通信电源技术是保证通信系统正常运行的重要条件。我整理了通信电源技术论文,欢迎阅读!
通信电源技术探讨
摘 要 通信电源由直流供电系统,交流供电系统,接地系统,监控系统,防雷系统组成。电源的安全、可靠、是保证通信系统正常运行的重要条件。蓄电池组,高频开关电源,UPS是通信电源的重要组成部分。
关键词 蓄电池组;高频开关电源;UPS
中图分类号:TN86 文献标识码:A 文章编号:1671-7597(2013)18-0035-02
1 蓄电池组
1.1 蓄电池的结构及工作原理
蓄电池通常是指铅酸蓄电池,它是电池中的一种,属于二次电池。它的工作原理是:充电时利用外部的电能,使内部活性物质再生,把电能存储为化学能,需要放电时再次把化学能转换为电能输出。
1.1.1 蓄电池的充电
蓄电池充电时,负极会析出氢气,正极会析出氧气。析出的氧气到达负极,与负极起下述反应。正极析氧,在正极充电量达到70%时就开始了。
充电过程2PbSO4+2H2O=Pb+PbO2+2H2SO4
1.1.2 蓄电池的放电
蓄电池作为应急备用能源,其价值和性能是通过放电来实现的,蓄电池放电过程中的化学反应:
放电过程Pb+PbO2+2H2SO4=2PbSO4+2H2O
1.2 蓄电池的维护
在维修过程中,应经常检查蓄电池的外观,极柱。若发现电池槽,盖发生破裂,以及结合部渗漏电解液,极柱周围出现爬酸现象要及时更换电池。2 V蓄电池在投入运行后的前五年,12 V蓄电池在投入运行后的前两年,每年应以实际负载进行一次核对性放电试验,放出标称容量的30%-40%。2 V蓄电池在投入运行后的第六年起,12 V蓄电池在投入运行后的第三年起,每年应进行一次容量试验。
2 高频开关电源
2.1 开关整流器监控单元的原理
开关整流器监控单元的单片机电路对电源参数进行实时采集。缺相检测和网压检测电路对三相交流输入进行缺相检测和电网电压检测,检测到的缺相信号和电网电压信号送给单片机电路进行处理。单片机接受键盘指令,采用LCD显示电源实时数据和控制菜单。辅助电源提供开关整流器内部控制电路所需要的各种电源。温度检测电路检测主散热器温度,送给单片机系统。单片机系统根据主散热器温度,通过风扇控制电路控制风扇的工作状态。
2.2 负荷均分的概念
一套高频开关电源系统至少需要两个高频开关电源模块并联工作,大的系统甚至需要多达数十个电源模块并联工作,这就要求并联工作的电源模块能够共同平均分担负载电流,即均分负载电流。目前高频开关电源均采用PWM型均流方式,是一种数字式调整均流方式,具有均流精度高,动态响应特性好,抗干扰性较好,模块控制数多的优点。
2.3 负荷均分的原理
US为系统取样电压,Ur为系统基准电压,两者比较后产生误差电压UD,UD与三角波比较产生一个脉宽调制方波信号,其波宽受UD大小控制。这个方波信号送至每个整流模块,通过模块内光耦,隔离,整形,放大后与模块电流比较。这个比较信号再与模块内的预先设定参考电压值相叠加,调整模块的输出电流,改变模块的输出电压,使每个模块的输出电流相等。
3 UPS电源
不间断供电电源系统(UPS)是能够持续稳定不间断向负载供电的一类重要电源设备。从广义上说UPS包括交流不间断电源系统和直流不间断电源系统。长期以来,已习惯于把交流不间断电源系统称为UPS。
3.1 UPS原理
交流市电电源输入由整流器转换为直流电源。逆变器将此直流电源或来自电池的直流电源转换为交流电提供给负载。市电中断时,由电池通过逆变器给负载提供后备电源。市电电源还可通过静态旁路向负载供电。需要对UPS维修保养时,可将负载切换到维修旁路供电,负载电源不中断。
