您当前的位置:首页 > 发表论文>论文发表

煤矿上机电安全文章

2023-12-12 11:37 来源:学术参考网 作者:未知

煤矿上机电安全文章

煤矿机电设备管理与安全生产

加强煤矿机电设备的管理,通过提高职工队伍的综合素质,改变管理理念和建立完善的管理制度,不仅有利于促进矿井的安全生产,也有利于提高煤矿企业的经济效益,从而提高机电设备的综合管理水平。下面我为大家整理了关于煤矿机电设备管理与安全生产的文章,仅供大家阅读交流~

1 煤矿机电设备管理存在的问题分析

1.1 机电职工人员综合素质不高

随着煤矿行业的发展,对矿工人员的需求也逐渐增多,但是,煤矿业缺乏专业的优秀人才,专业的技术人才也大量的流失,剩下的基本上是农民工。另外,由于煤矿业的机电人员工资收入较低,对于专业的优秀人才和技术工,也很难吸引技术人员的眼球,导致煤矿招工难的现象发生,由于多方面的因素,导致煤矿的机电人员队伍的素质呈现下滑的趋势。

1.2 煤矿机电设备管理理念落后

由于煤矿业的领导注重煤矿生产的产量,却对机电设备的管理未引起足够的重视,导致煤矿机电设备的管理理念存在落后的现象,只有机电设备出现问题,领带才安排技术人员对其进行维修,对于煤矿的机电设备管理,大部分煤矿企业都把机电设备管理放在主要地位,导致管理部门的工作意识不强,对于工作也是应付了事。

1.3 管理制度不完善

根据煤矿业颁布的管理制度,矿井应建立机电主管部门、电气管理小组、电缆管理小组、防爆检查管理小组等部门,使其在矿井安全生产中充分发挥作用,但是,大多数矿井对机电设备管理人员不够重视,并且尽量减少机电管理人员的数量,导致矿井专业小组的设置不到位。另外,虽然每个矿井已建立了相应的管理制度,但是没有落到实处,管理制度只是流于形式。

1.4 机电设备监督力度不到位,综合管理水平低

检查监督是煤矿机电设备管理最重要的部分,但由于检查煤矿机电设备的管理人员的综合素质较低,工作不认真,导致未全面检查矿井的机电设备,煤矿机电设备不仅需要做好检查工作,做好监督管理工作也是重要的,但现阶段监督管理工作人员缺少,导致对每台的机电设备不能全面的检查,一般采用随机抽取的方式对机电设备进行抽查,从而不能发现机电设备存在的安全隐患。对于机电设备的综合管理,由于机电设备管理混乱,对矿井的生产质量把关不严,对机电设备的技术档案和文档资料也整理不全,甚至不足够重视矿井采区的流动设备管理,只注重固定设备的管理,包括排水、通风、提升等设备管理,导致机电设备综合管理水平较低。

2 加强煤矿机电设备的`管理,促进矿井安全生产的措施

2.1 提高机电职工人员的综合素质

改善机电职工人员的薪资管理制度,特别是对专业的技术人员,采用竞争的方式,充分调动技术人员的积极性。加强对临时员工的安全生产管理,对于也别的工种人员,应安排合理,特别工种人员应待考核发证后,凭机电证才能上岗,对机电设备的管理人员,开展定期培训活动并进行考核,培训的内容应包括机电设备管理的基础知识、机电设备如何使用和机电设备的维修知识等,选择专业性较强、责任意识较强的人员对机电设备进行管理,从而提高机电职工人员的综合素质和安全生产意识。对于机电设备的安全检查员和监督员,也应提高检查员和监督员的综合素质,机电的监察员只有具有专业的知识,才能对机电设备存在的问题及时的处理。

2.2 改善机电设备的管理理念

由于煤矿企业领导在机电设备管理中占有主导作用,改变煤矿企业领导的管理理念,有利于机电设备的管理与安全生产。由于机电设备的维修管理是煤矿机电设备管理的重要组成部分,因此,加强煤矿企业领导的管理知识的学习,如煤矿机电设备管理的理论知识、现代化的机电设备管理理论知识,尤其是注重现代化设备管理理论知识的学习,有利于实现机电设备的管理。除此之外,煤矿企业领导应充分调动机电职工人员的积极性,吸取煤矿机电管理人员的管理经验,从而提高煤矿机电设备的管理水平。

2.3 建立健全的机电设备管理制度

根据新的煤矿质量标准化标准规定,应建立基本的17种机电设备管理制度,合理规划机电设备的专业小组,相应的制度考核应落到实处。为了提高机电设备的装备水平,采用微机化管理的方式,即对每个矿井的所有设备进行分类管理,统一编号管理并注册入账,当设备管理人员开展设备管理时,应对所有的设备进行挂牌标名,从而实行全面的跟踪管理,使机电设备的管理实现储备系列化,使用规范化的管理制度。

2.4 加强监督管理工作,提高机电设备综合管理水平

加强机电设备的管理与安全生产,有利于提高机电设备现场管理综合水平,这就要求煤矿企业的安全监督管理部门的管理人员,努力做好机电设备的安全检查工作,第一,制定相应的机电设备管理制度,包括管理评分制度、员工上岗考勤制度、防爆设备检查制度及机电设备维修制度;第二,加强监督管理工作,使煤矿企业的各个生产部门与管理部门在机电设备管理中发挥重要作用,对机电设备进行全面的检查,保证机电设备的安全生产效益;第三,对机电设备进行定期的检查,从而降低机电设备的安全隐患。

加强机电设备的基础管理,包括文档、图纸资料的管理,采用计算机网络化的管理方式,实现管理信息化,从而提高机电设备的管理实现。对于机电的设备和配件,当入矿井时,应严格进行质量的检验,若机电设备出现故障,应及时的进行检修,确保每台机电设备能正常运行。建立机电设备安全档案也是最关键的工作,其可以为煤矿安全生产经营提供有效的信息和数据。

