近年来,我国焙烤食品行业运行状况良好,消费升级、政策推动、标准重建以及外资涌入、内资合并等诸多因素的影响,使得我国烘焙食品行业传统的低集中度现状加速改变,行业并购不断上演,烘焙食品行业加速整合。目前,我国焙烤食品行业初步形成了一批生产企业密集区和多个优势焙烤食品加工产业带,呈现出集群式发展的特色和较为合理的区域布局。然而,目前我国焙烤食品企业规模普遍偏小,技术水平低,组织结构有待进一步优化,焙烤食品工业布局尚不尽合理,集中度较低,区域优势未充分发挥,食品区域经济带尚未形成强大的规模优势与协同竞争力。我国焙烤食品工业还是以农副食品原料的初加工为主,中小企业比例高,精细加工的程度比较低。 因为烘焙业进入门槛较低,我国烘焙行业特点是企业众多但平均规模较小,目前全国大大小小有五六千家烘焙企业。烘焙业巨大的发展空间和产品利润率将吸引更多的投资者介入,也将吸引国际企业介入进来。有关专家预测,目前我国焙烤食品的市场规模在350亿元左右,人均消费约30元。目前我国人均饼干消费量仅为1公斤左右,与西欧人均饼干消费8.4公斤、发达国家饼干的人均年消耗量25-35公斤、中等发达国家的12-18公斤相比,我国饼干市场的消费容量仍有很大的发展空间。 由美国次贷危机引发的全球金融危机,经历近二十年井喷式发展的中国焙烤业也感受到了前所未有的压力。2008年的焙烤食品行业在被广为看好的背景下却呈现出市场销售平淡、销售高峰期缩短等特点。有专家认为,当前烘焙业面临发展增速放缓,一方面是由于物价上涨,原材料价格抬高,造成月饼售价微涨;另一方面由于受经济危机的影响,人们的消费观念开始转变,更趋于理性。 目前全球经济和区域经济一体化进程的加快以及农业产业化进程的提高,为我国焙烤食品工业的发展带来巨大的需求空间。同时国家对烘焙食品工业的高度重视以及西部大开发、振兴东北地区、促进中部崛起、建设社会主义新农村等重要战略和举措,也将为我国烘焙食品工业创造新的发展机遇。随着我国经济的发展,人们生活水平的提高,生活方式和消费结构的改变,焙烤食品以其易于携带、方便快捷、时尚等特点越来越成为消费者青睐,人们外出旅游休闲活动的增多,都为焙烤食品的发展带来了前所未有的机会。据专家预测,我国焙烤食品在今后一定时期内,仍将保持10%以上的年增长速度,2010年前后,我国焙烤食品消费规模将达到500亿元的水平,将成为人们食品消费中的重要构成部分。 溴酸钾作为焙烤工业面包蛋糕粉的品质改良剂,在国外欧美成功应用有几十年的历史。作为一种慢速氧化剂,改善面团结构和流变性,增强筋力和弹性,使焙烤制品获得满意的结果。我国也较早地将溴酸钾作为面粉品质改良剂,列入GB2760之中,使用卫生标准为0.03g/kg。但规定焙烤后不得有残留早期认为溴酸钾在焙烤后会完全分解,但是80年代日本和英国,经长期研究发现,溴酸钾在焙烤后有残留物,对动物有致癌毒性。以后,FAO/WHO联合食品添加剂专家委员会(JECFA),于1994年撤消了溴酸钾在面粉中使用的ADI值。
欧共体也在食品添加剂及其编号E名单中,取消了溴酸钾。我国食品添加剂标准化技术委员会,也于1998~1999年的年会上,专家们提出建议,停止溴酸钾在面粉中使用。此后全国各地开展了大量溴酸钾替代品的研究。主要用料为乳化剂和酶制剂。而且均取得了成效。如中国食品发酵研究所、广州轻工研究所、山东轻工院、郑州工程学院、哈尔滨商学院等。河南兴泰研发成功的生物酶乳化剂,获得国家级学者的高度评价。广州轻工研究所研制的溴酸钾替代品,在进行面包双盲试验中表明,替代品的面包品质和口感,优于溴酸钾的产品。现在的问题是每斤产品要比溴酸钾改良剂增加几分成本。但为了健康,只要向消费者说明,相信社会能接受的。2000年11月,访问荷兰奎斯特跨国公司应用研究中心期间,在面食研究中试车间,和中心专家交流了对焙烤用酶和乳化剂复配添加剂(溴酸钾替代品)看法。欧洲已停止使用溴酸钾。据中心介绍推向市场的溴酸钾代用新品种及无过氧化苯甲酰品种有:
(1)biobakefreshxl,是一种面食品质改良和保鲜剂。面包的变陈,是由于淀粉的老化。1979年己经发现单甘酯能和直链淀粉形成复合物而防止淀粉的老化。而酶制剂的参与能和单甘酯产生共同效应。本产品含有真菌淀粉酶和乳化剂,使用量万分之一,经5d后测定,其柔软度、弹性、结构均为优良,而可压缩度达70%,对照组为20%。由于使用量极少,故对面食的成本影响极微。
(2)biobakewaterxl含有增加面团吸水性的木聚糖酶。水分被吸着因面粉中所含成份不同而异。
木聚糖酶的作用在于,使水不溶性半纤维素有控制地降解,形成最适的水溶性戊聚糖;本品为复合酶,使用后面团增加水分5%,焙烤成的面包,水分高于l%~2%,在面包体积相同的情况下,改进了柔软度。.
(3)biobakecrumb改进面团白度的酶制剂。影响白度的因素很多,包括面粉质量、加工工艺、乳化剂单甘酯或ssl的使用,还有漂白剂。一般lkg面粉含3mg一胡萝卜素,常用过氧化苯甲酰或有酶活的大豆粉。而改用本产品只需2.5/10000,就能获得较白的面团,而且面团结构相当好。 比利时
比利时政府在2004年取消了面包的政府最高限定价格。面包的价格开始上涨了10%,然而焙烤食品的年消费量保持未变,仍约为61公斤/人。然而,面包的消费量实际上下降到59公斤,新鲜面包的价格只上升了2~3%。冷冻焙烤食品的价格没有变化。还可看到的一点是在家庭中焙烤食品的消费量已下滑。主要是早餐,其它食品取代了早餐焙烤食品。对新食品和特制食品的需求已增加。还有经包装的焙烤食品的营业额上升。因此输家是手工制做的行业。两年前其市场份额仍为60%,现在只有55%。比利时的嬴家是大约110 家大的焙烤食品厂。 保加利亚 以在2006年人均97公斤的面包消费量,保加利亚在欧洲仍居第2位。然而,面包消费量明显下滑。在2004年时,它还约为110公斤。这主要是由于主要是年轻一代饮食习惯的改变而造成的。未改变的仍是工业生产和手工制作的焙烤食品的市场份额。34家大型焙烤食品公司占领了该市场65%,1980家手工焙烤食品厂占领了其余的35%份额。然而,还可以看到集中,在过去一年中,关闭了约500家手工焙烤食品厂。 在将来,可以预计焙烤食品更多地通过超级市场销售。主要是由于原材料的成本更高,焙烤食品的价格将迅速上涨。 丹麦 丹麦的面包消费量在过去的一些年中保持在70公斤/人未变。市场结构也没有大的变化。有约1,000家手工焙烤食品厂和少量的工业焙烤食品公司。它们提供新鲜的焙烤食品和冷冻产品,也为焙烤食品店供货。原材料的价格在丹麦也在上升。主要的问题是,贸易公司垄断市场的地位设法把焙烤食品的价格保持在低位。总的说来,消费者的购买行为在改变。裸麦面包仍是最为重要的面包种类,但小麦面包的需要量正在增加。对于生态和健康产品需求的趋势也在发展。 芬兰 在芬兰,面包的年消费量约51公斤。两家工业公司和20家大型焙烤食品厂共占80%的市场份额。大焙烤食品店的业务超出芬兰到俄罗斯。780家手工焙烤食品店仅占领16%的市场份额。在芬兰还看到朝着“健康”焙烤食品的趋势。由于食品行业,还存在很大的价格压力。 法国 法国焙烤食品行业(手工焙烤食品行市占领了65%以上的市场份额)只有在最近才宣布对baguettes的价格上涨8%左右。原因是面粉的价格上涨了约40~60%。与欧洲的其它国家不同的是,法国政府大力干预基本营养品的价格政策。经济事务和财政部长ChristineLagarde指示竞争、消费和防欺诈秘书长监督面包价格的上涨不能大于焙烤食品原料成本的上升。另一个问题是最低工资的大幅上涨。 要不然的话,法国的这一市场在近几年中保持得非常稳定。手工和工业焙食品厂的数量几乎没变。 德国 焙烤食品的年消费保持未变,人均约80公斤。