3.2 UPS幷机系统特点
并联UPS软件和硬件与单机模式完全一致。幷机系统的配置可通过参数设置软件实现。幷机系统各单机的参数设置要求一致。幷机控制电缆形成闭环连接,为系统提供可靠性和冗余。双母线控制电缆连接在两个母线的任两个UPS单机之间。智能幷机逻辑为用户提供最大灵活性。例如,可按任意顺序关闭或启动幷机系统中的各单机。可实现正常模式和旁路模式之间的无缝切换,并且可以自动恢复。即过载消除后,系统会自动恢复到原来的运行模式。可以通过各单机的LCD查询幷机系统的总负载量。
3.3 UPS单机并联的要求
多个单机并联组成的UPS系统相当于一个大的UPS系统。但是具有更高的系统可靠性。为了保证各单机使用度相同并符合相关配线规定,应满足以下要求。
1)所有单机必须容量相同并且并接到相同的旁路电源。
2)旁路电源和整流输入电源必须接到相同的中线输入端子。
3)如安装漏电检测仪器(RCD),必须正确设置并且安装在共同的中线输入端子前。或者该器件必须监控系统的保护地电流。
4)所有的UPS单机的输出连接到共同的输出母线上。
3.4 UPS特殊工作模式
3.4.1 旁路模式
正常模式下,如遇逆变器故障,逆变器过载或手动关闭逆变器,静态开关将负载从逆变器侧切换到旁路电源侧。如此时逆变器相位与旁路相位不同步,静态开关将负载从逆变器输出切换到旁路电源输出,但会出现负载电源短时中断。该功能可避免不同步交流电源的并联引起大环流。负载电源中断时间可设置,通常小于3/4周期。例如:频率50 Hz时,中断时间小于15 ms:频率60 Hz时,中断时间小于12.5 ms。
3.4.2 并联冗余模式
为提高系统容量或可靠性,或既提高系统容量又提高可靠性,可将数个UPS单机设置为直接并联,由各UPS单机内的幷机控制逻辑保证所有单机自动均分负载。幷机系统最多可由4个单机并联组成。
3.4.3 频率变换器模式
UPS可设置为频率变换器模式。提供50 Hz或60 Hz的稳定输出频率。输入频率范围40 Hz-70 Hz。该模式下,静态旁路无效,电池为可选。根据是否需要以电池模式运行来确定是否选用电池。
3.4.4 自动开机模式
UPS提供自动开机功能,即市电停电时间过长,电池放电至终止电压导致逆变器关机后,如市电恢复,经过延时后,UPS会自动开机。该功能及自动开机延时的时间可由调试工程师设置。
3.4.5 电池模式
由电池经过电池升压电路通过逆变器给负载提供后备电源的运行模式为电池模式。市电停电时,系统自动转入电池模式运行。负载电源不中断。此后市电恢复时,系统又自动切换回正常模式,无需任何人工干预,并且负载电源不中断。
3.5 UPS高级功能
UPS提供电池维护测试功能。电池定期自动放电,每次放电量为电池额定容量的20%,实际负载必须超过UPS标称容量的20%。如果低于20%,则无法执行自动放电维护。自动放电间隔时间30天-360天可以自行设置。电池自检可禁止。
在线式UPS中,无论市电是否正常,都由逆变器供电,所以市电故障瞬间,UPS的输出不会间断。另外由于在线式UPS加有输入EMC滤波器和输出滤波器,所以来自电网的干扰能得到很大的衰减。
参考文献
[1]孙法文.浅谈化工生产供电系统UPS的选配[J].中氮肥,2005.
[2]金灵伟.基于DPS的串并联在线补偿式UPS的设计研究[D].湖南大学,2004.
[3]曾建华.阀控式密封铅酸蓄电池最佳性能的实现[J].蓄电池,2006.
[4]刘南平.通信电源[M].西安电子科技大学出版社,2005.