专科煤矿机电一体化毕业论文范文

应用机电一体化技术,对于提升煤矿生产操作的自动化处理水平,避免造成更大的损失与危害,提高了工作效率方面起到了重要作用。下面是我为大家整理的煤矿机电一体化毕业论文,供大家参考。

摘要: 文章首先介绍了煤矿机械产品的机电一体化要求,然后对机电一体化的参数化模型展开分析,同时根据煤矿机械产品的表达模式的机电一体化分析FlexRIA法。

关键词:煤矿机械;机电一体化

1关于机电一体化技术

1.1我国机电一体化技术研究历程

从过去几十年的研究历史可以看出,我们可以把机电一体化技术的研究在我国分为四个阶段:上世纪六十年代以前,由于中国的内部问题以及战争,促使煤矿机械和电子技术的集成处理系统,这也体现出我们国家在这个问题上的机电一体化产品发展,在很大程度上是自我发展的水平,这也导致了我国发展自己的技术限制,已开发成功的产品难以获得大范围,导致下一个努力工作得到进一步发展;七十年代初,受到世界飞速的传播与发展,计算机通信控制技术为中国的机电一体化产品的发展提供了良好的外部技术基础。例如,技术的发展和国际大规模集成电路,计算机,研究我国机电一体化技术以外部物质条件。第三阶段始于九十年代初,由于光学技术的渗透,微加工技术,新型机电一体化技术越来越多地开始出现,最后的决定机电一体化技术是向智能化方向发展。

1.2机电一体化技术概述

目前最先进的机电一体化技术功能对比传统机电技术最大的特点是极大地加强了控制系统,以主菜单与机电一体化相结合以及源函数为基础,利用高端智能软件技术和微电子技术,引进多个相互融合、相互渗透的领域,以此新兴机电一体化注入新的活力。但在这一过程中,也可能面临多项技术的简单的、不集中的相加,这也给当前机电一体化增加了不少困难。研究发现,机电一体化技术在信息、计算机、煤矿机械加工、微电子技术等领域中可以寻求到最佳匹配。现在的机电一体化产品的发展是一个系统———智能化和小型化,以此达到煤矿机械加工与机电一体化技术能够共同操作,极大地满足了煤矿安全生产的需求、有效降低劳动紧张程度,并提高最终救援人员的安全度,极大地保护了矿区原生态环境,以此达到降低生产能耗的目的,使机电一体化得到长期有效稳定的发展。

1.3煤矿机械加工中机电一体化产品

伴随着全球资源日益紧缺,各国对能源问题的越来越关注,煤矿作为我国战略资源不可或缺的成员,其开采的重要性可见一斑。如今,伴随着越来越先进的机电一体化产品应用到煤矿机械加工中来,煤矿企业的开采效益越来越高。如今,以计算机控制为主的国产供电设备、提升机、电牵引采煤机、掘进机和输送机等煤矿机械加工都具备了全程监控、自动报警、图景扫描、信息控制等先进功能。这使得在我国的煤矿机械加工管理工作中,机电一体化产品的应用尤为广泛,也确保了煤矿开采工作中的高安全性、高效益性与高技术性。

2煤矿机械产品的机电一体化与生产流程的协同策略

机电一体化策略的主要内容有:其一、关系型产品模型;其二、与关系型产品模型相匹配的产品信息管理系统;其三、以实例推理为基础的智能技术。三方面是机电一体化策略的重要手段。以企业原有产品作为开发对象,开拓思路,对其进行重新改造与设计,充分重视与利用企业可再生的信息资源,提高交货效率及产品质量,节约成本的同时,增加了产品的环保性。企业想要在激烈的市场竞争中立于不败之地,就需要在机电一体化中积极寻求方法。

2.1零件分类及其变型模式

受制作成本限制,一般在定制煤矿机械产品零件事都是批量生产的,所以,首先应保证零件资源特性,其次要考虑不同客户的不同需求,对不同要求的零件进行单独处理。煤矿机械产品一般由标准件、通用件与定制件三类组成零件。机电一体化的模式受不同类型零件的影响其功能会产生差异。需要特别说明的是,在煤矿机械产品的机电一体化阶段,首先应该保证通用件的变型是根据已有实例做出的取代变形模型,当该模型已经不具备重用条件或是达不到变型所需要的条件时,零件变型主模型就必须通过参数化变型得到满足煤矿机械产品定制的需求。

2.2利用AutoCAD软件操作系统作为快速实现机电一体化产品信息的辅助工具

AutoCAD是指计算机的辅助设计,是设计者在设计过程中利用计算机技术或其他辅助设备帮助设计师工作时使用,使用它的画,抬高的过程,可以很简单按照各部分的大小、模式进行绘图,最终依据准确的命令完成煤矿机械的设计。由平面和高程AutoCAD绘制,在图纸中,利用软件充分表述设计者思想意图,并且可以产生三维立体模型,用最直观的方式在最大程度上表现出设计与施工。当然,任何软件都不可能完美无趣,AutoCAD绘制出来的图形同样也会存在一些软件系统难以完善的缺陷。因此,在设计部门经常使用PS图象处理软件。在煤矿机械产品的机电一体化开发中,利用几何数据模型和属性数据模型可建立煤矿机械产品的变型模型。

