您当前的位置:首页 > 发表论文>论文发表

氮肥与合成气编辑部

2023-12-05 20:19 来源:学术参考网 作者:未知

氮肥与合成气编辑部

石油化工的范畴  以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主要是轻质油)通过烃类裂解、裂解气分离可制取乙烯、丙烯、丁二烯等烯烃和苯、甲苯、二甲苯等芳烃,芳烃亦可来自石油轻馏分的催化重整。石油轻馏分和天然气经蒸汽转化、重油经部分氧化可制取合成气,进而生产合成氨、合成甲醇等。从烯烃出发,可生产各种醇、酮、醛、酸类及环氧化合物等。随着科学技术的发展,上述烯烃、芳烃经加工可生产包括合成树脂、合成橡胶、合成纤维等高分子产品及一系列制品,如表面活性剂等精细化学品,因此石油化工的范畴已扩大到高分子化工和精细化工的大部分领域。石油化工生产,一般与石油炼制或天然气加工结合,相互提供原料、副产品或半成品,以提高经济效益(见石油化工联合企业)。编辑本段石油化工的作用1.石油化工是能源的主要供应者  石油化工,主要指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应石油者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。2.石油化工是材料工业的支柱之一  金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。3.石油化工促进了农业的发展  农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。4.各工业部门离不开石化产品  现代交通工业的发展与燃料供应息息相关,可以毫不夸张地说,没有燃料,就没有现代交通工业。金属加工、各类机械毫无例外需要各类润滑材料及其它配套材料,消耗了大量石化产品。全世界润滑油脂产量约2千万吨,我国约180万吨。建材工业是石化产品的新领域,如塑料关材、门窗、铺地材料、涂料被称为化学建材。轻工、纺织工业是石化产品的传统用户,新材料、新工艺、新产品的开发与推广,无不有石化产品的身影。当前,高速发展的电子工业以及诸多的高新技术产业,对石化产品,尤其是以石化产品为原料生产的精细化工产品提出了新要求,这对发展石化工业是个巨大的促进。5.石化工业的建设和发展离不开各行的支持  石油化工国内外的石化企业都是集中建设一批生产装置,形成大型石化工业区。在区内,炼油装置为“龙头”,为石化装置提供裂解原料,如轻油、柴油,并生产石化产品;裂解装置生产乙烯、丙烯、苯、二甲苯等石化基本原料;根据需求建设以上述原料为主生产合成材料和有机原料的系列生产装置,其产品、原料有一定比例关系。如要求年产30万吨乙烯,粗略计算,约需裂解原料120万吨,对应炼油厂加工能力约250万吨,可配套生产合成材料和基本有机原料80~90万吨。由此可见,建设石化工业区要投入大量资金,厂区选址适当,不但要保证原料和产品的运输,而且要有充分的电力、水供应及其他配套的基础工程设施。各生产装置需要大量标准、定性的机械、设备、仪表、管道和非定型专用设备。制造机械设备涉及材料品种多,要求各异,有些重点设备高速超过50米,单件重几百吨;有的要求耐热1000°C,有的要求耐冷-150°C。有些关键设备需在国际市场采购。所有这些都需要冶金、电力、机械、仪表、建筑、环保各行业支持。石化行业是个技术密集型产业。生产方法和生产工艺的确定,关键设备的选型、选用、制造等一系列技术,都要求由专有或独特的技术标准所规定,如从国外引进,要支付专利或技术诀窍使用费。因此,只有加强基础学科,尤其是有机化学、高分子化学、催化、化学工程、电子计算机、自动化等方面的研究工作,加强相关专业技术人员的培养,使之掌握和采用先进科研成果,再配合相关的工程技术,石化工业才有可能不断发展,登上新台阶。编辑本段石油化工的发展  石油化工的发展与石油炼制工业、以煤为基本原料生产化工产品和三大合成材料的发展有关。石油炼制起石油炼制源于19世纪20年代。20世纪20年代汽车工业飞速发展,带动了汽油生产。为扩大汽油产量,以生产汽油为目的热裂化工艺开发成功,随后,40年代催化裂化工艺开发成功,加上其他加工工艺的开发,形成了现代石油炼制工艺。