点击下页还有更多>>>通信电源技术论文
弧焊电源技术的发展现状与趋势分析
弧焊技术是现代焊接技术的重要组成部分,其应用范围几乎涵盖了所有的焊接生产领域。电弧焊作为一种基本的金属处理方法,被广泛的运用于国民经济的各部门,为电弧焊提供能量的弧焊电源从诞生起已取得了很大的发展。
1弧焊电源发展历程
作为一种气体导电的物理现象,电弧是在19世纪初被发现的,直到1885年俄国人别那尔道斯发明碳极电弧可以看作是电弧作为热源应用的创始,而电弧真正运用于工业是在1892年发现金属极电弧后。上世纪40年代研究成功埋弧焊,而随着航天与原子能的发展出现了氩弧焊。上世纪50年代出现了CO2与各种气体保护焊并研究出等离子弧焊,到70 - 80年代,弧焊电源的发展更是出现飞跃:多种型式的弧焊整流器相继出现和完善,研制成功多种型式的脉冲弧焊电源,为进一步提高焊接质量和适应全位置焊接自动化提供了性能优良的弧焊电源。此外,还先后研制成功高效节能,性能好,晶闸管式、晶体管式、场效应管式和IGBT弧焊逆变器。随着新型弧焊技术的发展,弧焊电源也有了长足的进步。
2弧焊电源的分类、特点及运用
2.1 弧焊电源的分类
弧焊电源的分类无论是国内还是国外都有不同的分类方法,因此其结果也不尽相同,本文采用陈祝年的分类方法。
2.2各种弧焊电源的特点及运用
弧焊变压器,它把网路电压的交流电变成适宜于弧焊的低压交流电,由主变压器及所需的调节部分和指示装置等组成。
它具有结构简单、易造易修、成本低、效率高等优点,但其电流波形为正弦波,输出为交流下降外特性,电弧稳定性较差,功率因数低,但磁偏吹现象很少产生,空载损耗小,一般应用于手弧焊埋、弧焊和钨极氩弧焊等方法。
矩形波交流弧焊电源,它采用半导体控制技术来获得矩形波交流电流,其电弧稳定性好,可调参数多,功率因数高。它除了用于交流钨极氩弧焊(TIG)外,还可用于埋弧焊,甚至可代替直流弧焊电源用于碱性焊条手弧焊。
直流弧焊发电机,一般由特种直流发电机和获得所需外特性的调节装置等组成.它的缺点是空载损耗较大、磁偏吹现象较明显、效率低、噪声大、造价高、维修难;优点是过载能力强、输出脉动小,可用于各种弧焊方法的电源,也可用柴油机驱动用于没有电源的野外施工。弧焊整流器,它是把交流电经降压整流后获得直流电的,外特性可以是平的或下降的,它由主变压器、半导体整流元件以及获得所需外特性的调节装置等组成。与直流弧焊发电机比较,它具有制造方便、价格低、空载损耗小、噪声小等优点,而且大多数可以远距离调节,能自动补偿电网电压波动对输出电压、电流的影响,但有磁偏吹现象.它可作为各种弧焊方法的电源。
弧焊逆变器,它把单相(或三相)交流电经整流后,由逆变器转变为几百至几万赫兹的中频交流电,经降压后输出交流或直流电。整个过程由电子电路控制,使电源具有符合需要的外特性和动特性。它具有高效节电、质量轻、体积小、功率因数高、控制性能好、动态响应快易于实现焊接过程的实时控制、焊接性能好等独特的优点,可用于各种弧焊方法,是一种最有发展前途的普及型弧焊电源。脉冲弧焊电源,焊接电流以低频调制脉冲方式馈送,一般是由普通的弧焊电源与脉冲发生电路组成,也有其他结构形式。它具有效率高,输入线能量较小,可在较宽范围内控制线能量等优点。这种弧焊电源用于对热输入量比较敏感的高合金材料薄板和全位置焊接,具有独特的优点。
3弧焊电源技术的现状与发展
3.1弧焊电源技术的现状
传统的弧焊电源,如占焊机总产量90%的手弧焊机生产中,是以技术落后的矩形动铁式和大量耗材的动圈式交流弧焊机为主。在我国直流弧焊电源中,在国家三令五申下,虽已逐步减少了电力拖动的旋转式直流弧焊发电机的生产,但未能完全禁绝。对整流式弧焊电源的推广,也是较为困难,由于老式的硅整流弧焊电源的性能难以与旋转式直流弧焊电源相匹敌,而国家重点推广的晶闸管整流电源ZX5 -250、ZX5 - 400初期性能并不稳定,使用户无所适从,这一局面直到90年代中期才得到改变。
数字化弧焊技术是一种新兴的技术,数字化弧焊电源是指焊机主要的控制电路由数字控制技术替代传统的模拟控制技术,且在控制电路中的控制信号也由模拟信号过渡到0 /1编码的数字信号。数字系统与模拟系统相比有着明显的优势,数字系统具有系统灵活性好、控制精度高、稳定性与产品一致性好、接口兼容性好以及系统功能升级方便等特点。1994年,国外Fronius公司的Lahnsteiner.Robert指出,现代GMAW焊接电源应满足多方面的不同需求,如:适合于短路过渡焊接、脉冲焊接、射流过渡焊接和高熔敷率焊接等焊接工艺,合理的焊接电源外特性可以通过原边工作于开关状态的逆变电源实现;大量的焊接规范参数的设计必须实现Synergic控制(一元化控制)以使焊接电源便于操作;为满足新的质量控制要求,焊接电源必须实时记录焊接规范参数、识别偏差量 。基于上述思想,伴随着新型的功能强大的数字信息处理器DSP的出现,Fronius公司推出了全数字化焊接电源,随后Panosonic等公司也推出了各自的数字化焊接电源产品,并相继进入中国市场。数字化焊接电源实现了柔性化控制和多功能集成,具有控制精度高、系统稳定性好、产品一致性好、功能升级方便等优点 。如Fronius公司的Transplus synergic 2700 /4000 /5000系列产品在一台焊机上实现了MIG/MAG、TIG和手工电弧焊等多种焊接方法,可存储近80个焊接程序,实时显示焊接规范参数,通过单旋钮给定焊接规范参数和电流波形参数,可以实现熔滴过渡和弧长变化的精确控制,同时,此类焊接电源还可以通过网络进行工艺管理和控制软件升级。
3.2弧焊电源技术发展
弧焊电源从诞生到目前已经历了一百多年的历史,它总是随着科技的进步而发展。预计未来的弧焊电源将朝着这几方面发展:
