问题
(一)机电设备管理机构不完善
很多矿山企业的机电设备管理机构都不完善,没有形成相应的管理体系,日常工作中,设备的维护和保养仅靠电工负责,在实际操作过程中,电工的主要精力全部放在应付生产中,根本谈不上机电设备的管理。而很多矿山的负责人在观念中对于矿山机电设备的管理还不够重视,对于机电设备管理工作认识不到位,没有建立健全的机电专业管理组织,职能管理意识淡薄,甚至供电系统的施工都没有按照设计进行,而是仅凭电工人员的工作经验,而对于机电设备的性能也没有按要求进行测试,仪器仪表的校验也不按照规定来办,总之,矿山企业的机电管理机构还有很大一部分的欠缺。
(二)机电设备管理人员素质较低
一般在矿山从事机电设备管理的技术人员,真正科班出身的只有微不足道的几个人,很多矿山企业没有专职的机电专业技术人员,导致技术管理无法与生产相结合,而仅有的几个机电技术人员又是仅凭经验相当然的进行原始操作,机电专业的理论知识非常贫乏,并且也受到经验的局限,无法应付日益加大的设备故障率。
(三)矿山机电设备认识不到位
在矿山进行设备采购入厂时,无论是配套设施还是安装调整试都没有做到位,盲目的把设备投入到生产中来,于是造成本该发挥最大效益的机电设备因为人为的盲目性,没有发挥出最大的作用。
三、如何有效的管理矿山机电设备
(一)建立健全的管理制度
规范矿山机电设备的管理行为,制定科学完善的管理制度,充分发挥制度的作用,在进行机电设备管理时做到有章可循、严格贯彻执行。也有矿山企业具有相当的设备管理意识,制定了一系列的规章制度,比如《机电设备点检标准书》、《机电设备隐患治理管理办法》、《机电设备操作、维护、检修规程》等,从各方面建立维护、检修、操作机电设备的相关规章制度,为了保证这些规章制度的落实执行,还配套制定了相关的考核细则,违者重罚。这样真正做到制度面前人人平等,才能维护制度的权威和公信度,才能将制度真正落到实处。
(二)及时对隐患进行处理
日常工作中对于机电设备的点检一定不能放松,要认真细致的检查,以便及时的发现和治理安全隐患,从而避免事故的发生。隐患如果不及时处理很有可能在下一次就酿成惨痛的事故,因此企业的各个阶层、每个员工都要有强烈的安全隐患意识。在企业的各个一线部门都设置专业的点检站,各组配备点检员,全面负责本部门的机电设备点检工作。
(三)提高设备的安全性能
确保设备资金的投入,加大机电设备技术改造和更新的力度。现代社会科技越来越发达,很多诸如变频技术、自动化控制技术、遥控技术等高新科技都在不断的应用于各行各业的生产中,这些层出不穷的新设备安全性能好、工作性能高,不仅为机电设备的技术改造提供了技术参考和保证,对于企业的经济效益、安全效益也有着极大的帮助。
(四)加强机电设备的维修管理
矿山的机电设备与其它行业的设备维修不同,主要表现在以下两个方面:设备工作环境多样复杂,因此维修作业也就相应的多样复杂;另一方面,作业条件会限制机电设备的结构设计,导致在一些特殊环境下作业的机电设备结构设计并不是很合理,往往很难保证维修质量,或者干脆就无法维修。因此对于机电设备我们矿山企业的员工要加强安全意识和主人翁意识,适当的采取设计检修通道、预防零部件变形、脱落、改进设备结构等一系列措施,提高机电设备维修作业的安全性,确保设备的安全运行。
(五)建立相应的激励机制
经济社会、信息社会的发展,使人们的思维模式发生了质的变化,过去的干多干少一个产、干好干坏一个样的旧观念已经被人们所摒弃,因此奖励机制、良性的竞争机制涉及到每个员工的切身利益。 无论管理层还是一线基层,都建立起相应的激励机制进行经济的“软约束”。激励机制所涉及到的方面可以包括设备的操作、维修和保养,也可以包括对新设备性能、质量的掌握等,让每个员工在激励机制的约束中逐渐形成机电设备安全管理的意识。