为了利用石油炼制副产品的气体,1920年开始以丙烯生产异丙醇,这被认为是第一个石油化工产品。20世纪50年代,在裂化技术基础上开发了以制取乙烯为主要目的的烃类水蒸汽高温裂解简称裂解)技术,裂解工艺的发展为发展石油化工提供了大量原料。同时,一些原来以煤为基本原料(通过电石、煤焦油)生产的产品陆续改由石油为基本原料,如氯乙烯等。在20世纪30年代,高分子合成材料大量问世。按工业生产时间排序为:1931年为氯丁橡胶和聚氯乙烯,1933年为高压法聚乙烯,1935年为丁腈橡胶和聚苯乙烯,1937年为丁苯橡胶,1939年为尼龙66。第二次世界大战后石油化工技术继续快速发展,1950年开发了腈纶,1953年开发了涤纶,1957年开发了聚丙烯。编辑本段石油化工高速发展的原因是  有大量廉价的原料供应(50~60年代,原油每吨约15美元);有可靠的、有发展潜力的生产技术;产品应用广泛,开拓了新的应用领域。原料、技术、应用三个因素的综合,实现了由煤化工向石油化工的转换,完成了化学工业发展史上的一次飞跃。20世纪70年代以后,原油价格上涨(1996年每吨约170美元),石油化工发展速度下降,新工艺开发趋缓,并向着采用新技术,节能,优化生产操作,综合利用原料,向下游产品延伸等方向发展。一些发展中国家大力建立石化工业,使发达国家所占比重下降。1996年,全世界原油加工能力为38亿吨,生产化工产品用油约占总量的10%。编辑本段石油化工在国民经济中的地位石油化工是近代发达国家的重要基干工业  由石油和天然气出发,生产出一系列中间体、塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂、涂料、农药、染料、医药等与国计民生密切相关的重要产品。80年代,在工业发达国家中,化学工业的产值,一般占国民生产总值6%~7%,占工业总产值7%~10%;而石油化工产品销售额约占全部化工产品的45%,其比例是很大的。  石油化工2石油化工是能源的主要供应者  石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。石油化工是材料工业的支柱之一  金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。石油化工促进了农业的发展  农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。  石油化工可创造较高经济效益。以美国为例,以50亿美元的石油、天然气原料,可生产100亿美元的烯烃、苯等基础石油化学品,进一步加工得240亿美元的有机中间产品(包括聚合物),最后转化为400亿美元的最终产品。当然,原料加工深度越深,产品越精细,一般来说成本也相应增加。编辑本段世界石油化工  1970年,美国石油化学工业产品,已有约3000种。资本主义国家所建生产厂已约1000个。国际上常用乙烯和几种重要产品的产量来衡量石油化工发展水平。乙烯的生产,大多采用烃类高温裂解方法。一套典型乙烯装置,年产乙烯一般为300~450kt,并联产丙烯、丁二烯、苯、甲苯、二甲苯等。乙烯及联产品收率因裂解原料而异。目前,这类装置已是石油化工联合企业的核心。  70年代以前,世界石油化工的生产基地主要分布在美国、日本及欧洲等国。1973年后世界原油价格不断上涨,1983年以来又趋下跌,价格大起大落,使石油化工企业者对原料稳定、持久供应产生忧虑。发达国家改革生产结构,调整设备开工率,以适应新的经济形势。发展中国家尤其是产油国近年则在大力发展石油化工。80年代,世界乙烯生产能力的分布已发生变化,亚非拉等发展中国家所占比例有所提高。如将东欧国家的乙烯生产能力计算在内,则这些新兴石油化工生产地区的乙烯生产能力,约占世界乙烯总生产能力的四分之一。  1958年,世界乙烯生产能力达到49Mt(不包括社会主义国家),其中新增乙烯生产能力约3.3Mt,约1/3建在非洲和中东地区,1/3建在拉美和东欧;传统石油化工生产地区,只新增生产能力800kt,且今后五年内,计划也很少新建乙烯装置,主要是进行现有装置的技术改造。编辑本段中国石油化工  起始于50年代,70年代以后发展较快,建立了一系列大型石油化工厂及一批大型氮肥厂等,乙烯及三大合成材料有了较大增长。  中国石油化工行业占工业经济总量的20%,因而对国民经济非常重要。