其一,数字化弧焊电源。从硬件电路角度看,数字化电源借助DSP技术实现了PID控制器和PWM信号发生电路的数字化。随着实现了模拟电路和数字电路有机结合的混模电路的出现,预计不久的将来分立式的模拟电路将逐步为高度集成的数字化混模电路所取代。而焊接电源和功率模块的设计制造也可根据需要以数字化的方式完成。焊接电源的能量控制由电流、电压、时间的协同方式来完成,具体表现为输出波形的数字化。
其二,绿色弧焊电源。早在2000年就有人提出绿色焊机的概念,绿色焊接是在全球资源与能源日渐紧缺,人民的环保意识逐渐增强的情况下提出的。节能环保的绿色焊机必是未来焊机弧焊电源的研制发展方向。
4结语
近年来随着市场竞争的日趋激烈,提高焊接生产的生产率、保证产品质量、实现焊接生产的自动化、智能化越来越得到焊接生产企业的重视。而人工智能技术、计算机视觉技术、数字化信息处理技术、机器人技术等现代高新技术的溶入,也促使弧焊技术正向着焊接工艺高效化、焊接电源控制数字化、焊接质量控制智能化、焊接生产过程机器人化的方向发展,弧焊设备也向着智能化发展、机器人化发展。本文综述的内容只是其中很少一部分,希望能够起到促进交流,共同提高的作用。
电力电子技术的发展与展望研究
作者:王娟武 班级:机设0918 专业:机电设备维修与管理 学号:0918316 学院:安徽水电学院 日期:2010年12月
当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。
电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
�现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。
一..电力电子技术的发展历史
1. 整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了一股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
2. 逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
3. 变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2. 现代电力电子的应用领域
2.1 计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合
绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2 通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3 直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4 不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5 变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6 高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7 大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。 国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8 电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。
二..现代电力电子技术在电力系统中的应用
1. 发电环节
电力系统的发电环节涉及发电机组的多种设备 ,电力电子备的应用以改善这些设备的运行特性为主要目的。
(l)大型发电机的静止励磁控制
静止励磁采用晶闸管整流自并励方式具有结构简单 、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。
(2)水力、风力发 电机的变速恒频励磁
水力发电的有效功率取决干水头压力和流量,当水头的变化幅度较大时 (尤其是抽水蓄能机组) ,机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。
(3)发电厂风机水泵的变频调速
发电厂的厂用电率平均为 8%,风机水泵耗电量约占火电设备总耗电量的6 5%且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。
2. 输电环节
电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改 善了电力网的稳定运行特性。
(1)直流输电 ( HVDC)和轻型直流输电( HVDC L i g ht )技术 直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。l 9 7 0年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。
(2)柔性交流输电 ( FACTS)技术 FA CTs技术的概念问世20世纪8 0 年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压 及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20世纪9 0年代以来,国外在研究开发的基础上开始将FA CTS技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。
