您当前的位置:首页 > 发表论文>论文发表

火箭推进器的发展论文

2023-12-08 23:01 来源:学术参考网 作者:未知

火箭推进器的发展论文

火箭是以热气流高速向后喷出,利用产生的反作用力向前运动的喷气推进装置。它自身携带燃烧剂与氧化剂,不依赖空气中的氧助燃,既可在大气中,又可在外层空间飞行。1926年3月16日,美国火箭研制先驱者、科学家罗伯特·戈达德在美国成功发射了世界上第一枚液燃助推火箭。罗伯特·戈达德被公认为是现代火箭技术之父。

早在17世纪,牛顿就设想过物体如何绕地球做圆周运动:在高山上架设一尊威力无比的大炮,如果炮弹的速度足够快,它就不会落下来,而是围绕地球做圆周运动甚至可以飞出地球。牛顿还计算出来:大炮射出的炮弹要想不落地而围绕地球做圆周运动的话,速度必须达到7.9千米/秒,这就是第一宇宙速度;而要飞出地球,就必须达到11.2千米/秒,即第二宇宙速度。

在教学之余,齐奥尔科夫斯基醉心于各种科学研究和计算,特别是关于宇宙航行和火箭推动力的理论研究。1903年,他发表了《利用喷气工具研究宇宙空间》这本现代航天史上划时代的著作。书中提出了火箭飞行速度同火箭发动机喷气速度、火箭质量、燃料质量关系的公式——齐奥尔科夫斯基公式。从人类发射第一枚火箭到现在,世界各国每一枚火箭的设计制造都离不开这个公式的指导。

齐奥尔科夫斯基认为,要想克服地球引力进入环绕地球的轨道,需要使用液氢和液氧作为推进剂的多级火箭,才能达到必须具备的速度。火箭的推进剂经过燃烧室燃烧之后,产生高温高压气体,经过喷管加速喷出,产生反作用力推动火箭前进。这就像用水管喷水或枪炮射击时产生后坐力一样。齐奥尔科夫斯基不仅设计了火箭推进器、多级火箭方案,还提出了密封舱和空间站的设想,以及在太空生存必需的密封生态循环系统、为航天员提供氧气和食品等设想。

如果说齐奥尔科夫斯基解决了火箭的理论问题,戈达德和冯·布劳恩则解决了火箭的技术问题。

罗伯特·戈达德是美国最早的火箭科学家,1909年开始进行火箭动力学方面的理论研究。3年后,他点燃了一枚放在真空玻璃容器内的固体燃料火箭,证明火箭能在真空中工作。1919年,他发表的报告《到达极大高度的方法》阐述了火箭飞行的基本数学原理。1926年3月,戈达德成功发射了第一枚火箭:用汽油和液氧作为推进剂,长约3.4米,发射质量为4.6千克,飞行延续了约2.5秒,最大高度为12.5米,飞行距离为56米。这枚火箭证实了液体推进剂的可行性,从而使他成为现代火箭的鼻祖。到1945年去世之前,戈达德进行了34次火箭发射,但大多以失败告终,也没能获得官方资助。后来,为纪念这位火箭科学的先驱,美国国家航空航天局将位于美国东部马里兰州格林贝尔特的大型研究中心命名为“戈达德太空飞行中心”。

与戈达德比起来,冯·布劳恩要幸运得多。他1912年出生于德国,16岁时看到了德国航天先驱、火箭专家赫尔曼·奥伯特的著作《飞向星际空间的火箭》,从此迷上了星际旅行。1930年,布劳恩在柏林工业大学参加了奥伯特发起的德国空间旅行学会,协助奥伯特进行液体火箭测试。他的毕业论文详细论述了液体火箭发动机的理论和实验,被评为特优论文。第二次世界大战期间,他领导了德国V-2火箭的研制工作。V-2火箭以酒精和液氧为推进剂,全长14米,发射质量13吨,弹头1吨,飞行弹道最高为80~100千米。第二次世界大战后,冯·布劳恩到了美国,领导美国的航天事业。1946年,美国发射了一枚V-2火箭。这枚飞到80千米高空的火箭是用来进行太阳紫外线观测的,它开启了太空科学的新篇章。

【论文欣赏】载人登火运载器核热推进末级总体方案初步研究

本文由北京宇航系统工程研究所的李平岐 陈海鹏 洪刚 朱永泉 王建明等共同编撰,发表于《国际太空2017年09期》,以下为文章内容:

对于载人登火任务,若采用常规的化学推进技术,地球出发规模达到1400t,而采用核热推进技术后,地球出发规模可降低至800t。核热推进技术以其高比冲、大推力的独特性能,具有化学推进火箭无法比拟的深空探测优势。

前期火星探测任务表明,火星上具备生命存在的某些必备条件,尤其是水的发现,极大地激发了人类在火星上寻找生命的热情,成为近年来国际深空探测的热点。核热推进技术以其高比冲、大推力的独特性能,具有化学推进技术无法比拟的深空探测优势。而且随着核动力技术的逐步发展,核能源安全问题可以得到可靠解决。为了确保我国在未来深空探测领域能够发挥更大作用,发展核热推进技术具有重大意义。

本文以载人登火任务为背景,对核热推进运载器的总体方案进行了初步研究,对核热推进运载器的总体性能、设计特点以及关键技术进行了初步分析和梳理。

随着人类对火星的了解越来越多,美国国家航空航天局、俄罗斯联邦航天局、欧洲航天局都已开始进行移民火星的科学研究,有望在21世纪30年代中期实现人类登陆火星的梦想。其中,美国国家航空航天局早在1988年就已经开始了载人火星探测的方案研究,并形成了载人登陆火星的“火星参考任务”(DRM)系列方案。