2.3煤矿机械几何数据模型

目前,在一体化煤矿机械产品中,操作者主要做到两项工作,一是数据化管理产品固有生成属性,二是要分析数据间的关系,此关系主要指层次分布关系。因此,分析机电一体化模型就要将其分为两部分:矿机械生产属性信息及零件图形信息。为了更好地体现零件图形信息,一般可以运用AutoCAD技术细致的体现煤矿机械零件的各个微小细节;相比之下,煤矿机械产品属性产生巨大的信息数据量,它对煤矿机械中各类零件特征进行采集归纳,以此为基础,才能实现生产煤矿机械零件实施信息化操控以及全程监控机电一体化过程等,具体到在几何数据模型中体现机电一体化工作则是由几何图形表示,为了便于从直观上观察数据,在几何数据模型中将通过点、线、面结合的方法展示。通过这些数据可以充分了解矿区环境下的所有煤矿机械产品和零件分别具有的不同属性特征与几何特征。首先,系统下的点线位置表示了几何特征;其次,属性特征则依据不同地物的分属类型进行层次归类。由前文所述可知,研究对象是几何集合构成,组成方式,为了更好地展开研究,我们可以将杂煤矿机械类的属性特征和几何特征分别分类并阐述其定义。一般情况下,具备几何特征的数据可以分为层次数据与几何数据两方面。几何数据是研究煤矿机械形状大小、空间位置及其拓扑关系等方面的基础数据。

2.4煤矿机械属性数据模型

一般情况下,属性特征可以对描述各物体要素特征、形态和分布关系等方面产生直接影响。煤矿机械产品属性与图形信息息息相关。实体对象与图层信息都拥有单向的属性数据。首先对属性数据和客观数据间的联系进行简要介绍。基本属性数据一般可以分成公共属性、独享属性、共名或共值属性、可否传播属性、传值属性和传名属性八种类型。然而如果以分类和层次关系为分类标准,那么又可将各属性数据分做两大类,例如:煤矿机械产品属性数据主要是由各设备的名称编号、赋予原值、生产状态、地理坐标等构成。

3结束语

文章首先介绍了煤矿机械产品的机电一体化要求,然后对机电一体化的参数化模型展开分析,同时根据煤矿机械产品的表达模式的机电一体化分析FlexRIA法。可以是一个很好的产品,传统的煤矿机械性能和实现数据管理通过模型的属性数据,几何数据模型对现有大量煤矿机械产品零件的分布式层次关系进行了总结,体现出系统界面、可视化、可操作性强等优点,极大地促进了中国的煤矿机械产品技术的发展,提高了企业经济效益,同时对煤矿机械产品制造技术与生产流程的协同性具有很好的借鉴和指导意义。

参考文献

1、机电一体化技术在煤矿的应用张莉;山西煤炭管理干部学院学报2007-02-25

2、机电一体化数控技术在煤矿机械中的应用方媛;卞奕明;李艳平;煤炭技术2012-07-10

摘要: 在当前的煤矿开采行业中,机电一体化数控技术的应用具有重要的现实意义,不仅可以保证煤矿生产的安全可靠,提供煤矿开采的效率和质量,还可以促进机电一体化数控技术的进一步完善。

关键词:煤矿机械;机电一体化

科学技术的进步,在客观上带动了机电一体化数控技术的更新和完善,并且在当前的发展态势下,被广泛应用到了众多的领域中。煤矿开采作为社会经济发展的重要支撑,是社会经济稳定正常运行不可忽视的方面,机电一体化数控技术在煤矿开采企业中的应用,可以大大地提高开采的质量和效率,改进开采的技术和方式,并且在不断的实践探索中,在采煤机故障的诊断以及微机监控等方面也取得了显著的成效,根据机电一体化数控技术的发展状况,它在煤矿机械设备中的应用是具有重要意义的。

1机电一体化数控技术在煤矿中应用的概况分析

从当前的煤矿开采施工的现状来看,机电一体化数控技术的应用具有重要的作用,它是综合了各种先进的技术,包括液压控制技术、电子技术以及机械技术等的综合,可以极大地提高煤矿机械设备操作的安全性、可靠性和经济性,并且也为后期的维护拆除等各种提供了便利。当前的应用现状,主要是以微处理器和微机为核心的控制装置和电子技术,在很多的煤矿机械设备中都有体现,其中电子技术较为突出,例如煤矿机械设备中故障的报警、自诊以及在线监控等,还包括提升机的PLC系统、采煤机的变频控制系统等的诸多方面,而且随着煤矿开采技术的进一步发展,会对煤矿机械性能有更高的要求,这就使得在煤矿机械的结构构成中,电子控制装置的应用会更加的普遍,维护会更加的专业。在实际的煤矿生产过程中,煤矿机械的经济性和性能的自动化程度是决定着煤矿生产通风、排水以及供电等安全性能的。煤矿电子性能的优劣以及控制系统的质量是否良好是直接影响着机械设备的运行可靠性、动力性和经济性的,然后对其使用寿命、生产效率和施工质量产生深刻影响,作为现代煤矿机械设备重要组成部分的电子控制系统,逐渐成为了现代煤矿机械化水平的重要体现。科学技术的不断发展,在煤矿机械设备中,电子控制系统的地位更加的巩固,随之而来的就是它的结构复杂程度不断加深,那么它的性能作用会更加全面的发挥,这就需要操作人员有专业的技能水平,可以对机械设备有熟练的掌握,能够简单处理一些故障问题,并制定合理的维护保养措施。一般来说,从大量的煤矿机械设备在实际开采中的应用可以看出,煤矿机械设备需要满足以下几方面的性能,首先,具有较高的精度,施工的操作简单,自动化程度高不需要过多的人工投入,并且满足节能降耗的要求,生产效率十分良好,并且实用性强,便于后期的维修管理;其次,要满足使用寿命长、安全系数高以及运行稳定可靠的要求,并且它的制造和使用成本不会过高;第三,负责操作的工作岗位条件好,劳动强度不能过高;最后,可以大大降低停机维修的时间,可以对出现故障的部位及时准确的查出,并且可以对故障进行自诊和自动警报。随着时代的发展,如果仅仅依靠液压技术和机械技术,那是很难满足煤矿机械设备各种性能改进的要求的。因此,就需要积极地发展电子控制技术,提高其普及率和使用率,它是机电一体化数控技术的重要体现,如果可以在煤矿开采机械设备中应用,必然会推动煤矿开采机械设备的又一次更新换代,从性能上产生质的飞跃。