3. 配电环节
配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率 、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力 ( Cu s t o m Po we r ) 技术或DFACTS技术,是在F ACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以DFACTS设备理解为F AC TS 设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着 电力电子器件价格的不断降低,可以预期D F A C TS设备产品将进入快速发展期。
三.电力电子技术的发展展望
1. 新型电力电子器件
在用新型半导体材料制成的功率器件中,最有希望的是碳化硅(SiC)功率器件。它的性能指标比砷化镓器件还要高一个数量级。碳化硅与其它半导体材料相比,具有下列优异的物理特点:高的禁带宽度,高的饱和电子漂移速度,高的击穿强度,低的介电常数,以及高的热导率。上述这些优异的物理特性,决定了碳化硅在高温、高频率、高功率的应用场合下是极为理想的半导体材料。在同样的耐压和电流水平下,SiC器件的漂移区电阻仅为硅器件的1/200,即使高耐压的SiC场效应管的导通压降,也比单极型、双极型硅器件的低得多。而且,SiC器件的开关时间可达10ns量级,并具有十分优越的FBSOA。SiC可以用来制造射频和微波功率器件、各种高频整流器、MESFETs、MOSFETs和JFETs等。SiC高频功率器件已在Motorola开发成功,并应用于微波和射频装置。GE公司正在开发SiC功率器件和高温器件(包括用于喷气式引擎的传感器)。西屋公司已经制造出了在26GHz频率下工作的甚高频的MESFET。ABB公司正在研制高功率、高电压的SiC整流器和其它SiC低频功率器件,用于工业和电力系统。理论分析表明,SiC功率器件非常接近于理想的功率器件。可以预见,各种SiC器件的研究与开发,必将成为功率器件研究领域的主要潮流之一。可是,SiC材料和功率器件的机理、理论、制造工艺均有大量问题需要解决,它们要真正给电力电子技术领域带来又一次革命,估计还需要至少10年左右的时间。
2. 新能源
电力电子技术在新能源发电技术和电能质量控制技术及节能技术方面有很广阔的发展间。其中风力发电和太阳能发电最受关注,而电力电子技术正是风力发电和太阳能发电的核心技术之一,这给电力电子工程师提供了千载难逢的发展机遇 ,广大 电力电子工程师务可以住这一机遇乘势而上,促进电力电子技术的发展。同时,由于一方面电力电子装置和电弧炉等装置的的大量应用,使得电能质量日益下降,另一方面用 户对电能质量的要求越来越高人们对以有源电力滤波器为代表的电能质量控制装置日益重视,研究开发越来越多。此外,由于电力系统电动机(约占发电量的6 0 % 以上 ) 和照明电源( 约占发电量的 1 0~1 5 %的大量采用,电力电子装置对无功功率和电力谐波都可有很好的补偿作用,因此,电力电子技术被称为节能的技术。目前,由于化石能源日渐枯竭,因此 ,电力电子技术在节能方面受到很大程度的重视,并且发展十分迅速。
3. 电动车辆
中国人多地大石油少,现在中国每年已进口许多石油。在21世纪前半叶,地球上的石油天然气资源日益减少,以至早晚会用尽。特别在中国国情下,城市交通以发展电动车辆为主是必然的趋势。大城市间的磁悬浮列车、城市内的电动高架列车和地铁列车、个人用电动自行车和电动汽车将构成未来的交通网络的主角。其中,大有电力电子产品的用武之地。磁悬浮列车的磁悬浮电源和直线电动机的变频调速;城市高架列车和地铁列车中异步电动机的变频调速;电动自行车和电动汽车中永磁无刷电机的外转子调速,在今后十年里会有很大的发展。这里,电动自行车和电动汽车的普及必须解决无刷电机及其控制器、环保电池、快速充电器和充电站网络服务等几方面的问题。现在看来,在中国推广电动自行车替代摩托车作为代步工具技术上正在趋于成熟。这里必须采用镍-氢电池组和锂离子电池组,消除常规铅-酸电池对环境的污染。这种价格尚偏贵的电池组可以采用向电动自行车用户出租使用的方式,实行由间距合理的电池充电站统一充电和用户自行充电相结合的办法。铅-酸电池与锂离子电池(如36V,10AH)相比,前者重12 kg,后者仅2.4 kg。
电动汽车的发展又是电力电子未来的潜在大市场。首先是高能量密度的清洁电池的突破。比较有希望的是燃料电池,它的起动和稳定运行都要用电力电子产品与之配套。其牵引系统方案中令人最感兴趣、并已有工业应用前景的,要属安装在四个车轮中的外转子盘式永磁无刷直流电动机驱动了。这种电机结构的优化设计、高性能控制调速传动,以及四台电机转动的协调运转,将为电动汽车的舒适运行,零半径转弯提供技术保证。今后十年将是电动汽车实用化发展的关键时期,电力电子产业可以也应该为此做出相应的研究开发工作,积极迎接这个庞大市场的到来。
结束语:
电力电子技术已迅速发展成为一门独立的技术、学科领域。它的应用领域几乎涉及到国民经济的各个工业部门。毫无疑问,它将成为新世纪的关键支撑技术之一。电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。
参 考 文 献
(1)林渭勋. 浅谈半导体高频电力电子技术.电力电子技术选编,浙江大学,1992(384-390)
(2)付宇明 张辉. 电力电子技术在电力系统中的应用.信息技术,2000(162)
(3)王兆安. 我国电力电子技术的新进展..逆变器世界,2008(32)
(4) 陈虹. 电气学科导论. 北京:机械工业出版社,2005