美国《载人火星 探索 设计参考体系5.0》(Mars DRA5.0),基本确立了“重型运载火箭+核动力末级”的总体方案,其基本方案为采用7发重型火箭将核热推进级、载人/货运有效载荷送至近地轨道,之后在近地轨道分别对接成2发货运火箭和1发载人火箭,由核热推进运送至火星并返回地球。早期,美国载人火星探测方案曾提到过利用传统化学推进系统进行载人登火,地球出发规模高达1400t。核热推进系统的结构与化学火箭发动机类似,推力也大致相当,但比冲提高到900 950s左右,地球出发规模得以降低到800t。Mars DRA5.0方案总体上采取“人货分运、物先人后”的原则。

美国Mars DRA5.0载人登火方案

参考美国Mars DRA5.0方案,我国也开展了初步的载人登火任务规划,按照地球出发规模700 800t考虑,共进行7 8次发射,在近地轨道进行5次对接。

1)由重型运载火箭1将核热推进奔火变轨级1送入近地轨道;

2)由重型运载火箭2将核热推进奔火变轨级2送入近地轨道;

3)由重型运载火箭3将轨道舱1(火星着陆下降器和上升器)送入近地轨道;

4)由重型运载火箭4将轨道舱2(火星表面生活舱和火星车)送入近地轨道;

5)由重型运载火箭5将核热推进奔火变轨级3送入近地轨道;

6)由重型运载火箭6将液氢贮箱送入近地轨道;

7)由重型运载火箭7将载人摆渡航天器(含飞船2)送入近地轨道;

8)由载人火箭将载人飞船1送入近地轨道。

将核热推进奔火变轨级1和轨道舱1在近地轨道对接,由核热推进奔火变轨级1将轨道舱1送入奔火轨道,轨道舱1与奔火变轨级1分离,之后由轨道舱1制动、气动减速将下降器和上升器送入环火轨道,下降器和上升器着陆火星表面;将核热推进奔火变轨级2和轨道舱2在近地轨道对接,由核热推进奔火变轨级2将轨道舱2送入奔火轨道,轨道舱2与奔火变轨级2分离,之后由轨道舱2制动、气动减速将火星表面生活舱和火星车送入环火轨道,等待后续入轨的载人飞船;将热推进奔火变轨级3、液氢贮箱、载人摆渡航天器和载人飞船1依次在近地轨道对接,航天员由载人飞船进入摆渡飞行器,由核热奔火变轨级3(和液氢贮箱)将载人摆渡航天器和载人飞船送入奔火轨道、环火轨道。载人摆渡飞行器和先入轨的火星表面生活舱在环火轨道对接,生活舱与摆渡飞行器其他部分分离,之后生活舱和飞船2降落在火星表面。

完成使命后,航天员通过火星上升级和飞船2进入火星轨道,并与载人摆渡航天器其他部分和载人飞船1进行交会对接。返回地球之前,航天员进入载人飞船1,与摆渡航天器分离,直接再入地球。

核热推进动力系统主要包括核热发动机和增压输送系统两部分组成。目前,国内核热发动机还处于概念设计阶段,核热发动机在原理上与以液氢为工质的膨胀循环发动机类似,不同的是将氢氧燃烧室替换成核反应堆。液氢推进剂从贮箱出来经泵增压后首先进入发动机冷却夹套冷却推力室后气化,之后分为两路:一路直接进入推力室,另一路吹动涡轮后进入推力室。进入推力室的氢气经核反应堆加热之后,变成高温高压气体经喷管高速喷出,形成推力。

核热发动机概念原理图

(1)核热发动机比冲

发动机比冲正比于推进介质温度的开方,反比于分子量的开方。由于材料及传热的限制,燃烧室温度一般不会超过3000 4000K,因此降低分子量是提高比冲的有效途径。

化学燃烧产物的分子量一般都超过10,而核热发动机可以直接将低分子量介质加热至高温,从而产生高比冲。目前而言,核热发动机最好的工作介质是液氢,既有良好的冷却和膨胀做功能力,又是分子量最小的单质。为最大化提高介质温度,核燃料棒技术水平对比冲性能起着决定性作用,是核热发动机最为核心的关键技术,也是我国在核热发动机领域与国外差距较大的技术。

目前,俄罗斯在该领域处于最高水平,其三元碳化物技术可将氢加热到2800K以上,从而实现发动机比冲超过900s。在发动机面积比为300和喷管效率为0.96的情况下,随着氢加热温度的提高,比冲相应发生变化。

(2)核热发动机推质比

核热发动机由于有核反应堆及相关屏蔽层的存在,推质比低于常规的液体火箭发动机,但远大于电推进发动机,美国核热发动机推质比设计值最高达到4.8,一般取在3 4之间。核热发动机推质比取决于与核相关的组件,如反应堆、反射层、屏蔽层、控制机构等,与常规低温发动机相关组件,如推力室、喷管、涡轮泵等质量仅占10%左右。

对于核热发动机的反应堆,构成部分主要由堆芯(含燃料和慢化剂等)、反射层、反应性控制系统、屏蔽以及其他堆内构件组成。

以美国载人登陆火星用的核热发动机反应堆为例,经估算,核反应堆的总质量约3422kg,而发动机推力约111.2kN,推质比为3.314。再综合考虑发动机喷管、涡轮泵以及推进剂输送管等,实际工程应用中核热发动机推质比在3左右。

(3)核热发动机起动、关机性能

常规火箭发动机的能量来源于推进剂的化学反应,其加速累积和减速释放的过程与推进剂的供应量直接关联,因此可以实现比较快速的起动和关机。

而核热发动机采用核反应堆作为能量来源,其起动关机过程很大程度上取决于反应堆的工作需求和特性,特别是核反应堆在停堆过程中,部分产物的辐射效应还会持续较长时间,需要持续予以冷却。

通过分析美国的核热发动机研制经验,核热火箭发动机的起动关机过程与常规火箭发动机有一定的差异,尤其是在发动机关机后还要维持一个较长时间的冷停堆过程。

对34吨级月球摆渡用核热发动机的起动和关机特性进行了初步分析,该发动机以美国“运载火箭用核发动机”(NERVA)计划研制发展的NRX系列发动机为原型,设计总温2361K,设计室压3.1MPa,真空比冲822s,设计推力下流量为41.7kg/s。

