勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,接下来我为你整理了数学勾股定理小论文,一起来看看吧。
“兴趣是最好的老师。”在勾股定理的日常教学中,我们要注重学生兴趣的激发。
首先,老师在授课导入时可以给学生讲一下勾股定理的背景资料,如勾股定理的发展历史、勾股定理在日常生活中的运用和勾股定理的相关故事等。这样不仅可以让学生了解勾股定理的文化知识,更可以调动学生学习的好奇心和学习兴趣。其次,教师在具体授课中可以设计一些贴近生活的题目。《义务教育数学课程标准》(实验稿)指出:“勾股定理的教学目标是让学生体验勾股定理的探索过程,会运用勾股定理解决简单的问题”。这也能让学生主动地参与到课堂中去,能起到激发学习兴趣的作用。
光有兴趣是不行的,还需要教师有好的教学方法。
一、教师教学方法的设计要结合学生基本特征
在教学勾股定理时,教师要知道:初二学生已经对三角形及实数等一些知识有了些了解,初步具备了简单的分析和解决问题的基本技能;有了一些形象和抽象的思维能力;对勾股定理有所耳闻,但不具体。
二、设置勾股定理的教学情景
问题1:你们能求出我们常见的边长为单位1的正方形的对角线是多长吗?问题2:a2+a2=b2这个式子中,你们知道a2、b2在几何中有什么意义吗?
最后,让学生尝试画出能表达式子的图形。这有利于学生打好基础,并建立数与形结合的概念。
三、改变过去填鸭式的教学,让学生学会自主合作探究
可以让学生分成小组用折纸的方法来进一步直观地感受勾股定理的证明。如图:
(a+b)2=■ab・4+c2
化简得:a2+b2=c2
四、学以致用
既然学习勾股定理,那么我们还要能对它进行灵活运用,但是在运用中一些学生会出现一些常见的错误,学生在审题时由于马虎会发现不了题目中的隐含条件。如:在直角△ABC中,a、b、c分别为三角形的三边,∠B为直角,如果a=6 cm,b=8 cm,求边c的长。错误解法:∵△ABC是直角三角形,∴a2+b2=c2,即62+82=c2,解得c=10 cm。分析原因:这是因为学生在审题时忽视了题目中∠B才是直角,也就是b才是斜边。所以,正确的应是:∵∠B是直角,∴a2+c2=b2,即62+c2=82,解得c=2■。当然学生有时还会在做题中忽略勾股定理成立的条件,对一些不是直角三角形的也运用勾股定理。我们在具体的做题中要让学生把好审题这一关。
总之,只要我们能在数学勾股定理的教学中充分调动学生的兴趣,改变陈旧的教学方法,就能让学生在探究勾股定理的道路上体会数学学习的乐趣。
何谓勾股定理?勾股定理又叫毕氏定理,即直角三角形两直角边的平方和等于斜边的平方。据考证,人类对这条定理的认识已经超过了4000年。据史料记载,世上有300多个对此定理的证明。勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了20多种精彩的证法。这是数学中任何定理都无法比拟的。
本文中仅介绍勾股定理的证明方法中最为精彩的两种证明方法,据说分别来源于中国和希腊。
1、中国方法:画两个边长为 的正方形,如图,其中 为直角边, 为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以 为边,右图剩下以 为边的正方形。 于是得 。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2、希腊方法:直接在直角三角形三边上画正方形。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。
值得指出的是,由于《几何原本》的广泛流传,欧几里得的证明是勾股定理所有证明中最为著名的。 为此,希腊人称之为“已婚妇女的定理”,法国人称之为“驴桥问题”,阿拉伯人称之为“新娘图”、“新娘的坐椅”。 在欧洲,又有人称之为“孔雀的尾巴”或“大风车”等,这些可能是从其几何图形得到的灵感吧
总之,在探究勾股定理的道路上,我们走向了数学殿堂,并且会越走越远……