石油化工行业包括石油石化和化工两个大部分,这两大部分在2006年都保持了较快地增长。如果把这两个部分作为一个整体来看,2006年石油化工累计实现的利润达到了4345亿,增长达到了17.9%,增量达到了658亿元,在整个规模以上工业新增利润中占到17%左右。  石油化工32007年前三季度全行业实现现价工业总产值38211亿元,同比增长20.2%。重点跟踪的65种大宗石油和化工产品中,产量较2006年同期增长的有62种,占95.4%,其中增幅在10%以上的有47种,占72.3%,天然气、电石、纯苯、甲醇、轮胎外胎等产品产量呈较快增长态势。  原油及加工制品平稳增长。2007年前三季度,全国原油生产较为平缓,天然气产量则增长较快。2007年1~9月累计生产原油13992.6万吨,同比增长1.4%;天然气累计产量为501.4亿立方米,同比增长19.8%。原油加工量24289.1万吨,同比增长7.0%。汽、煤、柴油产量继续保持稳定增长,累计生产汽油4475.9万吨,同比增长8.5%;生产煤油867万吨,同比增长17.4%;生产柴油9175.1万吨,同比增长6.1%。  农化产品生产供应正常。由于农业生产的季节性特征,农用化学品生产也呈现比较强的季节性。化肥(折纯)2007年1~9月累计产量为4310.5万吨,同比增长13.8%,其中氮肥3144.7万吨,同比增长12.2%。2007年前三季度,农药原药累计产量为127.4万吨,同比增长20.6%,杀虫剂、除草剂产量增幅分别为10.7%和33.3%,农药产品结构进一步改善,杀虫剂占农药的比例已下降到37.1%。  展望以石油和天然气原料为基础的石油化学工业,虽然在70年代经历两次价格上涨的冲击,但由于石油化工已建立起整套技术体系,产品应用已深入国防、国民经济和人民生活各领域,市场需要尤其在发展中国家,正在迅速扩大,所以今后石油化工仍将得到继续发展。80年代,世界石油化工所耗石油量仅为世界原油总产量的8.4%,所耗天然气为天然气总产量10%,更由于从石油和天然气生产化工品可取得很大的经济效益,故石油化工的发展有着良好的前景。为了适应近年原料价格波动,石油化工企业正在采取多种措施。例如,生产乙烯的原料多样化,使烃类裂解装置具有适应多种原料的灵活性;石油化工和炼油的整体化结合更为密切,以便于利用各种原料;工艺技术的改进和新催化剂的采用,提高产品收率,降低生产过程的能耗及原料消耗;调整产品结构,发展精细化工,开发具有特殊性能、技术密集型新产品、新材料,以提高经济效益,并对石油化工生产环境污染进行防治等。编辑本段石油化工专业  石油化工专业是伴随着中国的石油化工的发展同时产生的化工学习专业课程,目的是培养石油化工人才,石油化工专业技术专业人才,一般各大理工科院校都设有此专业,该专业主要课程涉及:计算机应用、英语、有机化学、物理化学、化工分析、化工原理、石油加工工程系、化工节能、化工设备、化工安全与环保、精细化工,质量管理。  就业方向:石油、化工、医药、食品等企业生产操作与管理。  ☆工业分析与检验专业:  主要课程:计算机应用、英语、有机化学、无机化学、化工分析、电化学分析、光学分析 、常规仪器分析、化工安全与环保。  就业方向:石油加工、石油化工、精细化工、医药、食品企业和环保部门从事化验分析操作与管理。编辑本段现代以石油化工为基础的三大合成材料  塑料、合成橡胶、合成纤维

合成氨和制碱生产工艺及相关设备的介绍

工艺流程
1.合成氨的工艺流程
(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程
在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:
CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ
由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
② 脱硫脱碳过程
各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。
粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。
目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:
CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ
CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ
(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:
N2+3H2→2NH3(g) =-92.4kJ/mol
2.合成氨的催化机理
热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:
xFe + N2→FexN
FexN +〔H〕吸→FexNH
FexNH +〔H〕吸→FexNH2
FexNH2 +〔H〕吸FexNH3xFe+NH3
在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。
3.催化剂的中毒
催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。
催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。
4.我国合成氨工业的发展情况
解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。
近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。
5.化学模拟生物固氮的研究
目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。
国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:
①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。
目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。
固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。
[编辑本段]生产方法
生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用,但随着能源格局的变化,现在煤制氨又被重视起来,外国主要是粉煤气化技术发展很快,国内则转向型煤制气技术已非常成熟。
用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。
贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。

制碱法 一、联合制碱法
(侯氏制碱法)
NH3+CO2+H20+NaCl=NH4Cl+NaHCO3↓ (NaHCO3 因溶解度较小,故为沉淀,使反应得以进行)
2NaHCO3=Na2CO3+CO2↑+H2O ("="上应有加热的符号)
其要点是在索尔维制碱法的滤液中加入食盐固体,并在30 ℃~40 ℃下往滤液中通入氨气和二氧化碳气,使它达到饱和,然后冷却到10℃以下,根据 NH4Cl 在常温时的溶解度比 NaCl 大,而在低温下却比 NaCl 溶解度小的原理,结晶出氯化铵(一种化肥),其母液又可重新作为索尔维制碱法的制碱原料。
此法优点:保留了氨碱法的优点,消除了它的缺点,使食盐的利用率提高到 96 %; NH4Cl 可做氮肥;可与合成氨厂联合,使合成氨的原料气 CO 转化成 CO2 ,革除了 CaCO3 制 CO2 这一工序。
碳酸钠用途非常广泛。虽然人们曾先后从盐碱地和盐湖中获得碳酸钠,但仍不能满足工业生产的需要。
1862年,比利时人索尔维(Ernest Solvay 1838—1922)发明了以食盐、氨、二氧化碳为原料制取碳酸钠的“索尔维制碱法”(又称氨碱法)。此后,英、法、德、美等国相继建立了大规模生产纯碱的工厂,并组织了索尔维公会,对会员以外的国家实行技术封锁。
第一次世界大战期间,欧亚交通梗塞。由于我国所需纯碱都是从英国进口的,一时间,纯碱非常缺乏,一些以纯碱为原料的民族工业难以生存。1917年,爱国实业家范旭东在天津塘沽创办了永利碱业公司,决心打破洋人的垄断,生产出中国的纯碱。他聘请正在美国留学的侯德榜先生出任总工程师。