2煤矿机械中机电一体化数控技术的应用分析

2.1煤矿综合采煤中的应用

当前,机电一体化数控技术在煤矿机械设备中应用最为典型的就是电牵引采煤机,它是机电一体化数控技术的有力体现,从它的实际应用来看,在它的牵引特性上,是远远优于液压牵引的,具有无可比拟的先进性,可以很好地应用在大倾角煤层上。它还具有一系列的应用优点,例如反应灵敏、使用周期长、运行效率高、安全可靠、动态性好以及结构简单等等。

2.2煤矿开采运输的提升设备

第一,带式输送机。这是煤矿开采输送环节中重要的运输设备,其自身具有效率高、运行可靠、输送量大,运输距离长等的特点。第二,矿井提升机。它可以轻松的完成全数字化交直流提升工作,特别是对内装式提升机,驱动和滚筒是连接在一起的整体,它是机电一体化数控技术应用的典型设备,它的应用可以大大地简化机械设备的结构。

2.3其他类的煤矿机电一体化装置

从实质上来说,煤矿供电设备是属于其他机电一体化设备范畴的。根据煤矿供电的特点,也就是要满足大功率设备的要求,设备的质量较高,运行安全可靠,因此,就要根据煤矿开采的实际来采取合理的方法以最大程度的减少无功功率的损耗,减少供电系统中的无功电流,进而提高功率的因数,一般来说,常用的方法有两种,即就地补偿和集中补偿。从当前的应用现状来看,使用最为广泛的是微机保护开关,它的网络功能是较为齐全的,对于煤矿开采来说,是十分有益的,值得大力的推广采用。

2.4煤矿安全生产中的应用

除了上述的分析外,机电一体化数控技术在煤矿机械中的应用还涉及到矿井安全生产监控系统,它是一种十分高效和合理的措施,可以对煤矿管理和安全生产起到积极的维护作用。从实际的煤矿开采工作来看,它所具有的特点就是,首先,它所采用的是Win-dows操作系统,可以接入互联网,实现网络功能,可以促进测控分站智能化水平的提高;其次,根据煤矿开采工作的特点,严格的遵守煤矿开采安全生产的规章章程,要求在一些大中小的煤矿高瓦斯矿井中,特别是瓦斯含量超标的矿井中,必须要安装矿井监测监控系统,对矿井的情况进行实时的监测,便于及早发现异常状况。

3机电一体化数控技术在煤矿机械中应用的建议

由于我国的机电一体化数控技术起步较晚,相对于国外先进技术来说,还存在着很大的差距,加上从当前我国的社会经济发展态势来看,就需要研究人员加大科研力度,增加在机电一体化数控技术上的资金投入,进而在实践中不断的提高我国的机电一体化数控技术水平,使其可以更好的应用在煤矿机械中,提高自动化程度。另外,也可以积极的借鉴国外先进的技术,并依据我国煤矿开采行业的实际状况,把握开采活动的要点,从而制定出一套不仅符合我国煤矿企业发展而且又可以促进机电一体化数控技术进步的发展规划,使其两者可以更好的结合,从而使我国的煤矿开采行业发展前景更为广阔。

4结束语

在当前的煤矿开采行业中,机电一体化数控技术的应用具有重要的现实意义,不仅可以保证煤矿生产的安全可靠,提供煤矿开采的效率和质量,还可以促进机电一体化数控技术的进一步完善。我国的机电一体化数控技术起步较晚,相对国外先进技术来说,还有很大的不足之处,需要技术人员加强研究,并积极借鉴先进经验,从而推动煤矿机械的智能化、自动化发展。

参考文献

1、机电一体化技术在现代煤矿生产中的应用胡福庆;科技致富向导2013-01-20

求煤矿机电专业的论文

  辽 源 职 业 技 术 学 院
  毕业综合实训报告
  题目:矿井通风设计

  专业班级: 高矿电0831
  设 计 人: 任 丹 鹏
  指 导 人: 刘 温 暖
  2011年5月27日

  辽 源 职 业 技 术 学 院
  毕业设计(论文)评阅人评语

  评 阅 人: (签字)

  评阅日期: 年 月 日

  辽 源 职 业 技 术 学 院
  毕 业 设 计(论文)答 辩 评 语 第 号

  日 期: 年 月 日

  提交设计(论文)学生:
  提交毕业设计(论文)答辩材料:
  1)、设计(论文)说明书共 页
  2)、设计(论文)图 共 页
  3)、指 导 教 师 评 语 共 页
  毕 业 设 计 (论文) 答 辩 评 语:

  答辩成绩:

  综合成绩:

  毕业设计(论文)答辩组长: (签字)
  组员: (签字)

  目录
  一、矿井通风设计的内容与要求 5
  (一)矿井基建时期的通风 5
  (二)矿井生产时期的通风 5
  (三)矿井通风设计的内容 6
  (四)矿井通风设计的要求 7
  二、优选矿井通风系统 7
  (一)矿井通风系统的要求 7
  (二)确定矿井通风系统 8
  三、矿井风量计算 8
  (一)矿井风量计算原则 8
  (二)矿井需风量的计算 8
  1.采煤工作面需风量的计算 8
  2.掘进工作面需风量的计算 11
  3.硐室需风量计算 13
  4.其他用风巷道的需风量计算机 14
  四、矿井通风总阻力计算 15
  (一)矿井通风总阻力计算原则 15
  (二)矿井通风总阻力计算 15
  五、矿井通风设备的选择 16
  (一)主要通风机的选择 17
  六、概算矿井通风费用 21

  前 言

  通风是关系到煤矿生产安全的重要环节。确保通风系统的稳定可靠,要做到随矿井生产变化即时进行通风系统改造与协调,严格控制串联通风,强化局部通风管理,杜绝局部通风机无计划断电,做到通风系统正规合理、可靠、稳定.

  矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。
  第一章 矿井通风设计的内容与要求
  矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。
  矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。
  第一节 矿井基建时期的通风
  矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。
  第二节 矿井生产时期的通风
  矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况:
  (1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。
  (2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。
  矿井通风设计所需要的基础资料如下:
  矿井地形地质图;矿岩游离二氧化硅(矽)、硫、放射性物质及瓦斯和有害气体的含量;煤岩自然发火倾向性;煤尘爆炸性;矿区气候条件,包括年最高、最低、平均气温、地温、地热增深率及常年主导风向等;矿岩容重、块度、松散系数、含泥量及粘结性;矿区有无老窑旧巷及其所在地点和存在情形;矿井年产量、服务年限、开拓系统、回采顺序、开采方法;产量分配和作业布置,同时作业的工作面数及备用工作面个数;同时开动的各种型号的凿岩机台数及其分布;同时爆破的最多炸药量;同时工作的最多人数等。
  第三节 矿井通风设计的内容
  (1)确定矿井通风系统
  (2)矿井通风计算和风量分配
  (3)矿井通风阻力计算
  (4)选择通风设备
  (5)概算矿井通风费用
  此外,根据不同地区或矿井的特殊条件,还需警醒矿井空气温度调节的计算(具体内容见第八章)
  第四节 矿井通风设计的要求
  (1)将足够的新鲜空气有效地送到井下工作场所,保证生产和创造良好的劳动条件;
  (2)通风系统简单,风流稳定,易于管理,具有抗灾能力;
  (3)发生事故时,风流易于控制,人员便于撤出;
  (4)有符合规定的井下环境及安全检测系统或检测措施;
  (5)通风系统的基建投资省,营运费用低,综合经济效益好。
  第二章 优选矿井通风系统
  第一节 矿井通风系统的要求
  (1)每一矿井必须有完整的独立通风系统。
  (2)进风井口应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。
  (3)箕斗提升井或装有胶带运送机的井筒不应兼做进风井,如果兼做进风井使用,必须采取措施,满足安全的需要。
  (4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近,当通风机之间的风压相差较大时,应减小共用风路的风压,使其不超过任何一个通风机风压的30%。
  (5)每一个生产水平和每一采区,都必须布置回风巷,实行分区通风。
  (6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。
  (7)井下充电室必须用单独的新鲜风流通风,回风风流应引入回风巷。
  第二节 确定矿井通风系统
  根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。矿井通风系统应具有较强的抗灾能力,当井下一旦发生灾害性事故后所选择的通风系统能将灾害控制在最小范围,并能迅速恢复正常生产。
  第三章 矿井风量计算
  第一节 矿井风量计算原则
  矿井需风量,按下列要求分别计算,并采取其中最大值。
  (1) 按井下同时工作最多人数计算,每人每分钟共计风量不得少于4m³;
  (2) 按采煤、掘进、硐室及其他实际需要风量的总和进行计算。
  第二节 矿井需风量的计算
  1.采煤工作面需风量的计算
  采煤工作面的风量应该按下列因素分别计算,取得最大值。
  1) 按瓦斯涌出量计算
  Qwi=100 Qgwi Kgwi
  式中 Qwi——第i个采煤工作面需要风量,m³/min
  Qgwi——第i个采煤工作面瓦斯绝对涌出量,m³/min
  Kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,它是该工作面瓦斯绝对涌出量的最大值和平均值之比。生产矿井可根据各个工作面正常生产条件时,至少进行5昼夜的观测,得出5个比值,取其最大值。通常机采工作面取Kgwi=1.2~1.6;炮采工作面取Kgwi=1.4~2.0;水采工作面取Kgwi=2.0~3.0。
  2) 按工作面进风流温度计算
  采煤工作面应有良好的气候条件。其进风流温度可根据风流温度预测方法进行计算。其气温与风速应符合表7-4-1的要求。

  表7-4-1 采煤工作面空气温度与风速对应表
  采煤工作面进风流气温/℃ 采煤工作面风速/m•s-1
  <15
  15~18
  18~20
  20~23
  23~26 0.3~0.5
  0.5~0.8
  0.8~1.0
  1.0~1.5
  1.5~1.8

  采煤工作面的需要风量计算:
  Qwi=60 Vwi Swi Kwi
  式中 Vwi——第i个采煤工作面的风速,按其进风流温度从表7-4-1中选取,m/s;
  Swi——第i个采煤工作面有效通风断面,取最大和最小控顶时有效断面的平均值,m2
  Kwi——第i个工作面的长度系数,可按表7-4-2选取。

  表7-4-2 采煤工作面长度风量系数表
  采煤工作面长度/m 工作面长度风量系数Kwi
  <15
  50~80
  80~120
  120~150
  150~180
  >180 0.8
  0.9
  1.0
  1.1
  1.2
  1.30~1.40