该市场的一个特点是分成小型手工焙烤食品店、有35家以上自己销售渠道的大型公司以及纯粹的工业焙烤食品公司。大型焙烤食品公司和工业焙烤食品公司共店该市场的 80%左右。与2005年相比,大型焙烤食品的份额上升了5%。 在德国,有40家工业企业,它们约有90家生产厂。有自己销售渠道的大型焙烤食品公司的数量约为200家。该市场剩余的是15,000家手工生产的焙烤食品店,它们的数量在近几年中大幅减少并仍在下降。主要是纯工业的公司获得利润。进一步的趋势是超市中的焙烤食品店以及在低价行业中自我服务焙烤食品店(约800家)。 希腊 在希腊,约8,000家手工焙烤食品店服务于94%的焙烤食品市场,但它们的数量大幅下降。焙烤食品的人均消费量约54公斤。在希腊存在的问题也是面粉的大幅上涨以及工资在去年上涨了5%左右。 意大利 意大利的市场状况是多多少少保持未变。150家大型焙烤食品公司占领了25%的市场份额,约25,000家手工焙烤食品店占领了60%以上,约1,000家店内焙烤食品店占12%。许多居民改变了他们的消费习惯并减少了他们对食品的支出,该国遭受到了明显的购买力低下。在过去一些年中,传统种类的面包失去了市场。结果是,折扣商店明显增长和对储存期长的、经包装的面包需求增加。自2001年以来,面包的人均年消费量已减少了13公斤到现在的54。75公斤。尤其是手工制做的焙烤食品店遭受这一变化。 荷兰 荷兰的这一市场被58家大焙烤食品公司所垄断,它们共获得80%的市场份额。剩余的20%的市场份额由2,400家手工制作焙烤食品店占领,它们共有4,400个销售渠道。面包的人均消费量为61。5公斤。发展趋势是低的面包消费量,年轻人在家外的消费量增加。由于该行业的强大地位,执行较高的价格是不可能的。 西班牙 由于西班牙经济的快速增长以及购买力的上升,手工和工业焙烤食品行业均在上升。工业生产焙烤食品行业在冷冻焙烤食品方面增长尤其快。该市场量在2004年大幅增长了17%以后,在2005~2006年又上升了9。8%。冷冻培烤食品现在在面包总市场中占有16%的份额。手工制作焙烤食品店估计占80%的焙烤食品市场。焙烤食品的人均年消费量约为58公斤。折扣店进入新鲜焙烤食品中,这可能成为手工制做行业的竞争对手。 对该工业的一个问题也是西班牙的能源、运输和原料成本的上涨。 土耳其 在面包消费方面,土耳其人是世界冠军,人均199。6 公斤的年面包消费量在2006年《吉尼斯世界记载》名列前茅。根据Euromoni公司的统计,2005年的面包消费量只有168公斤,根据土耳其协会的统计,2004年只有154公斤。由于人口的增长,总消费量也持续上升。包装焙烤食品的营业额在近几年中大幅上升。在2006年中焙烤食品是经包装食品中最大的行业。在土耳其,约有20,000家手工焙烤食品店,这一数量在下滑,但它们共占领了98%的市场份额。 英国 在英国的超市中可以看到焙烤店的明显增长,这是因为对新鲜焙烤食品的需求增长。还可注意到的是高档和健康焙烤食品行业的增长。在将来尤其是营养和健康(例如低钠的)的焙烤食品将代表更大挑战。在这行业中,品牌产品的份额在普通产品中的份额下滑。与此相反的是,它在高档产品的份额上升,因为消费者越来越喜欢品牌产品。人均年消费量约为50公斤焙烤产品。
食品加工就是把可以吃的东西通过某些程序,造成更好吃或更有益等变化。下面我给大家分享一些面点食品加工技术论文,大家快来跟我一起欣赏吧。
试论中西面点加工工艺的区别
【摘 要】中西方面点在制作理论和技术上相互融合,各取所长,但由于中西方饮食的差异,在加工制作方法上还有一些不同。本文以紫薯面点为例,就中西面点在加工制作等方面所存在的一些差异做一浅谈。
【关键词】中西面点;紫薯;营养保健
1.中西面点简介
1.1中式面点