1)起动过程。核热火箭发动机的起动过程与常规低温火箭发动机有点类似,但时间要长得多。

起动第一阶段,液氢在贮箱压力作用下流经涡轮泵、推力室、反应堆等,反应堆处于较低功率,该过程大约需要25s,主要作用是将发动机充分预冷,并将反应堆预热。

第二阶段发动机开始加速起动,温度达到额定工况,推力达到额定推力的60%,历时约22.7s;

第三阶段是在总温保持不变的情况下,室压增大至额定工况,推力达到100%,历时约3.6s。总体来看,核热发动机起动过程历时约52s,扣除发动机预冷时间,也需要约27s,起动过程的平均比冲大约只有600s。

2)关机过程。核热发动机的关机过程基本是起动过程的逆过程,但耗时要更长一些。首先,发动机要先降功率至60%工况。这一过程发动机总温保持不变,室压降低,历时约3.6s,此过程发动机比冲不变;而后,发动机在这一状态维持1 3min,主要目的是降低后续冷停堆过程中废热的产生量,以节省推进剂消耗;然后,发动机总温、推力再继续下降到发动机关机,还需要维持一个长时间小流量冷却的废热排放阶段。该34吨级核热发动机的整个关机过程历时约350s。整个关机过程中,发动机平均比冲约为600s。

核热发动机与常规发动机最大的不同就在于发动机关机后还存在一个废热排放的阶段,这主要是由于反应堆停堆后,一些反应产物仍然具有很强的放射性,会释放出废热。以34吨级月球摆渡用核热发动机为例,该过程持续约64h,推力约为134N,比冲约400s,由于持续时间较长,这一过程中液氢消耗需要考虑,同时,这一过程的冷却氢可设计用于发电,为整个飞行器提供一定的电力来源。

核反应堆在运行时将放出γ射线和大量的中子,这些射线和中子将对航天器上的电子元器件和航天员产生危害,因此需要加以屏蔽,将其辐射水平降到许可值以下。对于空间应用的反应堆,由于体积质量的限制较严格,其电子元器件和航天员处于相对集中的位置,可采用阴影屏蔽的方式,将辐射水平保持在较低水平。

对于使用核动力的航天器,一般设计成细长形结构,即仪表舱、人员舱位于一端,核反应堆位于另一端,两端之间为液氢贮箱。

由于中子及γ射线的直线运动特定,且需屏蔽的位置相对集中,需要将屏蔽的区域放在屏蔽块的阴影区。

辐射屏蔽布置示意图

参考大亚湾和秦山核电站大修制定的防护指标,集体剂量不超过600(人·mSv),个人最大剂量不超过15mSv,考虑到核热推进末级受体积质量的限制,其辐射水平可能会略高,假设核热推进系统辐射安全区的允许泄露值小于每天20mSv,此数值已大大超出大亚湾和秦山核电站大修时制订的辐射防护指标要求。

按照火星探测任务周期为3年考虑,并假设上述辐射被火箭电气产品全部吸收,则整个任务周期累计吸收剂量为21.9J/kg,在目前的产品水平下,非抗辐射半导体元器件可以承受不小于100J/kg的电离辐射剂量。

可见,火箭电气产品受到的辐射剂量要小于元器件的承受能力,核热推进对电气系统方案并不产生本质影响,但是核热发动机必须具备基本的辐射屏蔽能力,将对外辐射控制到一个可接受的范围内。

对于深空探测任务,复杂的深空辐射环境是航天器面临的主要环境,暴露在地磁层之外的深空环境中充满了高能量的混合空间辐射。

采用核热推进的航天器布置图

根据航天器在深空的飞行阶段可将深空环境分为三部分:

一是从地球飞往其他星球旅途中的空间辐射环境,其主要辐射源是太阳粒子事件和银河宇宙射线;

二是航天器降落星体过程中的空间辐射环境,其主要辐射源为星体磁场俘获的太阳宇宙射线和银河宇宙射线粒子;

三是航天器所降落的星体表面的辐射环境,主要是星体吸收宇宙辐射后所发生的二次辐射。

深空辐射环境引起的危害主要是辐射损伤和单粒子事件,深空辐射环境中充满的高能电子、质子和少量的重离子与航天器材料作用,将引起航天器材料的性能损伤与破坏,其中高能电子对航天器材料产生电离作用、高能质子和重离子对航天器材料产生电离作用和位移作用。

在进行深空探测航天器电气系统设计时,要考虑光热辐射引起的单粒子事件造成计算错误,或改变存储器中的数值等风险,软件设计时需考虑这种情况,采用计算冗余、错误校验等方法进行检测判别,确保箭机计算的正确性。

核热推进上面级的工作环境在大气层以外,不会受到气动载荷的作用,因此其结构方案设计可以不受气动外形限制。以俄罗斯发布的核热动力运载器的概念图为例,运载器的主体承载结构以杆系为主,以此来提高运载器结构效率。而且由于没有整流罩空间的限制,有效载荷结构形式的灵活性更大、空间分布方案更多。

核热推进系统只需要液氢一种工质,因此只需要液氢一种贮箱,不需要另外设置氧化剂贮箱,在结构设计上的约束更少,可以更好地进行结构方案的优化。

但是采用核热发动机后,相比常规发动机将承受更恶劣的高温环境条件,这就需要在结构设计过程中全面考虑发动机附近结构、仪器和电缆等的热防护需求,保证各系统、单机的正常工作。

而且与常规发动机相比,核热发动机结构更加笨重,这就需要增大发动机部分,尤其是反应堆周围的结构强度,同时保证发动机各部件的密封性。

俄罗斯核热动力运载器概念图

参考美国Mars DRA5.0方案,提出了与美国类似的载人登火初步方案,地球总出发规模约700 ~ 800t,分三次完成地火转移,单次地球出发规模约300吨级。通过分析从停泊轨道分别加速至地球出发能量C3e为8或20km2/s'时的发射效率、工作时间、引力损失以及入轨质量,给出核热推进末级的推力规模以及核热发动机的总体参数建议。