  3) 按使用炸药量计算
  Qwi=25×Awi
  式中 25——每使用1kg炸药的供风量,m3/min;
  Awi——第i个工作面一次爆破使用的最大炸药量,kg;
  4) 按工作人员数量计算
  Qwi=4×nwi
  式中 4——每人每分钟应供给的最低风量,m3/min;
  nwi——第i个采煤工作面同时工作的最多人数,个。
  5) 按风速进行验算
  按最低风速验算各个采煤工作面的最小风量:
  Qwi≥60×0.25×Swi
  按最高风速验算各个采煤工作面的最大风量:
  Qwi≤60×0.25×Swi
  采煤工作面有串联通风时,按其中一个最大需风量计算。备用工作面也按上述要求,并满足瓦斯、二氧化碳、风流温度和风速等规定计算需风量,且不得低于其回采时需风量的50%。
  2.掘进工作面需风量的计算
  煤巷、半煤岩和岩巷掘进工作面的风量,应按下列因素分别计算,取其最大值。
  1) 按瓦斯涌出量计算
  Qhi=100×Qghi×Kghi
  式中 Qhi——第i个掘进工作面的需风量,m3/min;
  Qghi——第i个掘进工作面的绝对瓦斯涌出量,m3/min;
  Kghi——第i个掘进工作面的瓦斯涌出不均匀和备用风量系数,一般可取1.5~2.0。
  2) 按炸药量计算
  Qhi=25×Ahi
  式中 25——使用1kg炸药的供风量,m3/min;
  Ahi——第i个掘进工作面一次爆破使用的最大炸药量,kg。
  3) 按局部通风机吸风量计算
  Qhi= ∑Qhfi×Khfi
  式中 ∑Qhfi——第i个掘进工作面同时运转的局部通风机额定风量的和。各种通风机的额定风量可按表7-4-3选取。
  Khfi——为防止局部通风机吸循环风的风量备用系数,一般取1.2~1.3。进风巷道中无瓦斯涌出时取1.2,有瓦斯涌出时去1.3。

  表7-4-3 各种局部通风机的额定风量
  风机型号 额定风量/ m3•min-1
  JBT-51(5.5KW)
  JBT-52(11KW)
  JBT-61(14KW)
  JBT-62(28KW) 150
  200
  250
  300

  4)按工作人员数量计算
  Qhi=4×nhi
  式中nhi ——第i个掘进工作面同时工作的最多人数,人。
  5)按风速进行验算
  按最小风速验算,各个岩巷绝境工作面最小风量:
  Qhi≥ 60×0.15×Shi
  各个煤巷或半煤巷掘进工作面的最小风量:
  Qhi≥ 60×0.25×Sdi
  按最高风速验算,各个掘进工作面的最大风量:
  Qhi≤ 60×4×Shi
  式中Shi——第i个掘进工作面巷道的净断面积,m2。
  3.硐室需风量计算
  各个独立通风硐室的供风量,应根据不同类型的硐室分别进行计算:
  1) 机电硐室
  发热量大的机电硐室,按硐室中运行的机电设备发热量分别进行计算:
  Qri= 3600×∑N×θ
  ρ×Cp×60×Δt
  式中Qhi——第i个机电硐室的需风量,m3/min;
  ∑N—机电硐室中运转的电动机(变压器)总功率,kw;
  θ—机电硐室的发热系数,可根据实际考察由机电硐室内机械设备运转时的实际热量转换为相当于电器设备容量做无用功的系数确定,也可按表7-4-4选取;
  ρ—空气密度,一般取1.2kg/ m3;
  Cp—空气的定压比热,一般可取1kJ/(kg•K);
  Δt—机电硐室进、回风流的温度差,℃。
  表7-4-4机电硐室发热系数(θ)表
  机电硐室名称 发热系数
  空气压缩机房 0.20~0.23
  水泵房 0.01~0.03
  变电所、绞车房 0.02~0.04
  采区变电所及变电硐室,可按经验值确定需风量:
  Qri=60~80 m3/min
  2) 爆破材料库
  Qri=4×V/60
  式中 V—库房容积,m3
  但大型爆破材料库不得小于100 m3/min,中小型爆破材料库不得小于60 m3/min。
  3) 充电硐室
  按其回风流中氢气浓度小于0.5%计算
  Qri=200×qrhi
  式中qrhi ——第i个充电硐室在充电时产生的氢气量,m3/min。
  4.其他用风巷道的需风量计算机
  各个其他巷道的需风量,应根据瓦斯涌出量和风速分别进行计算,采用其最大值。
  1) 按瓦斯涌出量计算
  Qoi=133×Qgoi×kgoi
  式中Qgoi——第i个其他用风巷道的瓦斯绝对涌出量,m3/min;
  koi ——第i个其他用风巷道瓦斯涌出不均匀的风量备用系数,一般可取kgoi=1.2~1.3.
  2) 按最低风速验算
  Qoi≥ 60×0.15×Soi
  式中Soi——第i个其他井巷净断面积,m2。
  5.矿井总风量计算
  矿井的总进风量,应按采煤、掘进、硐室及其他地点实际需要风量的总和计算:
  Qm=(∑Qwt+∑Qht+∑Qrt+∑Qot)×km
  式中∑Qwt—— 采煤工作面和备用工作面所需风量之和,m3/min;
  ∑Qht—— 掘进工作面所需风量之和,m3/min;
  ∑Qrt—— 硐室所需风量之和,m3/min;
  ∑Qot—— 其他用风地点所需风量之和,m3/min。
  km—— 矿井通风(包括矿井内部漏风和配风不均匀等因素)系数,可取1.15~1.25。
  第四章 矿井通风总阻力计算
  第一节 矿井通风总阻力计算原则
  (1)矿井通风总阻力,不应超过2940pa。
  (2)矿井井巷的局部阻力,新建矿井(包括扩建矿井独立通风的扩建区)宜按井巷摩擦阻力的10%计算,扩建矿井宜按井巷摩擦阻力的15%计算。
  第二节 矿井通风总阻力计算
  矿井通风总阻力是指风流由进风井口起,到回风井口止,沿一条通路(风流路线)各个分支的摩擦阻力和局部阻力的总和,简称矿井总阻力,用hm表示。
  对于有两台或多台主要通风机工作的矿井,矿井通风阻力应按每台主要通风机所服务的系统分别计算。
  在主要通风机的服务年限内,随着采煤工作面及采区接替的变化,通风系统的总阻力也将因之变化。为了使主要通风机在整个服务期限都能满足需要,而且主要通风机有较高的运转效率,需要按照开拓开采布局和采掘工作面接替安排,对主要通风机服务期内不同时期的系统总阻力的变化进行分析,当根据风量和巷道参数(断面、长度等)直接判定出最大总阻力路线时,可按该路线的阻力计算矿井总阻力,当不能直接判定时,应选几条可能最大的路线进行计算比较,然后确定该时期的矿井总阻力。
  在矿井通风系统总阻力最小时称通风容易时期。通风系统总阻力最大时称为通风困难时期。对于通风容易和困难时期,要分别画出通风系统图。按照采掘工作面及硐室的需要分配风量,再由各段风路的阻力计算矿井总压力。
  为便于计算和查验,可用表7-4-5的格式,沿着通风容易和困难时期的风流路线,依次计算各段摩擦阻力hft,然后分别计算得出容易和困难时期的总摩擦阻力hfe和hfd,再乘以1.1(扩建矿井乘以1.15)后,得两个时期的矿井总压力hme和hmd。
  通风容易时期总阻力 hme=(1.1~1.15)hfe
  通风困难时期总阻力 hmd=(1.1~1.15)hfd
  上面两式中hf按下式计算:
  hf= hfi
  式中 hfi= Qi2
  第五章 矿井通风设备的选择
  第一节 矿井通风设备是指主要通风机和电动机。
  (1) 矿井必须装设两套同等能力的主通风设备,其中一套做备用。
  (2) 选择通风设备应满足第一开采水平各个时期工况变化,并使通风设备长期高效率运行。当工况变化较大时,根据矿井分期时间及节能情况,应分期选择电动机。
  (3) 通风机能力应留有一定的余量,轴流式通风机在最大设计负压和风量时,轮叶运转角度应比允许范围小5°;离心式通风机的选型设计转速不宜大于允许最高转速的90%。
  (4) 进、出风井井口的高差在150m以上,或进、出风井井口标高相同,但井深400m以上时,宜计算矿井的自然风压。
  第二节 主要通风机的选择
  (1)计算通风机风量Qf
  由于外部漏风(即井口防爆门及主要通风机附近的反风门等处的漏风),风机风量Qf大于矿井风量Qm
  Qf=k Qm
  式中 Qf—— 主要通风机的工作风量,m3/s;
  Qm——矿井需风量,m3/s;
  K——漏风损失系数,风井不做提升用时取1.1,箕斗井做回风用时取1.15;回风并兼做升降人员时取1.2。
  (2)计算通风机风压
  通风机全压Htd和矿井自然风压HN共同作用克服矿井通风系统的总阻力hm、通风机附属装置(风硐和扩散器)的阻力hd及扩散器出口动能损失Hvd。当自然风压与通风机风压作用相同时取“-”;自然风压与通风机负压作用反向时取“+”。根据提供的通风机性能曲线,由下式求出通风机风压:
  Htd=hm+hd+Hvd±HN
  通产离心式通风机提供的大多是全压曲线,而轴流式通风机提供的大多是静压曲线。因此,对抽出式通风矿井:
  离心式通风机:
  容易时期 Htd min=hm+hd+Hvd±HN
  困难时期 Htd max=hm+hd+Hvd±HN
  表7-4-5 矿井通风阻力计算表
  时期 节点序号 巷道名称 支护形式 a/
  Ns2m-4 L/M U/M S/m2 S3/s6 R/
  Ns2m-8 Q/
  m3s-1 Q2/
  m6s-2 hfi
  /pa V/
  ms-1
  容易时期
  hfi=∑hfi= pa
  困难时期
  hfi=∑hfi= pa