中式面点指源于我国的点心,简称“中点”,双称为“面点”,它是以各种粮食、畜禽、鱼、虾、蛋、乳、蔬菜、果品等为原料再配以多种调味品经过加工而制成的色、香、味、形、质俱佳的营养食品。面点在中国饮食行业中通常被称为“白案”。它在饮食形式上呈现出多样性,既是人们不可缺少的主食又是人们调剂口味的补充食品。
1.2西式面点
西式面点以面、糖、油脂、鸡蛋和乳品为原料,辅以干鲜果品和调味料,经过调制成型、装饰等工艺过程而制成的具有一定色、香、味、形、质的营养食品。是西方饮食文化中的一颗璀璨明珠,它同东方烹饪一样,在世界上享有很高的声誉。面点行业在西方通常被称为“烘焙业“,在欧美国家十分发达。烘焙食品以款式美观、色香味美、新鲜可口的高品质制品来吸引顾客,促进产品销售。
2.中西面点加工方法的差异
在悠悠历史长河中,中西方不同的思维方式和处世哲学造就了中西文化的差异,从而造就了中西方饮食文化的不同。也就是说,中国饮食以食表意、以物传情,其博大精深不可言喻。西方饮食精巧专维、自成体系。虽然饮食文化差异较大,但是在中西方饮食中大部分以面食为主,那么面食在制作和加工方面不同的国家有不同的侧重点,也就是说,中西式面点为了迎合各自的饮食习惯,在制作加工方面存在以下差异。
2.1中西方糕点在选料和成形加工方面存在的差异
由于我国幅员辽阔,特产丰富,这就为中式面点制作提供了丰富的原料,再加上人口众多,各地气候条件不一,人们生活差异也很大,所以 选料要求比较精细,花样品种繁多。又由于我国传统思想的影响,在中方糕点制作的过程中要求纯手工制作,这就彰显出中式面点在加工制作上的难度和技巧。中式面点要求成形技法多样,造型美观,面点成形是面点制作中一项技术要求高、艺术性强的重要工序,归纳起来,大致有 18 种成形技法,即:包、捏、卷、按、擀、叠、切、摊、剪、搓、抻、削、拨、钳花、滚沾、镶嵌、模具、挤注等。通过各种技法,又可形成各种各样的形态。通过形态的变化,不仅丰富了面点的花色品种,而且还使得面点千姿百态,造型美观逼真。西式面点用料也很讲究,大多以乳品、蛋品、糖类、油脂、面粉、干鲜水果等为常用原料,其中蛋、糖、油脂的比例较大,而且配料中干鲜水果、果仁、巧克力等用量大。西点的加工制作要求从造型到装饰,每一个图案或线条,都清晰可辨,简洁明快,给人以赏心悦目的感觉。西方糕点的加工装饰属于用一两种装饰材料进行的一次性装饰,操作简便、速度快适合大批量生产。其制作表现形式主要有:仿真形式、抽象形式、卡通形式等等。
2.2中西面点在烹制加工方法上的差异
中国的面食,制作的时候以蒸、煎、烘、煮、烙、炸为主,口感较为轻淡,不像西点,太甜,中式面点多以油炸为主,多油腻,其实这点和中国人的饮茶文化有很大的关系,因为茶可以去油腻。西方的点心,制作的时候以烘、烤为主,主要依靠模具一次性成型。这样制作起来可以节省很多的时间而且形状统一,看起来比较整齐、美观。自改革开放以来,随着中西方文化的相互交流和传播,中西方的烹制方法也在相互学习,相互促进,在烹制面食的时候就可以选择多种烹制方法相结合,这样就能让人们品尝到各种口味不同、风格各异的美食。综上所述,不管是中点还是西点,在加工工艺上应该取长补短,相辅相成,推陈出新。
这本来就是餐饮工作人员不变的信条。随着全球一体化进程的加快,餐饮文化也在逐步走向理解、包容、融合、贯通。餐饮从业人员在保护好历史积淀下来的传统工艺的同时,也要努力学习西式面点的制作技巧。内外兼收,洋为中用,为国人的餐桌上献上更多的面点制品,做出符合中国人口味的美味佳肴。
3.芝麻莲蓉酥的制作
材料:
油皮:中筋面粉200克(高粉150克+低粉50克)、细砂糖36克、猪油65克、温水70-80克、盐3克
油酥:低筋面粉200
克、猪油90克
内馅:红莲蓉(广州莲香楼出品)500克、
装饰:蛋液适量,生白芝麻适量
(以上量可做成品20个)
(1)油皮:面粉加入其余材料揉成面团,静置15分钟,分成20份备用。
(2)油酥:面粉与油揉成团,分成20个备用。