1920年,侯德榜先生毅然回国任职。他全身心地投入制碱工艺和设备的改进上,终于摸索出了索尔维法的各项生产技术。1924年8月,塘沽碱厂正式投产。1926年,中国生产的“红三角”牌纯碱在美国费城的万国博览会上获得金质奖章。产品不但畅销国内,而且远销日本和东南亚。
针对索尔维法生产纯碱时食盐利用率低,制碱成本高,废液、废渣污染环境和难以处理等不足,侯德榜先生经过上千次试验,在1943年研究成功了联合制碱法。这种方法把合成氨和纯碱两种产品联合生产,提高了食盐利用率,缩短了生产流程,减少了对环境的污染,降低了纯碱的成本。联合制碱法很快为世界所采用。
侯氏制碱法的原理是依据离子反应发生的原理进行的,离子反应会向着离子浓度减小的方向进行。也就是很多初中高中教材所说的复分解反应应有沉淀,气体和难电离的物质生成。他要制纯碱(Na2CO3),就利用NaHCO3在溶液中溶液中溶解度较小,所以先制得NaHCO3。再利用碳酸氢钠不稳定性分解得到纯碱。要制得碳酸氢钠就要有大量钠离子和碳酸氢根离子,所以就在饱和食盐水中通入氨气,形成饱和氨盐水,再向其中通入二氧化碳,在溶液中就有了大量的钠离子,铵根离子,氯离子和碳酸氢根离子,这其中NaHCO3溶解度最小,所以析出,其余产品处理后可作肥料或循环使用。
二、氨碱法
1862年,比利时人索尔维(Ernest Solvay,1832-1922)以食盐、氨、二氧化碳为原料,制得了碳酸钠,是为氨碱法(ammomia soda process)。
反应分三步进行:
NH3+CO2+H2O===NH4HCO3
NH4HCO3+NaCl===NaHCO3+NH4Cl
2NaHCO3===Na2CO3+CO2 +H2O
反应生成的CO2可以回收再用,而NH4Cl又可以与生石灰反应,产生NH3,重新作为原料使用:2NH4Cl+CaO===2NH3+CaCl2+H2O
氨碱法使生产实现了连续性生产,食盐的利用率得到提高,产品质量纯净,因而被称为纯碱,但最大的优点还在于成本低廉。1867年索尔维设厂制造的产品在巴黎世界博览会上获得铜制奖章,此法被正式命名为索尔维法。此时,纯碱的价格大大下降。消息传到英国,正在从事路布兰法制碱的英国哈琴森公司取得了两年独占索尔维法的权利。1873年哈琴森公司改组为卜内门公司,建立了大规模生产纯碱的工厂,后来,法、德、美等国相继建厂。这些国家发起组织索尔维公会,设计图纸只向会员国公开,对外绝对保守秘密。凡有改良或新发现,会员国之间彼此通气,并相约不申请专利,以防泄露。除了技术之外,营业也有限制,他们采取分区售货的办法,例如中国市场由英国卜内门公司独占。由于如此严密的组织方式,凡是不得索尔维公会特许权者,根本无从问津氨碱法生产详情。多少年来,许多国家要想探索索尔维法奥秘的厂商,无不以失败而告终。消息传到英国,正在从事路布兰法制碱的英国哈琴森公司取得了两年独占索尔维法的权利。1873年哈琴森公司改组为卜内门公司,建立了大规模生产纯碱的工厂,后来,法、德、美等国相继建厂。

氮元素 的详解

基本信息
氮,dàn,五笔86版RNOO。相对原子量为14.006747。元素名来源于希腊文,原意是“硝石”。1772年由瑞典药剂师舍勒和英国化学家卢瑟福同时发现,后由法国科学家拉瓦锡确定是一种元素。氮[1]在地壳中的含量为0.0046%,自然界绝大部分的氮是以单质分子氮气的形式存在于大气中,氮气占空气体积的78%。氮的最重要的矿物是硝酸盐。氮有两种天然同位素:氮14和氮15,其中氮14的丰度为99.625%。
编辑本段元素简述
原子体积:(立方厘米/摩尔) 17.3 元素在太阳中的含量:(ppm) 元素性质数据
用途