自“科教兴国”战略实施多年以来,我国的教育体制已逐渐从应试教育向素质教育转变。然而,这种转变的有效性仍值得检验。素质教育的本质就是以培养、激发学生的创新思维为目的,以特色的教学模式为手段,调动学生的积极思维欲望,不拘一格地带动学生对知识敢想、多想,以达到学生更深层次地理解所学知识,使其真正转变为自己的知识,并能在以后的学习、生活中加以利用。就数学而言,数学课堂教学研究一直是国内外教育改革的焦点之一,课堂被认为是学生构建知识,老师组织学习最重要的现实环境,它被喻为“人世间最复杂的实验室之一”。作为一名初中数学教育工作者,如何能在课堂中带动学生的听课积极性,使学生对我们所教内容产生浓厚的兴趣,而不认为是教条式的填鸭,显得至关重要。勾股定理是中国几何的根源,是中华数学的精髓。在此,作者以初中二年级数学课程“勾股定理”作为课程实践案例,进行了一次简单尝试。
一、以历史故事开始,激发学生兴趣
笔者改变了以往“勾股定理”教学中照书念的本本模式,而是不惜用去10分钟时间给学生讲讲勾股定理的起源。在引领学生将书翻到勾股定理章节后,告诉学生,大家书本上看到的这位毕达哥拉斯,是公元前四百多年前发现了直角三角形的三边关系,而最早有关该定理的文字著作出自我国商朝约公元前200年左右的《周髀算经》,由商高发现。并在三国时代由赵爽对其做出详细注释,又给出了另外一个证明引,我们的祖先是不是也很智慧呢?此时,全班几乎所有学生目光都从书本移开,极为专注地看着笔者,眼神中带着强烈的求知欲望。笔者转而引导学生开始上课,每个孩子都带着浓厚的兴趣想要学好我们祖先发现的伟大定理。
二、数形结合,形象理解抽象概念
通过带领学生从看图18.1-2中快速计算正方形ABC、A’B’C’面积,并展开猜想,引出“勾股定理”的命题。随后,将学生分组,一组4人,给每组分发下去4个全等的直角三角形纸板,短直角边标有a(勾)字样,长直角边和斜边分别标有b(股)及c(弦)。让每一位同学都在仔细观察“赵爽弦图”的同时,用纸板摆出“赵爽弦图”,使学生对赵爽的证明过程有一个初步形象的直观认识,然后给学生做出赵爽对“勾股定理”的详细推导。学生们在小组参与弦图旋转、摆放的过程中,个个乐此不疲,相互提醒。虽然,教室中看似多了点吵闹,但笔者发现,在学生眼、手、口并用的实际操作中,勾股定理的学习少了许多课本填鸭式的枯燥,换之而来的是学生们积极的参与、激烈的讨论和更为浓厚的兴趣。
三、举一反三,调动思维
在定理证出后,笔者立即向学生提问:谁能给出快速说出更多的均以整数为边的勾股数的方法?底下同学开始议论,一位同学的回答引得全班哄堂大笑,上网!笔者也忍俊不禁,告诉他很会利用现代高科技工具,算是一项能力,但不是独立解决该问题的最佳办法。此时,已有学生说出6、8、10,9、12、15等等。笔者微笑点头肯定,整数勾股数三遍等量放大比例同样也是勾股数,三边不可约分的整数勾股数是以质数为最短边,并且只有一组以其为最短边的勾股数。至于原因,不过该内容已超纲,有兴趣的同学可以课下研究、探讨。
四、课后总结,课外拓展
重点内容“勾股定理”授课完毕,继而启发学生对“勾股定理”的实际应用。学生通过做门框、湖水等实际应用题对勾股定理的实用性有了更加现实的认识,也有了数学建模的简单概念。邻近下课时,给学生布置了家庭作业,让学生用一个礼拜的时间观察生活中有关勾股定理应用的现实例子,并加以简单介绍。之后腾出一节课给学生自由发挥,介绍自己对勾股定理的实践观察,学生们积极上台发言,表达欲望强烈,在其他同学获取知识的同时,讲述的同学也在大家肯定的掌声中增强了自信心,课外拓展取得了很好的效果。
五、结语
具体如下:
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。
探究勾股定理的起源
勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。
同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。更为重要的是,其后希帕索斯根据勾股定理发现了第一个无理数(2),导致第一次数学危机。
我们对三角形的定义是三条首尾相连的线段围成的封闭图形。但是三角形也分很多类,按照边来分类可以分成等腰三角形等等,用角来分类可以分为直角三角形,锐角三角形和钝角三角形。而这次我们要探究的“勾股定理”就隐藏在直角三角形中。
直角三角形中有一个直角,夹着直角的那两条边我们称之为直角边,而另外的一条边我们称之为斜边。通过三角形内角和为180度我们就可以知道。直角三角形的两个锐角是互余的。也就是可以说,我们通过三角形内角和为180度,可以得出直角三角形中各个角之间的关系。那在一个直角三角形中,各个边的关系又是怎么样的呢?