(六)加强人员培训
人力资源是现代企业中的一项重要的可再生资源,而对于矿山企业来说,员工的整体素质普遍偏低是一个不容忽视的问题。因此企业领导要加强对于一线操作员工安全管理知识的培训,不断提高企业的整体素质,增强员工的责任感和安全意识。
总之,矿山机电设备管理工作必须从基础做起,强化意识、转变观念,努力提高机电设备的安全可靠性,以保证矿山企业的长效发展。
应用机电一体化技术,对于提升煤矿生产操作的自动化处理水平,避免造成更大的损失与危害,提高了工作效率方面起到了重要作用。下面是我为大家整理的煤矿机电一体化毕业论文,供大家参考。
摘要: 文章首先介绍了煤矿机械产品的机电一体化要求,然后对机电一体化的参数化模型展开分析,同时根据煤矿机械产品的表达模式的机电一体化分析FlexRIA法。
关键词:煤矿机械;机电一体化
1关于机电一体化技术
1.1我国机电一体化技术研究历程
从过去几十年的研究历史可以看出,我们可以把机电一体化技术的研究在我国分为四个阶段:上世纪六十年代以前,由于中国的内部问题以及战争,促使煤矿机械和电子技术的集成处理系统,这也体现出我们国家在这个问题上的机电一体化产品发展,在很大程度上是自我发展的水平,这也导致了我国发展自己的技术限制,已开发成功的产品难以获得大范围,导致下一个努力工作得到进一步发展;七十年代初,受到世界飞速的传播与发展,计算机通信控制技术为中国的机电一体化产品的发展提供了良好的外部技术基础。例如,技术的发展和国际大规模集成电路,计算机,研究我国机电一体化技术以外部物质条件。第三阶段始于九十年代初,由于光学技术的渗透,微加工技术,新型机电一体化技术越来越多地开始出现,最后的决定机电一体化技术是向智能化方向发展。
1.2机电一体化技术概述
目前最先进的机电一体化技术功能对比传统机电技术最大的特点是极大地加强了控制系统,以主菜单与机电一体化相结合以及源函数为基础,利用高端智能软件技术和微电子技术,引进多个相互融合、相互渗透的领域,以此新兴机电一体化注入新的活力。但在这一过程中,也可能面临多项技术的简单的、不集中的相加,这也给当前机电一体化增加了不少困难。研究发现,机电一体化技术在信息、计算机、煤矿机械加工、微电子技术等领域中可以寻求到最佳匹配。现在的机电一体化产品的发展是一个系统———智能化和小型化,以此达到煤矿机械加工与机电一体化技术能够共同操作,极大地满足了煤矿安全生产的需求、有效降低劳动紧张程度,并提高最终救援人员的安全度,极大地保护了矿区原生态环境,以此达到降低生产能耗的目的,使机电一体化得到长期有效稳定的发展。
1.3煤矿机械加工中机电一体化产品
伴随着全球资源日益紧缺,各国对能源问题的越来越关注,煤矿作为我国战略资源不可或缺的成员,其开采的重要性可见一斑。如今,伴随着越来越先进的机电一体化产品应用到煤矿机械加工中来,煤矿企业的开采效益越来越高。如今,以计算机控制为主的国产供电设备、提升机、电牵引采煤机、掘进机和输送机等煤矿机械加工都具备了全程监控、自动报警、图景扫描、信息控制等先进功能。这使得在我国的煤矿机械加工管理工作中,机电一体化产品的应用尤为广泛,也确保了煤矿开采工作中的高安全性、高效益性与高技术性。
2煤矿机械产品的机电一体化与生产流程的协同策略
机电一体化策略的主要内容有:其一、关系型产品模型;其二、与关系型产品模型相匹配的产品信息管理系统;其三、以实例推理为基础的智能技术。三方面是机电一体化策略的重要手段。以企业原有产品作为开发对象,开拓思路,对其进行重新改造与设计,充分重视与利用企业可再生的信息资源,提高交货效率及产品质量,节约成本的同时,增加了产品的环保性。企业想要在激烈的市场竞争中立于不败之地,就需要在机电一体化中积极寻求方法。
2.1零件分类及其变型模式