1000 元素在海水中的含量:(ppm) 太平洋表面 0.00008 元素名称:氮 元素符号:N 晶体结构:晶胞为六方晶胞。 氧化态: Main N-3, N-2, N-1, N+1, N+2, N+3, N+4, N+5 Other 地壳中含量:(ppm) 25 化学键能: (kJ /mol) N-H 390 N-N 160 N=N 415 N≡N(氮气) 948 N-Cl 193 N-C 286 N=C 615 N≡C 887 晶胞参数: a = 386.1 pm b = 386.1 pm c = 626.5 pm α = 90° β = 90° γ = 120° 声音在其中的传播速率:(m/S) 353 热导率: W/(m·K) 25.83 电离能 (kJ/ mol) M - M+ 1402.3 M+ - M2+ 2856.1 M2+ - M3+ 4578.0 M3+ - M4+ 7474.9 M4+ - M5+ 9440.0 M5+ - M6+ 53265.6 M6+ - M7+ 64358.7 元素类型:非金属元素 元素原子量:14.01 质子数:7 中子数:7 原子序数:7 所属周期:2 所属族数:VA 电子层分布:L2-K5 氮气为无色、无味的气体,熔点-209.86°C,沸点-195.8°C,气体密度1.25046克/升,临界温度-146.95°C,临界压力33.54大气压。
编辑本段危险性概述
氮本身无毒。(参见危险性类别)
编辑本段危险性类别
侵入途径: 健康危害: 空气中氮气含量过高,使吸入气氧分压下降,引起缺氧窒息。吸入氮气浓度不太高时,患者最初感胸闷、气短、疲软无力;继而有烦躁不安、极度兴奋、乱跑、叫喊、神情恍惚、步态不稳,称之为“氮酩酊”,可进入昏睡或昏迷状态。吸入高浓度,患者可迅速昏迷、因呼吸和心跳停止而死亡。潜水员深潜时,可发生氮的麻醉作用;若从高压环境下过快转入常压环境,体内会形成氮气气泡,压迫神经、血管或造成微血管阻塞,发生“减压病”。 环境危害: 燃爆危险: 本品不燃,可用于灭火。
编辑本段急救措施
吸入过量: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输纯氧。呼吸心跳停止时,立即进行人工呼吸和胸外心脏按压术。就医。
消防措施
危险特性: 若遇高热,容器内压增大,有开裂和爆炸的危险。 有害燃烧产物: 本品不燃。 灭火方法: 本品不燃。
泄漏应急处理
应急处理: 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散。漏气容器要妥善处理,修复、检验后再用。
编辑本段操作处置与储存
操作注意事项: 密闭操作。密闭操作,提供良好的自然通风条件。操作人员必须经过专门培训,严格遵守操作规程。防止气体泄漏到工作场所空气中。搬运时轻装轻卸,防止钢瓶及附件破损。配备泄漏应急处理设备。 储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。储区应备有泄漏应急处理设备。
编辑本段接触控制/个体防护
职业接触限值 中国MAC(mg/立方米): 未制定标准 前苏联MAC(mg/立方米): 未制定标准 TLVTN: ACGIH 窒息性气体 TLVWN: 未制定标准
编辑本段监测方法
工程控制: 密闭操作。提供良好的自然通风条件。 呼吸系统防护: 一般不需特殊防护。当作业场所空气中氧气浓度低于18%时,必须佩戴空气呼吸器、氧气呼吸器或长管面具。 眼睛防护: 一般不需特殊防护。 身体防护: 穿一般作业工作服。 手防护: 戴一般作业防护手套。 其他防护: 避免高浓度吸入。进入罐、限制性空间或其它高浓度区作业,须有人监护。
编辑本段理化特性
主要成分: 含量: 高纯氮≥99.999%; 工业级 一级≥99.5%; 二级≥98.5%。 外观与性状: 无色无臭气体。 pH: 熔点(℃): -209.8 沸点(℃): -195.6 相对密度(水=1): 0.81(-196℃) 相对蒸气密度(空气=1): 0.97 饱和蒸气压(kPa): 1026.42(-173℃) 燃烧热(kJ/mol): 无意义 临界温度(℃): -147 临界压力(MPa): 3.40 辛醇/水分配系数的对数值: 无资料 闪点(℃): 无意义 引燃温度(℃): 无意义 爆炸上限%(V/V): 无意义 爆炸下限%(V/V): 无意义 溶解性: 微溶于水、乙醇。 主要用途: 用于合成氨,制硝酸,用作物质保护剂,冷冻剂。
编辑本段价键结构
电子结构式