假设停泊轨道为高度200km的近地圆轨道,核.热发动机推质比取3、比冲取905s,考虑引力损失影响,不同推力规模情况下,对核热推进运载器的发射效率情况进行分析,其中,发射效率指扣除核热发动机干重的入轨质量(进入地火转移轨道)与停泊轨道出发质量的比。可以看出,当过载在0.13~0.16之间时,其发射效率最高。

在发射效率已经考虑了不同过载的情况下,变轨时间不同带来引力损失影响,具体影响为过载越小,工作时间越长,引力损失越大,但发动机干重较小。按照单次地火转移的出发规模300t考虑,核热推进剂运载器的推力应该在45t左右最佳,结合美国、俄罗斯核热发动机研究情况,建议核热发动机推力按照15t考虑,核热推进运载器按照3机并联。

地球转移发射效率随过载变化情况

核热推进技术以其大推力、高比冲等特点在未来深空探测任务中具有无可比拟的优势,但也应看到,目前距离核热技术的工程应用还有很长的路要走,还需要攻克很多的技术难题。根据目前的基于核热推进的载人登火任务分析,核热推进运载器从地球出发到达火星需要约180天,在火星停留- -段时间后(一个星期至一年半时间不等),核热发动机再点火返回地球,因此推进剂长期贮存时间应至少为半年时间,这对现有液氢长期储存技术的挑战极大。

另外,核热发动机推力高温气氢比热(总温2500K时约为20000kJ/kg K)要远高于传统氢氧发动机的高温燃气比热( 燃气总温3400K,燃气比热3000kJ/kg K左右),导致壁面热流密度高于传统发动机,从而给冷却带来极大困难。