受制作成本限制,一般在定制煤矿机械产品零件事都是批量生产的,所以,首先应保证零件资源特性,其次要考虑不同客户的不同需求,对不同要求的零件进行单独处理。煤矿机械产品一般由标准件、通用件与定制件三类组成零件。机电一体化的模式受不同类型零件的影响其功能会产生差异。需要特别说明的是,在煤矿机械产品的机电一体化阶段,首先应该保证通用件的变型是根据已有实例做出的取代变形模型,当该模型已经不具备重用条件或是达不到变型所需要的条件时,零件变型主模型就必须通过参数化变型得到满足煤矿机械产品定制的需求。
2.2利用AutoCAD软件操作系统作为快速实现机电一体化产品信息的辅助工具
AutoCAD是指计算机的辅助设计,是设计者在设计过程中利用计算机技术或其他辅助设备帮助设计师工作时使用,使用它的画,抬高的过程,可以很简单按照各部分的大小、模式进行绘图,最终依据准确的命令完成煤矿机械的设计。由平面和高程AutoCAD绘制,在图纸中,利用软件充分表述设计者思想意图,并且可以产生三维立体模型,用最直观的方式在最大程度上表现出设计与施工。当然,任何软件都不可能完美无趣,AutoCAD绘制出来的图形同样也会存在一些软件系统难以完善的缺陷。因此,在设计部门经常使用PS图象处理软件。在煤矿机械产品的机电一体化开发中,利用几何数据模型和属性数据模型可建立煤矿机械产品的变型模型。
2.3煤矿机械几何数据模型
目前,在一体化煤矿机械产品中,操作者主要做到两项工作,一是数据化管理产品固有生成属性,二是要分析数据间的关系,此关系主要指层次分布关系。因此,分析机电一体化模型就要将其分为两部分:矿机械生产属性信息及零件图形信息。为了更好地体现零件图形信息,一般可以运用AutoCAD技术细致的体现煤矿机械零件的各个微小细节;相比之下,煤矿机械产品属性产生巨大的信息数据量,它对煤矿机械中各类零件特征进行采集归纳,以此为基础,才能实现生产煤矿机械零件实施信息化操控以及全程监控机电一体化过程等,具体到在几何数据模型中体现机电一体化工作则是由几何图形表示,为了便于从直观上观察数据,在几何数据模型中将通过点、线、面结合的方法展示。通过这些数据可以充分了解矿区环境下的所有煤矿机械产品和零件分别具有的不同属性特征与几何特征。首先,系统下的点线位置表示了几何特征;其次,属性特征则依据不同地物的分属类型进行层次归类。由前文所述可知,研究对象是几何集合构成,组成方式,为了更好地展开研究,我们可以将杂煤矿机械类的属性特征和几何特征分别分类并阐述其定义。一般情况下,具备几何特征的数据可以分为层次数据与几何数据两方面。几何数据是研究煤矿机械形状大小、空间位置及其拓扑关系等方面的基础数据。
2.4煤矿机械属性数据模型
一般情况下,属性特征可以对描述各物体要素特征、形态和分布关系等方面产生直接影响。煤矿机械产品属性与图形信息息息相关。实体对象与图层信息都拥有单向的属性数据。首先对属性数据和客观数据间的联系进行简要介绍。基本属性数据一般可以分成公共属性、独享属性、共名或共值属性、可否传播属性、传值属性和传名属性八种类型。然而如果以分类和层次关系为分类标准,那么又可将各属性数据分做两大类,例如:煤矿机械产品属性数据主要是由各设备的名称编号、赋予原值、生产状态、地理坐标等构成。
3结束语
文章首先介绍了煤矿机械产品的机电一体化要求,然后对机电一体化的参数化模型展开分析,同时根据煤矿机械产品的表达模式的机电一体化分析FlexRIA法。可以是一个很好的产品,传统的煤矿机械性能和实现数据管理通过模型的属性数据,几何数据模型对现有大量煤矿机械产品零件的分布式层次关系进行了总结,体现出系统界面、可视化、可操作性强等优点,极大地促进了中国的煤矿机械产品技术的发展,提高了企业经济效益,同时对煤矿机械产品制造技术与生产流程的协同性具有很好的借鉴和指导意义。