勾股定理其实也就是在说直角三角形中各个边之间的关系,就现在来说勾股定理只是我们的一个猜测,因为我们还没有证明。那我们为什么会提出这样的猜测呢?我们先看下图。
我们先看看一个特例,其实当我们想要探究在一个直角三角形中两个直角边和一条斜边的关系,其实就可以直接说是,探究我如图所画的三个正方形面积的关系。首先按如图的方式将正方形ABCD和正方形DEGF沿对角线切割成个三角形,将正方形BHIE沿对角线切割成4个三角形。
因为a和b都等于3,所以三角形ABC,三角形BCD,三角形DFE和三角形EFG这是全等的。因为三角形ABC的面积等于3×3×1/2所以这两个小正方形的面积相加也就等于4个三角形相加,也就是等于18.
而再看一下大正方形BHIE,大正方形由4个小三角形组成,每一个三角形的面积也是3×3再×1/2 所以大正方形的面积也等于18。这时我们就发现了两个小正方形相加等于这个大正方形。也就可以说是a方加b方等于c方了。这时,我们就对直角三角形的边的关系有了一个猜想,那就是两个直角边的平方和,等于斜边的平方。那这是否可以作为我们对勾股定理猜想的一个证明呢?其实是不能的,虽然我们也是用严谨的逻辑将它推理出来的,但是我们是用一个特例来进行证明的,而我们的定理则需要一定的普遍性。
那么,接下来我们将尝试证明一下勾股定理。
如图我们可知一个三角形的面积为1/2ab,大正方形的面积为a+b的平方。接下来我们就可以证明了,证明过程如下。
美国总统加菲尔德,也利用下面的方法证明出了勾股定理,但是我认为这样的证明方法不具有普遍性,因为他是通过等腰直角三角形来证明是勾股定理的,而不是所有的直角三角形都是三角形。
其实我们还是可以用等面积的方法来证明出勾股定理。证明过程如下
现在我们已经知道了,当一个三角形为直角三角形的时候,它的两个直角边的平方和等于它斜边的平方。那假如我们知道在一个三角形中它的两条边的平方和等于另外一条边的平方,那么我们能不能知道这个三角形是一个直角三角形呢?我们如何证明呢?证明过程如下。
这样我们就可以证明出如果三角形的三边长a、b、c满足 a方加 b方等于c方时,那么这个三角形就是一个直角三角形,我们称其为勾股定理之逆定理。
接着我们就可以通过勾股定理来解决很多实际的问题,我相信会有更多勾股定理的证明方法,我也有兴趣在之后继续去探究。在勾股定理这一章节中,让我感受到了其中的乐趣,并且我也有很大的成就感。这一章节也让我对八上的其他章节有了很大的兴趣。
勾股定理的新验证法
「摘要」这是我独立思考出在课本所学知识之外的验证方法,它能使我更一步的了解勾股定理,使我在勾股定理的海洋中再潜下一层,获取“珍宝”,也为我在将来的学习中打下勾股定理的基础。
「思考」当我在资料中了解到勾股定理有那么多种证明方法时,我便想了解到一种新的解法。因为当我在听到这个资料时,我才知道我只获取了勾股定理的海洋中表层的小鱼,所以,我被我的好奇心带到那勾股定理的海洋深处,同时也将我带入了要了解新的勾股定理验证方法的心态中,我抱着这种想法,去了解它。
「去做」
作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。 过点C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形。
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一个边长为a的正方形。
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则
A^2+B^2=C^2.
(图大概就是这样)
「好处」
这是我自己想出来的解法,虽然这与其余的证明方法有所重合,但这是我自己想出来的,没有任何外界的帮助。这使我在同学间新多出了一种解决方法,其余同学未掌握的方法,也使我比其余的同学知道得更多。
「关键词」勾股定理 证明方法