(3)内馅:黑芝麻蓉分成20份,葡萄干洗净沥干水,每份芝麻蓉包入3、4粒葡萄干滚圆备用。
(4)油皮包入油酥,擀卷两次,再擀成圆皮,包入内馅,收口朝下,略压成扁圆状,刷蛋液,再沾上一层白芝麻,放入烤盘。
(5)烤箱预热,190度中层烤约25-30分钟即可。
4.紫薯面点的制作
紫薯又叫黑薯,英文名称 Purple Potato,紫薯因其表皮和肉质均呈迷人的紫色而更加的惹人喜爱。紫薯不但颜色可爱,而且还有多种人体必需的物质,其富含蛋白质、淀粉、果胶、纤维素、氨基酸维生素及多种矿物质,同时还富含硒元素和花青素。
4.1在馅心上的应用
将紫薯清洗、去皮、切片、蒸煮后制成紫薯泥,紫薯泥与牛奶、椰浆、大枣、果仁、砂糖等常用面点馅心原料搭配,可以制作出十几种甚至几十种风味独特、营养丰富的馅心。
4.2在西式面点上的应用
蒸煮熟制的紫薯泥不仅仅可以制成馅心,还可以直接放入调制的面团或面糊中。制出别具一格的可口美食。
例一:紫薯蛋糕:
原料:鸡蛋500克,砂糖400克,蛋糕油40克,紫薯泥500克,低粉500克,小苏打10克,泡打粉10克,香粉10克,色拉油300克,水 300克。做法:(1)预热烤箱至 170℃(或上火175℃、下火160℃),在烤盘上铺上垫纸,再放好蛋糕圈备用。(2)将鸡蛋液放入搅拌桶,加砂糖快速搅拌至发白。(3)在搅拌桶依次加入蛋糕油、低筋粉、泡打粉、苏打粉和紫薯泥,打发至中性发泡。(4)依次慢速加入水、色拉油拌匀,装入烤盘进烤箱烘烤。(5)约烤40分钟,至蛋糕完全熟透取出,冷却后即可使用。
例二:紫薯糕
原料:紫薯500克,温水1100克,糖200克,鱼胶粉18克做法:(1)将紫薯蒸熟后去皮,用搅拌机加600克温水搅拌成糊状。(2)鱼胶粉用冰水泡开,沥干后和温水一起放锅内 , 小火烧开使之熔化。(3)把紫薯倒入锅内,再加入糖煮沸后再煮5分钟 , 需一直搅拌。(4)倒入干净的容器内,冷藏至凝固,取出切块即可。
4.3在中式面点上的应用
(1)紫薯面条、饺子。
面条作为中国面食家族的重要一员,深受人们喜爱。紫薯全粉与一定量的面粉混合(通常 1:3),运用常用的面条加工工艺,可以制作出美味的紫薯面条。一碗热气腾腾的紫薯面条,再配以当地各具特色的酱卤,保证让你胃口大开、回味无穷。当热喜欢吃饺子的朋友也可以用紫薯面团来包饺子,无论是荤是素您做的紫薯面饺子不仅馅心鲜美,饺子里还会有紫薯带给您的香甜。
(2)紫薯馒头、花卷。
面粉中加入紫薯面,通过发酵制成的馒头、花卷更容易消化吸收,紫薯的保健功能会更好的发挥作用。尤其适用于老年人、特殊人群食用。
【参考文献】
[1]余建忠.烘培业从同质化走向细分化 [J].农产品加工(综合刊),2010,(08):14-15.
[2]顾尧臣.主食面制品加工技术的探讨和建议[J].粮食与食品工业,2003,(03):8-127.
点击下页还有更多>>>面点食品加工技术论文
食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。
食品加工论文 范文 一:食品工业泡沫分离技术的应用
泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.
1泡沫分离技术的原理及特点
1.1泡沫分离技术的原理
泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.
1.2泡沫分离技术的特点
1.2.1优点
(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.
1.2.2缺点
表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].
2泡沫分离技术在食品工业中的应用
2.1蛋白质的分离