  轴流式通风机:
  容易时期 Htd min=hm+hd-HN
  困难时期 Htd max=hm+hd+HN
  通风容易时期为使自然风压与通风机风压作用相同时,通风机有较高的效率,故从通风系统阻力中减去自然风压HN;通风困难时期,为使自然风压与通风机风压作用反向时,通风机能力满足,故通风系统阻力中加上自然风压HN。
  (3)初选通风机
  根据计算的矿井通风容易时期通风机的Qf、Hsd min(或Htd max)和矿井通风困难时期通风机的Qf、Hsd max(或Htd max)在通风机特性曲线上,选出满足矿井通风要求的通风机。
  (4)求通风机的实际工况点
  因为根据Qf、Hsd max(或Htd max)和Qf、Hsd min(或Htd max)确定的工况点,即设计工况点不一点恰好在所选择通风机的特性曲线上,必须根据通风机的工作阻力,确定其实际工况点。
  1) 计算通风机的工作风阻
  用静压特性曲线时:
  Ssd min=
  Ssd max=
  用全压特性曲线时:
  RTd min=
  STd max=
  2)确定通风机的实际工况点
  在通风机特性曲线图中做通风机工作风阻曲线,与风压曲线的交点即为实际工况点。
  (5) 确定通风机的型号和转速
  根据各台通风机的工况参数(Qf、Hsd、η、N)对初选的通风机进行技术、经济和安全性比较,最后确定满足矿井通风要求,技术先进、效率高和运转费用低的通风机的型号和转速。
  (6)电动机选择
  1)通风机输入功率按通风容易及困难时期,分别计算通风机所需输入功率Nmin、Nmax。
  Nmin= Qf Hsd min/1000ηs Nmax= Qf Hsd max/1000ηs
  或Nmin= Qf Htd min/1000ηt Nmax= Qf Htd max/1000ηt
  式中ηt、ηs分别为通风机全压效率和静压效率;
  2)电动机的台数和种类
  当Nmin≥0.6Nmax时,可选一台电动机,电动机功率为
  Ne=Nmax•ke/(ηeηtr)
  当Nmin<0.6Nmax时,可选两台电动机,其功率分别为
  初期 Nemin= •ke/(ηeηtr)
  后期按Ne=Nmax•ke/(ηeηtr)计算。
  式中 ke——电动机容量备用系数,ke=1.1~1.2
  ηe——电动机效率,ηe=0.9~0.94(大型电动机取较高值)
  ηtr——传动效率,电动机与通风机直联时ηtr=1,皮带传动时ηtr=0.95。
  电动机功率在400~500kw以上时,宜选用同步电动机。其优点是在低负荷运转时,可用来改善电网功率因数,使矿井经济用电;缺点是这种电动机的购置和安装费较高。
  第六章 概算矿井通风费用
  吨煤通风成本是通风设计和管理的重要经济指标。统计分析成本的构成,则是探求降低成本提高经济效益不可少的基础资料。
  吨煤通风成本主要包括下列费用:
  1. 电费(W1)
  吨煤的通风电费为主要通风机年耗电费及井下辅助通风机、局部通风机电费之和除以年产量,可用如下公式计算:
  W1=(E+EA)×D/T
  式中 E——主要通风机年耗电量,设计中用下式计算:
  通风容易时期和困难时期共选一台电动机时,
  E=8760(Nemin+ Nemax)/(keηvηw)
  选两台电动机时
  E=4380(Nemin+ Nemax)/(keηvηw)
  式中 D——电价,元/kw•h
  T——矿井年产量,t;
  EA——局部通风机和辅助通风机的年耗电量;
  ηv——变压器效率,可取0.95
  ηw——电缆输电效率,取决于电缆长度和每米电缆损耗,在0.9~0.95范围内选取。
  2. 设备折旧费
  通风设备的折旧费与设备数量、成本及服务年限有关可用表7-4-6计算。
  吨煤的通风设备折旧费W2为
  W2=(G1+G2)/T
  表7-4-6通风成本计算表