由于单质N2在常况下异常稳定,人们常误认为氮是一种化学性质不活泼的元素。实际上相反,元素氮有很高的化学活性。N的电负性(3.04)仅次于F、O和Cl,说明它能和其它元素形成较强的键。另外单质N2分子的稳定性恰好说明N原子的活泼性。问题是目前人们还没有找到在常温常压下能使N2分子活化的最优条件。但在自然界中,植物根瘤上的一些细菌却能够在常温常压的低能量条件下,把空气中的N2转化为氮化合物,作为肥料供作物生长使用。所以固氮的研究一直是一个重要的科学研究课题。因此我们有必要详细了解氮的成键特性和价键结构。 N原子的价电子层结构为2s2p3,即有3个成单电子和一对孤电子对,以此为基础,在形成化合物时,可生成如下三种键型: 1.形成离子键 2.形成共价键 3.形成配位键 形成离子键 N原子有较高的电负性(3.04),它同电负性较低的金属,如Li(电负性0.98)、Ca(电负性1.00)、Mg(电负性1.31)等形成二元氮化物时,能够获得3个电子而形成N3-离子。 N2+ 6 Li == 2 Li3N N2+ 3 Ca == Ca3N2 N2+ 3 Mg == Mg3N2 N3-离子的负电荷较高,半径较大(171pm),遇到水分子会强烈水解,因此的离子型化合物只能存在于干态,不会有N3-的水合离子。 形成共价键 N原子同电负性较高的非金属形成化合物时,形成如下几种共价键: ⑴N原子采取sp3杂化态,形成三个共价键,保留一对孤电子对,分子构型为三角锥型,例如NH3、NF3、NCl3等。 若形成四个共价单键,则分子构型为正四面体型,例如NH4+离子。 ⑵N原子采取sp2杂化态,形成2个共价双键和1个单键,并保留有一对孤电子对,分子构型为角形,例如Cl—N=O 。(N原子与Cl 原子形成一个σ 键和一个π键,N原子上的一对孤电子对使分子成为角形。) 若没有孤电子对时,则分子构型为三角形,例如HNO3分子或NO3-离子。硝酸分子中N原子分别与三个O原子形成三个σ键,它的π轨道上的一对电子和两个O原子的成单π电子形成一个三中心四电子的不定域π键。在硝酸根离子中,三个O原子和中心N原子之间形成一个四中心六电子的不定域大π键。 这种结构使硝酸中N原子的表观氧化数为+5,由于存在大π键,硝酸盐在常况下是足够稳定的。 ⑶N原子采取sp 杂化,形成一个共价叁键,并保留有一对孤电子对,分子构型为直线形,例如N2分子和CN-中N原子的结构。 形成配位键 N原子在形成单质或化合物时,常保留有孤电子对,因此这样的单质或化合物便可作为电子对给予体,向金属离子配位。例如[Cu(NH3)4]2+。 其它理化性质:
编辑本段稳定性和反应活性
稳定性: 禁配物: 避免接触的条件: 聚合危害: 分解产物:
编辑本段毒理学资料
急性毒性: LD50:无资料 LC50:无资料 亚急性和慢性毒性: 刺激性: 致敏性: 致突变性: 致畸性: 致癌性:
编辑本段生态学资料
生态毒理毒性: 生物降解性: 非生物降解性: 生物富集或生物积累性: 其它有害作用: 无资料。
编辑本段废弃处置
废弃物性质: 废弃处置方法: 处置前应参阅国家和地方有关法规。废气直接排入大气。 废弃注意事项:
编辑本段运输信息
危险货物编号: 22005 UN编号: 1066 包装标志: 包装类别: O53 包装方法: 钢质气瓶;安瓿瓶外普通木箱。 运输注意事项: 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。严禁与易燃物或可燃物等混装混运。夏季应早晚运输,防止日光曝晒。铁路运输时要禁止溜放。
编辑本段法规信息
法规信息 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志 (GB 13690-92)将该物质划为第2.2 类不燃气体。其它法规:工业用气态氮 (GB3864-83)。 氮分子是由两个氮原子组成,特别稳定,它对许多反应试剂是惰性的。在高温、高压并有催化剂存在的情况下,氮和氢作用生成氨。空气中的单质氮和氧在雷电的作用下,可生成氧化氮。锂和氮在常温下即可反应,过渡金属在高温下也可和氮反应,生成氮化物。 氮是组成动植物体内蛋白质的重要成分,但高等动物及大多数植物不能直接吸收氮。氮主要用来制造氨,其次是制备氮化物、氰化物、硝酸及其盐类等。此外,还可用作保护性气体、泡沫塑料中的发泡剂,液氮可用于冷凝剂。
编辑本段含氮的食物
碳素生物循环图