参考文献
1、机电一体化技术在煤矿的应用张莉;山西煤炭管理干部学院学报2007-02-25
2、机电一体化数控技术在煤矿机械中的应用方媛;卞奕明;李艳平;煤炭技术2012-07-10
摘要: 在当前的煤矿开采行业中,机电一体化数控技术的应用具有重要的现实意义,不仅可以保证煤矿生产的安全可靠,提供煤矿开采的效率和质量,还可以促进机电一体化数控技术的进一步完善。
关键词:煤矿机械;机电一体化
科学技术的进步,在客观上带动了机电一体化数控技术的更新和完善,并且在当前的发展态势下,被广泛应用到了众多的领域中。煤矿开采作为社会经济发展的重要支撑,是社会经济稳定正常运行不可忽视的方面,机电一体化数控技术在煤矿开采企业中的应用,可以大大地提高开采的质量和效率,改进开采的技术和方式,并且在不断的实践探索中,在采煤机故障的诊断以及微机监控等方面也取得了显著的成效,根据机电一体化数控技术的发展状况,它在煤矿机械设备中的应用是具有重要意义的。
1机电一体化数控技术在煤矿中应用的概况分析
从当前的煤矿开采施工的现状来看,机电一体化数控技术的应用具有重要的作用,它是综合了各种先进的技术,包括液压控制技术、电子技术以及机械技术等的综合,可以极大地提高煤矿机械设备操作的安全性、可靠性和经济性,并且也为后期的维护拆除等各种提供了便利。当前的应用现状,主要是以微处理器和微机为核心的控制装置和电子技术,在很多的煤矿机械设备中都有体现,其中电子技术较为突出,例如煤矿机械设备中故障的报警、自诊以及在线监控等,还包括提升机的PLC系统、采煤机的变频控制系统等的诸多方面,而且随着煤矿开采技术的进一步发展,会对煤矿机械性能有更高的要求,这就使得在煤矿机械的结构构成中,电子控制装置的应用会更加的普遍,维护会更加的专业。在实际的煤矿生产过程中,煤矿机械的经济性和性能的自动化程度是决定着煤矿生产通风、排水以及供电等安全性能的。煤矿电子性能的优劣以及控制系统的质量是否良好是直接影响着机械设备的运行可靠性、动力性和经济性的,然后对其使用寿命、生产效率和施工质量产生深刻影响,作为现代煤矿机械设备重要组成部分的电子控制系统,逐渐成为了现代煤矿机械化水平的重要体现。科学技术的不断发展,在煤矿机械设备中,电子控制系统的地位更加的巩固,随之而来的就是它的结构复杂程度不断加深,那么它的性能作用会更加全面的发挥,这就需要操作人员有专业的技能水平,可以对机械设备有熟练的掌握,能够简单处理一些故障问题,并制定合理的维护保养措施。一般来说,从大量的煤矿机械设备在实际开采中的应用可以看出,煤矿机械设备需要满足以下几方面的性能,首先,具有较高的精度,施工的操作简单,自动化程度高不需要过多的人工投入,并且满足节能降耗的要求,生产效率十分良好,并且实用性强,便于后期的维修管理;其次,要满足使用寿命长、安全系数高以及运行稳定可靠的要求,并且它的制造和使用成本不会过高;第三,负责操作的工作岗位条件好,劳动强度不能过高;最后,可以大大降低停机维修的时间,可以对出现故障的部位及时准确的查出,并且可以对故障进行自诊和自动警报。随着时代的发展,如果仅仅依靠液压技术和机械技术,那是很难满足煤矿机械设备各种性能改进的要求的。因此,就需要积极地发展电子控制技术,提高其普及率和使用率,它是机电一体化数控技术的重要体现,如果可以在煤矿开采机械设备中应用,必然会推动煤矿开采机械设备的又一次更新换代,从性能上产生质的飞跃。
2煤矿机械中机电一体化数控技术的应用分析
2.1煤矿综合采煤中的应用
当前,机电一体化数控技术在煤矿机械设备中应用最为典型的就是电牵引采煤机,它是机电一体化数控技术的有力体现,从它的实际应用来看,在它的牵引特性上,是远远优于液压牵引的,具有无可比拟的先进性,可以很好地应用在大倾角煤层上。它还具有一系列的应用优点,例如反应灵敏、使用周期长、运行效率高、安全可靠、动态性好以及结构简单等等。
