您当前的位置:首页 > 发表论文>论文发表

关于细胞器的论文

2023-12-08 00:13 来源:学术参考网 作者:未知

关于细胞器的论文

细胞结构解读
绝大多数的真核生物细胞都有核、质、膜三个部
分,膜是生命系统的边界,是控制物质交换的门户;质
是新陈代谢的主要中心,质中的细胞器在系统内分工
合作;核是遗传物质贮存和复制的主要场所,也是遗传
性状和新陈代谢的控制中心,是生命系统的控制中心;
各有其重要性,又有其特殊性,相互独立,又相互联系,
构成一个和谐统一的、有机的、复杂的生命系统。
1.1 细胞膜的结构和功能细胞生活在液体环境中,
膜是与外界环境相隔的界线,是保证细胞内化学反应
顺利进行的天然屏障,这与结构有关。
(1)主要的分子组成由磷脂双分子层构成基本
骨架,这种结构的存在就必然有与之相对应的功能存
在,脂溶性物质能够以自由扩散的方式优先通过细胞
膜;在磷脂双分子层中镶嵌有蛋白质分子,这一结构的
存在,也必然有与之相对应的功能存在,蛋白质分子
可作为物质运输载体,从而使膜具有主动运输的功能。
(2)结构特点与功能特性组成细胞膜的磷脂分
子和蛋白质分子大都可以运动,因而决定了细胞膜的
结构特点是具有一定的流动性,细胞膜的功能特性是
具有选择透过性,这是两个不同而又有联系的概念,膜
的流动性存在,既可以使膜中的各种成分需要调整其
组合分布而有利于控制物质出入细胞,又能使细胞经
受一定的变形而不致破裂(如:人体的自细胞能变形穿
过毛细血管壁),具有保护的作用,从而保证了活细胞
完成各种生理功能。细胞膜的流动性是选择透过性的
基础,而活细胞的细胞膜具有选择透过性,是细胞生命
活动的体现,这样就保证细胞按生命活动的需要吸收
和排出物质,而物质透过细胞膜等各项生理功能的实
施,又需要细胞膜的流动性这一结构特点来保障,这就
是结构特点和功能特性的统一。流动性是细胞膜结构
固有的属性,无论细胞是否与外界发生物质交换关系,
流动性总是存在的,而选择透过性是对细胞膜生理特
性的描述,这一特性只有在流动性基础上,完成物质交
换功能方面体现出来。总结如下:(图附在后面)

1.2 细胞质的结构和功能细胞质是细胞结构中的
重要组成部分,是活细胞内新陈代谢的主要场所,也是
同化作用和异化作用发生的主要场所。活细胞中的生
命活动,绝大多数物质的合成和分解,就是发生在细胞
质中,是细胞生命活动最活跃的部位,活细胞中的细胞
质处在流动状态。在亚显微结构下,把细胞质作为一
个整体来研究,实际上细胞质主要包括细胞质基质和
细胞器。本部分内容上连接第一章“生命的物质基
础”(细胞质也是由化学元素和化学元素组成的化合
物而形成的结构),尤其是细胞质中的水分、无机盐、核
苷酸、氨基酸等,进一步体现了生命系统的物质性。该
内容下连接第三章“生物的新陈代谢”中细胞呼吸和
光合作用的重点知识,本部分具有承上启下的作用。
线粒体与细胞呼吸正相关,叶绿体与光合作用正相关。
其余多种细胞器教学中,限于教材,侧重介绍其分布,
结构和功能作简要介绍。最后归类总结出双层膜的、
单层膜的、非膜结构的、生成水的、生成ATP的、含有
DNA的细胞器、“四个场所”。但应凸现出一个重要的
教学理念:物质组成结构,结构决定功能;结构和功能
和谐统一的学科思想。
1.3 细胞核的结构和功能该内容介绍细胞核的组
成及原核细胞的基本结构,前者主要由三个部分核模、
核仁、染色质组成,核膜使核内与质中的化学反应分
开,既相互联系,又相互独立,核膜同样具有选择透过
性,控制细胞质与细胞核之间的物质交换,对细胞核内
物质具有保护作用,膜上的核孔有利于核、质问进行频
繁的、大量的大分子的物质交流,是大分子交换的理想
通道[2];核仁的折光系统强,是真核生物细胞最明显
的标志;染色质与染色体的关系既是重点又是难点,具
有抽象性,是难消化的知识点;都含有DNA分子,是生
物的遗传物质,同样也体现了结构和功能和谐统一。
1.4 细胞质流动的实验指导学生正确使用高倍显
微镜观察黑藻细胞质的流动,观察中为什么只看到叶
绿体,而看不到其他细胞器的原因(叶绿体大,有色
素),为什么只看到叶绿体黑藻细胞边缘流动(成熟的
植物细胞大部分的空间被液泡占有),这都是在实验中
遇到的实际问题。

Nature子刊论文解读!发现一种新的细胞器参与癌症转移

在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。

论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”

他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。

Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”

论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”

这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。

Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”

这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。

随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。

Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。

下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。

通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。

通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”

Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”

这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。

Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”

Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。

他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 Bioon.com)

参考资料: 1.Mark Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00641-w. 2.Kiran D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00649-2.

关于细胞的小论文

生物按其结构来分,就分为三种类型,一是由真核细胞构成的真核生物;二是由原核细胞来构成的原核生物;三是没有细胞结构的病毒。所以没有细胞结构的生物就只有病毒了。

其实病毒是一个大的范围,它还包括一个分支——亚病毒(如朊病毒就是属于亚病毒的一类),亚病毒就是比病毒结构更简单的生物。但如果从宏观来讲,也把亚病毒划在病毒学的范畴。所以对于高中生物知识来说,除了病毒外,其它的生物都是由细胞来构成的了(包括真核和原核)。
在光学显微镜下观察植物的细胞,可以看到它的结构分为下列四个部分(图3-1-1)。

细胞壁 位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。
细胞膜 细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。
细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中(图3-1-2),或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。

细胞质 细胞膜包着的黏稠透明的物质,叫做细胞质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。
细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。
除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结构需用电子显微镜观察。在电镜下观察到的细胞结构称为亚显微结构(图3-1-3)。

线粒体 呈线状、粒状,故名。在线粒体上,有很多种与呼吸作用有关的颗粒,即多种呼吸酶。它是细胞进行呼吸作用的场所,通过呼吸作用,将有机物氧化分解,并释放能量,供细胞的生命活动所需,所以有人称线粒体为细胞的“发电站”或“动力工厂”。
内质网 内质网是细胞质中由膜构成的网状管道系统。它与细胞膜相通连,对细胞内蛋白质等物质的合成和运输起着重要作用。
核糖体 核糖体是一种颗粒状小体,多存在于内质网膜的外表面,是合成蛋白质的重要基地。
中心体 中心体存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。 中心体与细胞的有丝分裂有密切关系。

细胞核 细胞质里含有一个近似球形的细胞核,是由更加黏稠的物质构成的。细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精等碱性染料染成深色,叫做染色质。生物体用于传种接代的物质即遗传物质,就在染色质上。当细胞进行有丝分裂时,染色质就变化成染色体。

多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。
动物细胞与植物细胞相比较,具有很多相似的地方,如动物细胞也具有细胞膜、细胞质、细胞核等结构。但是动物细胞与植物细胞又有一些重要的区别,如动物细胞的最外面是细胞膜,没有细胞壁;动物细胞的细胞质中不含叶绿体,也不形成中央液泡(图3-1-4)。
总之,不论是植物还是动物,都是由细胞构成的。细胞是生物体结构和功能的基本单位

自己找一部分吧

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页