因此,要实现核热推进在载人登火任务中的应用,需重点解决核热反应堆小型化、核热发动机推力室冷却、推进剂长期贮存等重大技术难题。

火箭发射原理方面的论文

火箭的发射原理
航空和航天
航空和航天是当今人类认识和改造自然过程中最活跃,最有影响力,也最有发展前途的科学和技术领域,是人类文明高度发展的重要标志,也是衡量一个国家科学和技术水平,以及综合实力的重要标志。
航空
航空是指载人或不载人的飞行器在地球大气层中的航行活动。航空活动的范围主要限于离地面30公里的大气层内。在大气层中航行的飞行器(航空器),只要克服自身的重力就能升空。比空气轻的航空器,如气球、飞艇,用空气静力升空;比空气重的航空器,如飞机、直升机,则要利用空气动力才能升空,风筝也是利用空气动力升空的一种最原始的航空器。可见,航空离不开地球的大气圈,也摆脱不了地球的引力作用。
航天
航天是指载人或不载人的飞行器在太空的航行活动,也叫做空间飞行或宇宙航行。航天包括:环绕地球的运行、飞往月球或其它星球的航行(包括环绕某一天体运行、从其近旁飞过或在其上着陆)、行星际空间的航行及飞出太阳系的航行。可见,航天活动的范围要比航空活动的范围大得多。一类在太阳系内的航行活动叫做航天;一类,在太阳系以外的航行活动叫做航宇。
航天不同于航空,航天要在极高真空的太空以类似于自然天体的运行规律飞行。因此,航天首先,必须有不依赖空气,且具有巨大推力的运载工具——火箭。
火箭的概念和原理
火箭是一种依靠火箭发动机喷射工作介质产生的反作用力推动前进的飞行器。
火箭的飞行原理是它借助了物体的反作用力,就像一只充足气体的气球,当我们把它从手中放开后,气球内的气体便顺着气球的气嘴喷出,同时气球向前冲去。因自身携带氧化剂,用不着像飞机那样依靠大气中的氧,所以火箭可以飞出大气层,在真空条件下飞行。
火箭的三大系统
运载火箭是将人造卫星、宇宙飞船、空间站和宇宙探测器等航天器送入太空的运载工具,是人类一切航天活动的基础。它主要包括三大系统:动力系统、结构系统和控制系统。
动力系统即火箭发动机系统,是火箭的动力装置,堪称火箭的心脏。它依靠推进剂在燃烧室内燃烧,形成高温高压燃气,通过喷管高速排出后产生反作用力推动火箭前进。火箭发动机按使用推进剂的类别分为液体火箭发动机、固体火箭发动机、固液混合式火箭发动机三种。
结构系统通常称为箭体结构,它是火箭的躯体,用于连接火箭所有结构部段,使之成为一整体,具有良好的空气动力外形和飞行性能。
控制系统是火箭的大脑和神经中枢。火箭发射后的级间分离、俯仰偏航、发动机关机与启动、轨道修正和星箭分离等一系列动作,都依靠控制系统完成。
推进剂——发动机的“食粮”
火箭发动机使用的燃料称为推进剂,堪称火箭发动机的“食粮”。目前,各国研制的运载火箭多使用化学燃料推进剂。化学燃料推进剂可根据物理形态分为液体推进剂和固体推进剂两类,根据性质可分为可贮存推进和低温推进剂。可贮存推进指在常温下可以长期在火箭推进剂贮箱中贮存的推进剂,如硝酸和煤油等。低温推进剂指在常温下沸点低的推进剂,如昭液氧、液氢等。
随着航天技术的发展以及环保和人体健康要求的日益提高,火箭主发动机目前正朝着采用无毒、无污染的液氢、液氧和液氧、煤油推进剂的方向发展。
固体火箭发动机
固体火箭发动机是最简单的一种化学火箭发动机,它所携带的固体推进剂主要由燃料和氧化剂组成,通常制成具有一定几何形状的红柱,贮存在被叫做燃烧室的半封闭容器中(图)。
为了点燃药柱,在燃烧室头部安装带有安全机构的点火装置,通电点火后,燃烧室中的药柱被点燃,并持续燃烧,产生高温、高压的燃气(工质),此时,固体推进剂的化学能转变为热能;燃气通过燃烧室尾部的拉瓦尔喷管以高速排出,从而产生推动火箭前进的推力,此时的热能转变为动能。
与液体火箭发动机相比,固体火箭发动机由于不需推进剂输送系统,推力室无需强制冷却,因此结构简单,没有活门、喷注器、涡轮泵、燃气发生器等部件。由于这个特点,它的可靠性较高,操作简便。另外,固体发动机能够长期贮存。固体火箭发动机的缺点是:比推办较低,工作时间较短,不易调节推力和多次启动。
固体火箭发动机由药柱、燃烧室、喷管和点火装置等组成。固体推进剂常常被制成不同的形状,称为药柱,在推进剂相同的情况下,固体火箭发动机的推力由药柱的燃烧面决定。
固体火箭发动机的喷管具有将推进剂放出的热能转换成推进用的动能的作用,因为它不像液体发动机那样采用冷却措施,所以一般采用合金钢或高温玻璃钢等抗高温材料制成,并采用烧蚀等技术进行保护。一台固体火箭发动机可以设计成一个喷管,也可以设计成几个。喷管有固定的,也有可动的,可动喷管可以绕发动机纵轴转动或摆动,实现对发动机推力方向的控制。