2.2煤矿开采运输的提升设备
第一,带式输送机。这是煤矿开采输送环节中重要的运输设备,其自身具有效率高、运行可靠、输送量大,运输距离长等的特点。第二,矿井提升机。它可以轻松的完成全数字化交直流提升工作,特别是对内装式提升机,驱动和滚筒是连接在一起的整体,它是机电一体化数控技术应用的典型设备,它的应用可以大大地简化机械设备的结构。
2.3其他类的煤矿机电一体化装置
从实质上来说,煤矿供电设备是属于其他机电一体化设备范畴的。根据煤矿供电的特点,也就是要满足大功率设备的要求,设备的质量较高,运行安全可靠,因此,就要根据煤矿开采的实际来采取合理的方法以最大程度的减少无功功率的损耗,减少供电系统中的无功电流,进而提高功率的因数,一般来说,常用的方法有两种,即就地补偿和集中补偿。从当前的应用现状来看,使用最为广泛的是微机保护开关,它的网络功能是较为齐全的,对于煤矿开采来说,是十分有益的,值得大力的推广采用。
2.4煤矿安全生产中的应用
除了上述的分析外,机电一体化数控技术在煤矿机械中的应用还涉及到矿井安全生产监控系统,它是一种十分高效和合理的措施,可以对煤矿管理和安全生产起到积极的维护作用。从实际的煤矿开采工作来看,它所具有的特点就是,首先,它所采用的是Win-dows操作系统,可以接入互联网,实现网络功能,可以促进测控分站智能化水平的提高;其次,根据煤矿开采工作的特点,严格的遵守煤矿开采安全生产的规章章程,要求在一些大中小的煤矿高瓦斯矿井中,特别是瓦斯含量超标的矿井中,必须要安装矿井监测监控系统,对矿井的情况进行实时的监测,便于及早发现异常状况。
3机电一体化数控技术在煤矿机械中应用的建议
由于我国的机电一体化数控技术起步较晚,相对于国外先进技术来说,还存在着很大的差距,加上从当前我国的社会经济发展态势来看,就需要研究人员加大科研力度,增加在机电一体化数控技术上的资金投入,进而在实践中不断的提高我国的机电一体化数控技术水平,使其可以更好的应用在煤矿机械中,提高自动化程度。另外,也可以积极的借鉴国外先进的技术,并依据我国煤矿开采行业的实际状况,把握开采活动的要点,从而制定出一套不仅符合我国煤矿企业发展而且又可以促进机电一体化数控技术进步的发展规划,使其两者可以更好的结合,从而使我国的煤矿开采行业发展前景更为广阔。
4结束语
在当前的煤矿开采行业中,机电一体化数控技术的应用具有重要的现实意义,不仅可以保证煤矿生产的安全可靠,提供煤矿开采的效率和质量,还可以促进机电一体化数控技术的进一步完善。我国的机电一体化数控技术起步较晚,相对国外先进技术来说,还有很大的不足之处,需要技术人员加强研究,并积极借鉴先进经验,从而推动煤矿机械的智能化、自动化发展。
参考文献
1、机电一体化技术在现代煤矿生产中的应用胡福庆;科技致富向导2013-01-20
煤矿机电技术管理的探索与实践
摘要:技术管理工作是矿井管理的重要组成部分,机电技术管理是一项专业性强、管理难度大的重要基础性
工作。特别是在当前生产机械化程度不断提高,新产品、新设备不断涌现,机电装备水平不断提升,各项管理
工作不断细化的情况下,进一步加强机电技术管理就显得尤为重要。从6个方面介绍了中平能化集团平煤
股份四矿在机电技术管理方面的做法和经验。
关键词:煤矿机电技术管理;职工培训;煤矿质量标准化
中平能化集团平煤股份四矿位于河南省平顶山
市西北部,井田面积7·5 km2,工业储量111·89M,t
于1955年由我国自行设计并开工兴建, 1985年改
扩建,年设计能力由60万t增加到120万t。四矿
现有职工6 200余人,其中工程技术人员496人,设