  序
  号
  设备名称
  计算单位

  数量 总成本
  总计 服
  务
  年
  限 基本投资折旧费 大修理折旧费
  备注
  单位成本 设备费 运输及安装费

  3. 材料消耗费用
  包括各种通风构筑物的材料费,通风机和电动机润滑油料费,防尘等设施费用。每吨煤的通风材料消耗费W3为:
  W3=C/T
  式中 C——材料消耗总费用,元/a。
  4. 通风工作人员工资费用
  矿井通风工作人员,每年工资总额为A(元),则一吨煤的工资费用W4为
  W4= A/T
  5. 专为通风服务的井巷工程折旧费和维护费
  折算至吨煤的费用为W5。
  6.每吨煤的通风仪表的购置费和维修费用W6
  矿井每采一吨煤的通风总费用W为
  W= W1 +W2+ W3+ W4+ W5+ W6矿井

  结束语
  三年的学习已近尾声,我通过三年来的系统学习,使我掌握了坚实的基础理论和系统的专门知识,也使我的业务水平有了很大的提高,而着一切,都是归功于辽源职业技术学院的各位老师的深切教诲与热情鼓励.在即将毕业之际,我要感谢三年来的所有教育我,关心我的老师们,是他们在我学习期间给了我最有力的帮助和鼓励,使我能顺利的完成学业,对此,我表示衷心地感谢!本课题是我在我的导师刘温暖教授的悉心指导下完成的.半年多来,刘教授多次询问课题进程,帮助我开拓研究思路.刘教授以其严谨求实的治学态度,高度的敬业精神,孜孜以求的工作作风和大胆创新的进去精神给我树立了榜样.在此向刘教授致以诚挚的谢意和崇高的敬意。

  参考文献
  (1)矿井通风与安全 作 者: 何廷山 2009
  (2)煤矿开采技术专业及专业群教材 作者 喻晓峰 刘其志

煤矿机电工作总结

煤矿机电工作总结范文

时光荏苒,不知不觉中,七个多月的时光匆匆溜走。回顾以往,机电工作有收获也有不足,我们紧紧围绕安全生产方针,认真执行《煤矿安全规程》,以人为本,与时俱进,狠抓管理,基本实现了机电系统的安全、安装,稳定、经济、高效运行。通过这以往的工作,大家积累了大量的工作经验,各方面都得到了较大的充实和提高。现就机电工作情况作以总结汇报。

一、立足安全规程,强化机电安全质量标准化

安全质量标准化时煤矿提高水平、建设安全生产长效机制的根本途径,只有安全质量标准化达到并保持一定的标准,使公司处于安全生产的良好状态,才能够适应和保障员工生命安全和煤炭工业现代化建设的需要。

1。机电运输大会战的开展

二零一零年初,机电工作思路着手机电运输相关事宜,机电方面涉及到煤矿安全及整个矿井的生产。目的是充分发挥机械设备的优势和效能,减少机电人员的'管理维护和保养操作水平。结合以上计划制定了《煤矿机电运输安全质量标准化及考评办法》,借以考核和促进生产单位强化安全质量标准化。

2。强化机电设备的管理和检修维护保养

充分发挥机械设备的优势和效能,减少机电事故,提高矿机电人员的管理维护和保养操作水平。

①每月定期检修空压机房、主绞车,通风机等各大机房中各类设备。

②完善设备台帐、设备计划、设备管理,整理机电电缆仓库、开关仓库。

③加强、规范设备管理,完善电缆等各类标志牌的张贴。

④标准化验收和机电大检查紧密结合、相辅相成。进而提高设备的完好率,降低设备失爆率,提高井下安全系数。

3。强化安全理念教育。从本人做起,将安全生产落实到每个人。为了提高每位员工的安全生产意识,加强管理办法和措施的落实。

4。强化每月机电检查,加强平时排查。着重加强平时设备隐患排查力度,设备失爆率有了很大程度下降,较大程度地扼制了安全事故的发生。

二、机电培训工作仍不到位

尽管各单位的机电培训工作每年都在进行,但是由于员工学习意识不高、培训内容有时针对性不强,理论实际不易结合,造成部分员工学习积极性不高、培训走过场的现象发生,甚至以“应付差事”,不认真学习培训单位安排的课程等。以后,望机电培训工作必须抓实。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页