固体火箭发动机的工作过程比液体火箭发动机简单得多,点火时,先通电使电爆管爆炸,引燃点火药,点火药燃烧后点燃推进剂药柱。
液体火箭发动机
液体火箭发动机是采用液体推进剂的一种化学火箭发动机,一般由推力室、液体推进剂贮箱、供应系统和控制系统组成。
推力室是推进剂混合、燃烧并高速喷出产生推力的重要部件,由喷注器、熔炼室和喷管组成。推进剂燃烧时温度极高,极易烧穿燃烧室,因此必须进行冷却,冷却方法通常有再生冷却和同冷却两种。
推进剂贮箱包括燃料贮箱和氧化剂贮箱。推进剂量测定供应系统由管路、活门以及高压气瓶、减压器,或涡轮泵组成。供应系统的作用是按要求的流量和压强向燃烧室供应推进剂。
将高压气瓶的气体引入贮箱,使推进剂从贮箱送到各需要部分,这种系统大多用于大推力的发动机。图示出挤压式和泵压式两种液体火箭发动机的供应系统图。
推进剂供应系统的目的是将推进剂从贮箱输送到推力室,包括涡轮泵、各种导管和活门。推进剂输送方式有两种,一种是挤压式,一种是泵压式。
挤压式是利用贮存在高压气瓶内的压缩气体,将推进剂从贮箱内挤压到燃烧室内。由于这种方式将使贮箱承受很大压力,需把贮箱制造得十分坚固,因此不利于减轻火箭的结构重量。
泵压式是用涡轮泵将推进剂送入燃烧室。这种方法可使推进剂贮箱的压力大大减轻,减少贮箱的壁厚尺寸,减轻结构重量。
发动机控制系统的作用是控制发动机的启动、点火和关机等程序,控制推进剂的混合比例、推力的大小和方向等。
固体与液体火箭发动机的利弊
固体火箭发动机的优点是:结构简单;可靠性高;推进剂直接贮存在燃烧室中,可以做到常备不懈;反应速度快。其缺点是:比冲(单位质量推进剂产生的冲量)较低;起飞加速度大,工作时间短,不利于载入飞行。因此固体火箭发动机很适合用于导弹,满足反应快、作战迅速的要求。此外,可用作运载火箭的助推器,载入航天器的救生系统等。
液体火箭发动机星使用液体推进剂的火箭发动机,具有推力大、工作时间长、推力易于调节和控制、易于启动和关机、可多次启动等优点。缺点是,需要推进剂增压输送系统、燃烧室和喷管冷却系统,因而结构复杂;推进剂不能在火箭中长期贮存,发射前操作较为复杂。
固液混合火箭发动机
由于液体火箭发动机和固体火箭发动机各有各的优缺点,所以科学家把它作结合起来,组成了固液混合式和液固混合式两种。
液固混合式发动机是燃烧剂为液体,氧化剂为固体,而固液混合式发动机正好与它相反。
从性能上说,固液混合火箭发动机的比推力高于固体火箭发动机,低于高能液体发动机,与可贮存的液体发动机相当。
从系统和结构来说,这种火箭发动机的优点是简单紧凑,缺点是燃烧效率低,推进剂混合比不易控制,调节推力时能量损失较大。
结构系统——火箭的躯体
火箭结构系统通常为系为箭体结构,大多是用金属板和加强件组成的硬壳、半硬壳式结构。材料多为比强度和比刚度较高,塑性范围较窄的铝合金,部分采用不锈钢、钛合金和非金属材料。
从火箭的头部向下数,多级液体火箭的箭体结构主要包括有效载荷整流罩、仪器舱、推进剂贮箱、箱间段、级间段、尾舱、尾翼。固体火箭的箭体结构与液体火箭的箭体结构基本相同,不同的是它比较简单,大部分为发动机外壳。
位于运载火箭项端的有效载荷整流罩,有火箭的“皇冠”之称,它用于包容卫星、飞船、宇宙探测器等有效载荷,使它们免受火箭在大气层内飞行时产生的空气动力和空气动力加热的损害。火箭飞出大气层后,完成使命的有效载荷整流罩即被抛掉。
仪器舱一般位于有效载荷的下面,用于安装火箭飞行控制用的仪器和设备,仪器舱的壁板上经常开有舱口,便于安装仪器设备和对仪器设备进行检查测试。
控制系统——火箭的大脑和神经中枢
控制系统是一个非常精密、复杂、而且非常重要的系统,它的一部分安装在火箭上,称为飞行控制系统,另一部分安装在地面,称为测试发射控制系统。其中,箭上部分包括导航系统、姿态控制系统,电源配电系统。
导航系统是控制系统的核心,它的功能包括,当火箭达到要求的速度时,发出启动和关闭各级发动机的信号,使火箭沿预定轨道飞行;给各级火箭的执行机构提供各种指令信号,完成级间分离任务,测定火箭的实际位置,将其与预定飞行轨迹比较,若火箭偏离预定轨道,及时发出信号控制发动机摆动,保证火箭稳定飞行。
姿态控制系统的功能是随时纠正飞箭中产生的俯仰、偏航和滚动误差,保持火箭以正确的姿态飞行。一旦出现误差,过去的方法是采用燃气舵,它是一种装在发动机喷管尾部的用石墨耐高温合金制成的类似于船舵一样的部件,经燃气冲击后可产生控制力矩,现已很少使用,目前大多采用由姿态控制系统利用伺服机构摇摆发动机进行校正的方法。
电源配电系统主要包括三种功能:一是向控制系统的各种仪器、推进系统的火工品、级间分离和星箭分离使用的火工器供电,二是按预定程序发出各种指令控制有关电路,三是与地面测试设备配合完成控制系统的测试。