在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为5.0,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为3.68.Li等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为0.10g?L-1,填料床高度为300mm和初始pH值为6.2的条件下,最佳的牛血清蛋白富集比为21.78,是控制塔条件下富集比的2.44倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为92.50%、富集比为7.63.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到95.8%的亚麻蛋白质,而多糖的损失率仅为6.7%.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.
2.2酶的分离
蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为7.0及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为10.5和6~9.Brown等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为0.2g/L、pH值为7.0时,蛋白和酶活回收率接近于100%,富集比为3.67.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].
2.3糖的分离
糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为4.8%和33.8%;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为98.8%和74.1%.Sarachat等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为4.__洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为83.1%.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.
2.4皂苷类有效成分的分离
皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.
2.4.1大豆异黄酮苷元的分离Liu等[10]
采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.
2.4.2无患子总皂苷的分离魏凤玉等[30]
分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为2.0g/L、进料量为150mL、气速为32L/h、温度为30℃、pH值为4.3时,得到富集比为2.153,纯度与回收率分别为74.68%和79.19%.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.
2.4.3竹节参总皂苷的分离
竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为0.4~0.5mm,pH值为5.5,温度为65℃,电解质NaCl浓度为0.015mol?L-1.在最佳工艺条件下,总皂苷富集比为2.1,纯度比为2.6,回收率为98.33%,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.