备管理人员157人;主要矿井设备1 892台,原价值
5 155·05万元。20世纪90年代以来,四矿大力实
施“科技兴矿”战略,企业步入了快速发展的新阶
段,2008年实际年生产能力达到300万,t经济实力
显著增强,矿井焕发出勃勃生机。四矿2006年、
2007年连续被中国设备管理协会评为全国设备管
理先进单位。
1 健全技术管理体系,完善技术管理制度
四矿建立了机电副总领导下的科、队两级技术
管理体系。机电科下设技术、电气、电管、防爆、设
备、小件及油脂7个专业化管理小组,明确分工,各
负其责;机电队设置2名以上技术人员,采掘等单位
设置1名机电技术人员。机电系统各队由技术主管
建立本队的技术管理网络,该网络延伸至区队班组,
主要由技术员、技术大拿、技师、拔尖技术工人组成。
通过建立技术管理体系,逐级分解技术管理任务,使
技术管理更贴近生产。
为规范机电技术管理工作,每月召开由机电副
总主持、各单位主管技术员参加的技术管理专题会
议,布置当月机电技术管理工作:①机电检修方面。
该矿从检修前的措施编写与审批抓起,制订了安全
技术措施编写要求,建立了安全技术措施审批制度。
在检修中要详细记录技术数据,检修后要及时上报
检修竣工报告,反映检修实际情况,为以后的检修工
作提供依据。机电科设立机电设备检修台账,按照
设备的检修周期进行检修,使检修制度化、规范化。
②职工培训方面。建立职工培训制度。③档案管理
方面。建立档案管理制度。通过逐步完善技术管理
制度,避免因技术人员个人素质决定区队技术管理
水平高低的现象。
2 落实基础管理,服务安全生产
四矿从落实基础管理入手,健全各级岗位责任
制、各工种操作规程,并全部汇编成册下发各单位。
如遇设备更新改造,随时修订操作规程。针对近年
来设备更新快、变动较大的情况,四矿及时进行机电
设备技术特征普查,编写了《四矿主要机电设备技
术特征》,大至设备基本参数,小至配件规格、型号
均详细收录,并由各单位在日常工作中根据新情况
继续对其内容进行充实。大型固定设备做到1台1
档,新设备开箱、安装、移交等原始资料一律在矿档
案室、机电科存档,重要图纸描图后分类存放,复印
件交付使用单位。各种设备说明书、常用图纸资料、
各类检验报告、上级制度文件等分门别类集中保存。
各队技术人员负责本单位技术档案管理,并逐步完
善设备履历、配件图册等,由机电副总、机电科负责
检查督促。各类矿图定期绘制,及时更新,确保能够
准确指导实际生产。
四矿对主提升、主排水、主要通风机、压风机等
进行周期性设备技术测试,对副井罐笼、斜巷人车、
·74·
牵引机车、锅炉、钢丝绳、矿车连接装置、接地极、避
雷器等进行预防性试验及检验,认真执行《平煤集
团大型设备润滑磨损状态监测管理暂行办法》。对
大型固定设备提取油样化验分析,同时利用设备探
伤、振动测试等多种手段监测设备状态,发现问题及
时采取措施,排除事故隐患,确保设备安全高效运
行。2006年,四矿及时监测到新主井减速器轴瓦在
使用后期磨损加剧,提前对其进行了更换,保证了该
井的安全提升。
在生产过程中,四矿对大型设备改造,以及重要
的调度绞车、运输胶带、保护整定、供电设备、探放水
设备选型等,坚持以理论验算为依据,以谨慎的态度
严格把关,合理选型,确保生产安全。
3 强化职工培训,提高职工素质
四矿采取外培与内培、集中培训与分散培训相
结合的方法,抓住矿职教中心建成三级培训基地的
有利条件,强化机电各岗位职工培训,在培训制度创
新、培训方式、培训教材等方面进行有益的探索,与
矿职教中心协作编写出符合现场实际、适合职工学
习的教材。区队不仅挑选业务骨干外出参培,还组
织区队职工学习业务。在职工培训形式上,四矿除
对部分涉及面宽的内容进行全员培训外,主要采取