除了动力系统、结构系统和控制系统这三大系统外,火箭还包括分离系统、遥测和跟踪系统、自毁系统、方位瞄准系统,垂直度调整系统等。

我自己找的

做一个 关于 火箭的小论文~

火箭起源于中国,是我国古代的重大发明之一,早在宋代就发明了火箭,在十三世纪以前,中国的火箭技术在世界上遥遥领先,火箭是热机的一种,工作时燃料的化学能最终转化成火箭机械能.现代火箭用来发射探测仪器,以及人造卫星、宇宙飞船、航天飞机等空间的飞行器.目前各种型号的中国火箭有:
1、长征一号是我国第一枚三级运载火箭.它以两级液体火箭为基础,加固体第三级.固体发动机由固体发动机研究院研制.全箭由中国运载火箭技术研究院技术抓总.箭长29.46m,最大直径2.25m,起飞质量81.5t,起动推力达106 N.二、三级有转接锥壳相连.第三级与第二级完全分离后,起旋火箭点火,使第三级在空中自由起旋.整流罩用水平抛脱.长征一号火箭具有将300 kg的卫星射入倾角为70°、高为440km的圆轨道的运载能力.
1970年4月24日,“长征一号”运载火箭在酒泉发射中心首次发射我国第一颗人造地球卫星“东方红一号”,再次发射把实践一号科学实验卫星送入轨道.
“长征一号”的改型,“长征一号丁”,在原一二级基础上,更换三级固体发动机,将使其近地轨道的运载能力达到700kg~750kg.
2、长征二号两级液体运载火箭,全箭长约32m,最大直径3.35m,起飞质量190 t,一级装有4台发动机,地面推力为2.8×106 N,二级主发动机真空推力7.3×105 N,还有4个可以遥控的游动发动机(总推力4.7×104N),能将1.8 t的有效载荷送入近地轨道,1974年11月首次发射,由于一根导线有暗伤,导致飞行试验失败.1975年11月发射返回式遥感卫星准确入轨.接着,又发射两次,均获成功.
随着卫星对火箭运载能力要求的提高,“长征二号”火箭也作了相应的技术状态的修改,使技术性能和运载能力均有所改进和提高.近地轨道运载能力达到2.5 t左右,命名为“长征二号丙”,多次发射均获得成功.发射表明:“长征二号丙”设计方案正确,性能稳定,质量可靠,获得国内外同行的好评.
3、长征二号E即长征二号捆绑火箭,中国运载火箭技术研究院研制的第一枚推力捆绑式(也叫集束式)运载火箭,它是以经过改进的“长征二号丙”火箭作芯级(一级加长4.6 m,二级加长5.2 m)第一级箭体上并联4个长15.3 m,直径2.25 m的液体助推火箭.上面级和卫星都装在直径4.2 m,高10.5 m的整流罩内,全箭长49.7 m,芯级直径3.35 m,芯级一级发动机4机关联,加上4枚助推火箭,总推力为6×106N,可把8.8 t有效载荷送入200 km的圆轨道,1988年底获准研制,只用了18个月的时间,实现了预定目标.1990年7月16日首次发射,一举成功,把一颗巴基斯坦的科学试验卫星和一模拟有效载荷准确送入轨道.用如此短的周期,研制成功一个新型大推力运载火箭,这在我国是史无前例的,在世界航天史上也属罕见,它为我国发展载人航天技术和满足国际卫星发射服务市场的需要奠定了基础.1992年为澳大利亚发射两颗美制第二代通信卫星.
这种火箭,如配以中国的固体推进剂的上面级可将3 t的有效载荷送入同步转移轨道;如配以液氢液氧推进剂上面级,构成“长征二号E/HO”,其同步轨移轨道的运载能力将达到4.8t.
4、长征三号是以“长征二号丙”为原型加氢氧第三级组成的三级运载火箭.由中国运载火箭技术研究院负责总设计和研制第三级,第一、第二级由上海航天局承制,全箭总长44.56 m,起飞质量202 t,起飞推力2.8×106 N,第三级氢氧发动机在高空失重条件下二次启动.其同步转移轨道推力为1.4×104N.1984年1月29日首次发射,由于第三级发动机二次启动不正常,卫星进入近地轨道运行.经过70个昼夜的奋斗,4月8日再发射,获得圆满成功.
1990年4月7日,“长征三号”为香港卫星通信有限公司成功地发射了亚洲一号通信卫星,标志着中国的长征系列运载火箭开始步入国际卫星发射服务市场.
5、“长征三号甲”“长征三号甲”是为发射新一代通信广播卫星而研制的新型运载火箭.它在“长征二号”运载火箭的基础上,采用了多项先进技术,同步转移运载能力由原来的1.4 t提高到2.5 t,它是一种大型三级液体火箭,全长52.5 m,直径和整流罩均超过长征三号,起飞质量241 t,起飞推力3×106 N,火箭质量近40 t,自1986年2月开始研制,重大技术有30多项,其中火箭的三级推力氢氧发动机,冷氦加温增压系统,动调陀螺四轴平台,低温氢气能源双向摇摆伺服机构等4项技术已属世界一流.我国航天科技工作者倾注8年心血研制的这种运载火箭,至今发射3次,均获成功,巍巍长箭涉三关,在我国航天史上写下一页新的篇章.
首试锋芒送双星.1994年2月8日北京时间下午4时34分,最新研制的“长征三号甲”运载火箭在西昌卫星发射中心点火起飞,将一颗“实践4号”空间探测卫星和一颗模拟卫星送上太空.
前功尽弃经磨难.第二枚“长征三号甲”运载火箭于1994年11月30日凌晨1时2分在西昌卫星中心发射成功,火箭点火升空后,经过24分钟飞行,把我国新一代通信卫星“东方红3号”送入近地点20.58 km,远地点36 220 km的地球同步转移轨道,卫星完成第三次变轨,进入巡航姿态.经过三次变轨后,卫星已在准同步轨道上运行.由于星上姿态控制推力器燃料泄漏,未达到进入同步轨道的目的.1997年5月12日,“长征三号甲”运载火箭第三次发射,成功地将“东方红3号”通信广播卫星送入预定轨道.
6、长征三号乙我国自行研制、目前运载能力最大的新型捆绑式运载火箭“长征三号乙”于1997年8月20日凌晨从西昌卫星发射中心成功地将菲律宾卫星送入轨道,这表明长征系列运载火箭具备了能把5 000 kg有效载荷送入高轨道的能力.这是长征火箭第46次成功发射,也是中国长城工业总公司第12次执行商业发射服务合同.
“长征三号乙”火箭全长54838 m,起飞质量426t,可将5000 kg的有效载荷送入倾角为28.5°的地球同步转移轨道,它充分继承了长征系列的芯级除贮箱加长,结构加强及整流罩加大以外,与长征三号甲火箭相同,也具有在真空条件下二次启动能力的氢氧发动机技术和同轴挠性平台等技术.火箭一级周围捆绑的4个助推器,与长二捆火箭完全相同.由于捆绑了助推器,其控制和遥测系统在长三甲的基础上作了相应的修改,是中国长征系列火箭中高轨道运载能力最大的火箭.
马部海卫星是美国劳拉空间系统公司在fs1300平台的基础上设计的三轴稳定地球同步通信卫星,它共有30个C波段转发器和24个KU波段转发器,能向菲律宾、中国和东南亚地区提供语言、图像和数据传输等通信服务.马部海卫星是亚洲地区功率最大的通信卫星,其最大分离质量约3770kg,在轨道寿命超过12年.它将定点在东经144暗某嗟郎峡 .1997年10月17日凌晨3点13分,长征三号乙运载火箭在西昌卫星发射中心又一次发射升空,将亚太二号R通信卫星成功送入预定轨道,远地点47 922 km近地点201 km,倾角24.4º,卫星质量3 700 kg,此次发射是长征系列运载火箭是48次发射.
7、风暴一号是两级运载火箭.由上海航天局研制,火箭长32.6 m,直径3.35 m,起飞推力2.8×106 N,起飞质量191 t,推进剂为四氧化二氮和偏二甲肼.一级发动机由四台可切向摇摆的游动发动机组成,二级发动机由一台主发动机和四台可切向摇摆的游动发动机组成.制导系统采用平台一计算机全惯性系统,姿态控制采用有源网络校正装置,贮箱采用主强度铝合金材料,采用自然增压方案.“风暴一号”可把1 500 kg的有效载荷送入近地轨道.
为了提高运载能力,采用了大幅度减轻结构重量,降低发动机混合比偏差,一级采用耗尽关机.二级主发动开机后采用游动发动机小推力飞行入轨等措施.为了提高轨道精度,采用了速度导引有机结合的制导方法,为了用一枚火箭发射三颗卫星,攻克了结构动力学和多星分离运动学的技术关键.
1975年以来,“风暴一号”先后发射了六颗卫星.它们是三颗科学技术实验卫星和1981年9月20日用一枚“风暴一号”运载火箭成功发射的三颗卫星.
8、长征四号是一种多用途三级常温推进剂运载火箭,具有性能优良,结构可靠,成本低廉,发射场通用,使用方便等特点,由上海航天局研制.
“长征四号”采用四氧化二氮和偏二甲肼推进剂,全长41.9 m,改进的一、二级直径为3.35 m,新研制的三级直径为2.9 m,火箭起飞质量249 t,起飞推力3×106N.“长征四号”在总体上进行了优化设计,加长一级推进剂贮箱4 m,加大一级发动机推力2×105N,三级采用两台5×104N推力的发动机,减轻结构设计质量约300 kg,使火箭的运载能力大幅度提高,该火箭运送地球同步转移轨道卫星的运载能力为1 250 kg,运送900 km高度的太阳同步轨道卫星的运载能力为1 650 kg.“长征四号”在国内大型运载火箭上首次应用了数字式姿态控制系统.三子级全程氮气压力值增压输送系统,三子级双向摇摆发动机.无水肼表面张力定箱,三级单层高强度铝薄壁共贮箱等多项先进技术.
1988年9月7日和1990年9月3日,“长征四号”运载火箭两次发射太阳同步轨道“风云一号”气象卫星均获圆满成功.“长征四号”具有两种不同直径的卫星整流罩,可适应不同质量和尺寸的有效载荷,也可一箭多星发射,这为承担多种卫星的发射业务,特别是为发射同步轨道和极地轨道卫星创造了有利的条件.
附:
主要数据 长/m 芯级最大直径/m 起飞推力/N 运载能力/t 轨道/km
长征一号 29.46 2.25 1.04×106 0.3 400
长征二号 32 3.35 2.8×106 1.8 近地
长征二E 49.7 3.35 6×106 8.8 200
长征三号 44.56 3.35 2.8×106 1.4 同步轨道
长三甲 52.5 3.35 3×106 2.5 同步轨道
长三乙 54.848 3.35 5.0 同步轨道
风暴一号 32.6 3.35 2.8×106 4.8 200
长征四号 41.9 3.35 3×106 1.25 同步轨道