一种固氮的方式是利用植物的根瘤菌,根瘤菌是一种细菌,能使豆科植物的根部形成根瘤,在自然条件下,它能把空气中的氮气转化为含氮的化合物,供植物利用。“种豆子不上肥,连种几年地更肥”就是讲的这个道理。 蛋白质是复杂的含氮有机化合物,分子量很大,大部分高达数万至数百万,分子的长轴则 长达1~100um,它们由20种氨基酸通过酰胺键 ... 一般蛋白质含氮量为16%,即1份氮素相当 于6.25份蛋白质,此数值(6.25)称为蛋白质系数,不同种类食品的蛋白质系数有所不 ... 在动物蛋白中,牛奶、蛋类的蛋白质是所有蛋白质食物中品质最好的,其原因是最容易消化,氨基酸齐全,也不易引起痛风发作。 蛋黄蛋白质含量略高于蛋白,但一个蛋黄可含高达300毫克的胆固醇,即使是心脏没有病的人,也不宜多吃蛋黄,而蛋白的胆固醇含量是0;蛋黄含大量油脂,平时的蛋黄我们看不出有油脂,但你把蛋黄放在微波炉中一烤你就会发现能流出大量的油,在咸蛋的蛋黄中也可看得到蛋黄的油脂,蛋黄的热量是蛋白的6倍,所以蛋黄也是高热量食物,是减肥的人需要节食的食物。 牛奶除供应蛋白质外,更重要的是它还可提供丰富的钙质,可预防缺钙。脱脂奶粉的含钙量最高,油脂含量几乎没有,故脱脂奶粉泡成的牛奶,是成年人保持苗条身材的最佳蛋白质和钙的来源。 在植物蛋白中最好的是大豆蛋白,大豆中含35%的蛋白质,而且非常容易被吸收,因此大豆蛋白一直是素食主义者的最主要的蛋白质来源。豆制品可降胆固醇,还可抗癌,大豆蛋白含有丰富的异黄酮,异黄酮是一种类似荷尔蒙的化合物,可抑制因荷尔蒙失调所引发的肿瘤细胞的生长。另外,食用菌也是瘦身族的主要蛋白质来源。 还有每百克芝麻酱含蛋白质20克,比瘦猪肉、鸡蛋、小黄鱼、鲳鱼等含蛋白质要高 氮平衡 蛋白质在消化道内被分解为氨基酸和小分子短肽,并被吸收,大部分用于合成组织蛋白,以供运动后被损肌肉组织的修复和生长,部分用于合成各种功能蛋白和蛋白质以外的含氮化合物,如嘌呤,肌酸。部分氨基酸吸收后,在体内分解供能。 机体在完全不摄入蛋白质的情况下,体内的蛋白质仍然在分解与合成,一个60公斤体重的成年男子,每日仍然会从尿,粪,皮肤及分泌物等途径排出3.2克氮,相当于20克蛋白质。这种完全不摄入蛋白质时,机体不可避免的消耗氮量,称为“必要的氮损失”。这就是说一个60公斤体重的成年男子,每日至少要摄入20克优质蛋白质。才可以维持肌体内正常的蛋白质代谢。 在一定的时间内,摄入的氮量和排出的氮量之间的关系,就称之为“氮平衡”用以衡量人体蛋白质的需要量和评价人体肌肉蛋白质的状况。 氮平衡有三种情况: 1、氮平衡:在一定的时间内,摄入的氮量与排出的氮量相等。则表示人体内蛋白质的合成与分解处在平衡状态,人体的肌肉围度处于原来的围度与水平。 2、正氮平衡:摄入氮量大于排出氮量,蛋白质的合成大于分解量,运动后被破坏的肌肉纤维就会迅速修复、增长。肌肉处于消减状态。 3、负氮平衡:摄入的氮量小于排除的氮量,蛋白质的合成小于分解,此时人体的肌肉蛋白为保证机体活动进行分解供能。
编辑本段氮对植物的影响
氮肥
氮是构成蛋白质的主要成分,对茎叶的生长和果实的发育有重要作用,是与产量最密切的营养元素。在第一穗果迅速膨大前,植株对氮素的吸收量逐渐增加。 以后在整个生育期中,特别是结果盛期,吸收量达到最高峰。土壤缺氮时,植株矮小,叶片黄化,花芽分化延迟,花芽数减少,果实小,坐果少或不结果,产量低,品质差。氮素过多时,植株徒长,枝繁叶茂,容易造成大量落花,果实发育停滞,含糖量降低,植株抗病力减弱。番茄对氮肥的需要,苗期不可缺少,适当控制,防止徒长;结果期应勤施多施,确保果实发育的需要。
编辑本段氮的用途
氮气是无害气体,因为氮气的化学活性稳定,不容易和其他物质进行反应,在空气中,氮气的气体体积占78%,主要起维持大气压强的作用,否则,大气压力就太弱了,不利于人类生存,很典型的例子就是青藏高原,大气稀薄,含氧量低,除非当地人,否则很难适应,容易起高原反应
氮的作用
植物缺氮状态
氮是植物生长的必需养分之一,它是每个活细胞的组成部分。植物需要大量氮。 氮素是叶绿素的组成成分,叶绿素a和叶绿素ß都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长炔,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。
氮的固定
由于氮是一种重要肥料,所以把氮气转化为氮的化合物的方法叫做氮的固定。主要用于农业上。 又分生物、自然、人工固氮3种。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页