分工种培训的方式,显著提高了培训效果。
在每年年初,四矿系统研究制订全年的职工技
术培训纲要,将培训计划分解到各季度,确定培训目
标,安排培训进度,落实培训人员。此外,四矿要求
各单位按照培训大纲要求,于每月5日前上报当月
培训计划和上月培训总结。组织人员进行不定期抽
查,查阅其会议点名册、培训教案、授课记录、职工考
卷及成绩统计5项内容,并旁听授课,检查各队学习
情况。
该矿团委积极开展导师带徒活动,精选技术大
拿和技术骨干做导师,挑选好学上进的技校生做徒
弟,每月坚持按计划、有目的地培训,每季度组织考
核,确保活动的顺利开展和带徒质量,从而为四矿机
电设备维修培养高技术后备人才。
每年,该矿工会都要组织年度职工职业技能大
赛,开展技术对抗赛和岗位练兵,鼓励职工学技术、
钻业务。安全和技术业务培训提高了职工的安全思
想和业务技能。
4 突出服务主题,开展技术攻关
机电技术管理要突出为安全生产、管理决策服
务的主题。在技术改造和设备选型、购置前,四矿首
先充分论证其技术、经济可行性,为科学决策提供依
据;针对安全生产中的难题,开展技术攻关,重大项
目要与矿方签订承包合同,一般项目要进行立项;同
时成立专业技术活动队、活动组,组织职工积极参与
技工协会举办的技术革新和技术攻关活动;为提高
广大职工与技术人员参与技术攻关的积极性,建立
技术攻关奖励制度:小革新、小改造、小发明、小建
议、小论文等可随时申报,每季集中验收评比1次,
根据项目价值给申报者以适当奖励。广泛调动各方
面的力量,为矿井安全生产献计献策。
5 注重人才培养,加强素质考核
一方面提高技术人员待遇,关心他们的生活,稳
定现有技术队伍;另一方面着手培养基础好、有事业
心的技术工人。由各队技术主管进行传、帮、带,定
目标、压担子,逐步使其进入角色,增强了技术后备
力量。
为在全矿范围内营造尊重知识、尊重人才的良
好氛围,激励更多的职工钻研业务、学习技术,四矿
制定了评定职工技术大拿实施意见,在全矿职工中
评聘技术大拿,各队也在本单位内部评聘技术能手,
形成了职工积极学技术的进取局面。
每年对技术大拿和工人技师内部考核评聘1
次,实行能上能下,充分发挥其技术骨干作用;每2
年对技术人员进行1次考评,督促他们不断学习。
2007年,四矿推广“事故树分析方法”,技术人员每
人1题,对典型事故进行分析,查找事故诱发因素,
制订相应对策,为安全管理决策提供依据。
6 加大资金投入,提高质量标准化水平
四矿加大资金投入,对职工工作学习环境进行
集中改善。①加大井下投入,加大机电硐室和运输
线路的达标力度,努力改善职工工作环境。②加强
微机辅助管理,建立了全矿设备数据库,为及时掌握
和查询设备技术状态和使用动态提供了便利条件;
建立了大型机电设备技术特征和检修台账,可随时
了解设备技术特征和检修情况;运用FoxPro数据库
制订大型固定设备检修履历,上机共享;对副井提升
及用电情况进行日统计,上传至四矿信息平台,及时
为领导决策提供依据;设备的内部租赁及动态管理
也实现了微机化,信息化管理水平不断提升。③改
善职工学习环境,装修职工学习室,(下转第77页)
·75·配齐桌椅、书柜,配备微机、打印
机等,购入供电CAD和AutoCAD绘图软件,实现供
电设计和制图的微机化。各单位为每位职工配备了
学习用品,为技术人员配齐工作用具与技术书籍,仅
此一项每年投入在2万元以上。
7 结语
做好机电技术管理工作是保证煤矿安全生产的
需要,也是煤矿质量标准化的核心问题。有效的机
电管理可以改善煤矿生产环境,减轻劳动强度,提高
工作效率和企业经济效益,加速煤矿现代化建设。
参考文献:
[1] 张铁岗.煤矿安全技术基础管理[M].北京:煤炭工业出版社,
2003.
\
·77·