请详细描述火箭发动机的现发展阶段,发展成果,应用原理,实例

现在火箭正从传统火箭向小型推力化发展,在发展中因为传统火箭发动机推进依靠气体膨胀来推进,然而气体膨胀速度只有3-4米一秒,于是被迫放弃在太空中长时间用该方法推进,依据康士坦丁的火箭推力方程,在外太空中推进剂质量取决于推进速度和所要求的速度增量,当对外太空星球探测时,几乎推进剂要占去90%以上,成本极高,现在主要成熟的是微波推进技术,等离子推进技术,太阳帆推进技术,尤其是等离子推进技术较为成熟,它以等离子体为推进动力,以激光照射气体,使其加速到极高速度,等离子推进,电推进方式之一。即等离子体中的电子在交叉垂直的电场和磁场的作用下做霍尔漂移运动,而喷射出的离子形成推力来推进航天器前进。目前的等离子推进是深空探测、卫星轨道保持方面最有前途的电推进方式。
30年前,在哥斯达黎加出生,有1/4华人血统的张福林(Franklin R. Chang Diaz)还在麻省理工大学攻读等离子物理学博士学位时就这么认为。到了2009年6月,作为前航天员兼物理学家,Ad Astra火箭公司创始人、首席设计师,张福林带领着团队成功测试了VASIMR的第一节引擎后,对这一观点更加坚定。
VASIMR,全功率可变比冲的磁等离子体火箭(Variable-specific-impulse magnetoplasma rocket),尽管离最终完善仍有距离,但已经在航天界中引起了巨大反响。
因为,当它真正诞生,登陆火星的时间将会从250天缩短为39天。
石墨烯在光作用下的运动现象,这一发现可作为新的太空动力来源,碳世纪发现了这项重大应用发现,并成功研制了该项装置,充分展示了石墨烯材料火箭的光推动作用,[1] 使电推动不再受化学试剂的限制。
在科幻小说中,飞行器总能为星际旅行的全程提供动力。但在现实中,火箭推进器的发动机技术,根本无法实现这一点。
相对于裸露在外的推进剂储箱,化学火箭的发动机看上去很小,但它的胃口很大。“吃得多,干活的效率却不高。”张福林说。这种发动机吞噬掉的海量能源,只在提供短期动力方面有效——储存的燃料很快用完,推进器马上被当成垃圾扔掉。化学火箭的大部分燃料被用来摆脱地球引力,剩余的一点则被用来推动火箭的“太空滑行”。火箭飞往目的地,仅仅是依靠惯性。对于星际飞行来说,这种引擎显然力不从心。
“土星5号”就是典型代表。它的第一级装有2075吨液氧煤油推进剂。一旦发动机点火,它可以在2分34秒内全部“喝”完这些“饮料”。高温气体以2900米/秒的速度喷射,却仅仅够将47吨的有效载荷送上月球。在全部能够产生的3500吨推力中,很大一部分被用来“拖”起火箭自身和2000多吨燃料。所以它的“比冲量”并不高,只有300多秒,表明了它的推进效率的低下。这就是为什么要将一个质量很小的人送上太空,却必须使用一枚巨大火箭的原因。
等离子发动机,或者俗称的“离子推进器”采取了一种和化学火箭完全不同的设计思路。它使用洛伦兹力让带电原子或离子加速通过磁场,来反向驱动航天器,和粒子加速器与轨道炮都是同样的原理。“等离子火箭在一定时间内提供的推力相对较少,然后一旦进入太空,它们就会像有顺风助阵的帆船,逐渐加速飞行,直至速度超过化学火箭。”张福林说。
实际上,迄今已有多个太空探测任务采用等离子发动机,如美国宇航局探测小行星的“黎明号”(Dawn)探测器和日本探测彗星的“隼鸟号”(Hayabusa)探测器,而欧洲空间局撞击月球的SMART-1探测器的目的之一,就是验证如何利用离子推进技术把未来的探测器送入绕水星运行的轨道。
这些已经实用的离子发动机都很迷你,多属于辅助发动机,推力和加速度都很小,要使航天器达到预定的飞行速度,用时极长—SMART-1的等离子体发动机提供的加速度只有0.2毫米/秒方,推力只相当于一张纸对于手掌的压力。这样的发动机,带上一只蚂蚁都无法脱离地球的重力场。
但它们在太空中的表现能够弥补这个缺陷。优越的比冲量,也就是能用更少的燃料提供更多的动力,使它最终能把传统的化学火箭远远抛在身后。“1998年发射的深空1号(Deep Space 1),由德尔塔火箭送上太空,然后由离子发动机推动。它的离子发动机产生0.09牛顿的推力,比冲量相当于液体火箭的10倍。每天消耗100克氙推进剂,在发动机全速运转的情况下,每过一天时速就增加25~32米。它最终的工作时间超过14000小时,超过了此前所有传统火箭发动机工作时间的总和。”张福林介绍道。
正是这一原因,使等离子发动机成为航天界新的宠儿。等离子发动机中的新秀VASIMR被美国航空航天研究所(AIAA)列为2009年十大航天新兴项目。NASA的新任掌门人查尔斯·博尔登(Charles Bolden)也非常看好VASIMR,NASA向Ad Astra 火箭公司提供经费,希望他们能够完成自己的承诺——让VASIMR在2012年或2013年能够安装到国际空间站上进行点火测试。
现在大部分国外航空器都以此为动力最为著名的因为NASA的曙光号(Dawn),该飞行器目的为灶神星,谷神星,以其距离过远只能用等离子推进

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页