2.4.4文冠果果皮皂苷的分离
文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷1.5%~2.4%.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为2.5L?min-1,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为3.05,回收率为60.02%,纯度为63.35%.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.
3展望
泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].
食品加工论文范文二:食品工业废水处理节能研究
食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。
1食品工业废水处理工艺现状
目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。
2各种工艺特点及应用效果分析
目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。
2.1好氧生物处理工艺
好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。
2.1.1SBR法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。
2.1.2BAF法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。
2.1.3MBR法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。
2.2厌氧生物处理工艺
在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。
2.2.1UASB法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为60.2mg/L、15.5mg/L、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为0.54元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。
2.2.2EGSB反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的0.6m/h~0.9m/h高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为0.73元/m3?d),具有良好的环境效益和社会效益。
2.2.3ASBR法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。
3厌氧生物处理工艺优势分析
与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。
本文对山药的酶促褐变、山药水溶性多糖的提取、分离、分子量
测定、单糖组成及其功能性进行了初步研究,并开发出山药保健饮料及速溶山药粉。
通过测定山药中多酚氧化酶的最适pH值、最适温度及不同护色方案对山药的护
色效果及其对山药多酚氧化酶的抑制作用,确立山药的最佳护色条件为:以0.25%的亚硫酸钠为抗氧化剂,并以0.25%的柠檬酸和1.5%的氯化钠为配比
的护色液直接浸泡山药。本研究通过正交实验设计确定山药粉水提多糖的最佳条件为浸提温度40℃,浸提时间3.5小时,固液比1:8。采用Sevag法及三
氯乙酸沉淀法来比较其对山药粗多糖中蛋白质的清除效果,研究Sevag法的沉淀次数及三氯乙酸的浓度对蛋白质的清除率影响,初步确立了山药粗多糖的除蛋白
方法为10%三氯乙酸沉淀。通过水提山药粉、乙醇沉淀、α-淀粉酶除淀粉、三氯乙酸除蛋白及流水透析得到山药粗多糖YP,通过乙醇沉淀粘液质、α-淀粉酶
除淀粉、三氯乙酸除蛋白及流水透析得到山药粗多糖MYP。
YP及MYP分别上DEAE-纤维素柱,经柱层析后均得一中性组分和两相连酸性组分,收集YP的
中性组分及酸性组分中的较大部分,分别命名为YPa和YPc。YPa和YPc分别上SephadexG-200凝胶柱,结果YPa出现两个峰,表明其纯度
不高,收集其大的部分浓缩为YPa-Ⅰ(溶液),而YPc得到一单峰说明其纯度较高。用凝胶过滤法测得YPa-Ⅰ及YPc的分子量分别为42931及
54979,用HPLC法测得YPa-Ⅰ、YPc的分子量分别为31796.97和48762.05。经GC分析,YPa的单糖组成为:阿拉伯糖、甘露糖
和葡萄糖,YPc的单糖组成为木糖、葡萄糖、半乳糖、果糖和少量鼠李糖、阿拉伯糖及甘露糖。
YPa和YPc溶液的紫外分光扫描(180~1100nm)结
果表明其在260~280nm范围内均无吸收。α-淀粉酶活力的抑制实验发现,YP、MYP及YPc对α-淀粉酶活力均具有一定的抑制作用,且与浓度与正
相关,表明山药的降血糖作用与山药中多糖的含量有关。体外O2自由基清除实验发现只有未脱蛋白的多糖YP-P对O2自由基具有清除作用,表明对O2自
由基起清除作用的可能是糖蛋白复合物及其中可能含有的其它活性成分。
OH自由基清除实验发现MYP、YP、YPc、YP-P对OH自由基均有显著的清除作
用。开发出山药保健饮料及速溶山药粉,通过旋转回归试验设计确立山药保健饮料的最优复配稳定剂组成为:黄原胶0.5361‰、CMC0.2443‰、果胶
0.2196‰,同时最佳pH值为4.05。