您当前的位置:首页 > 发表论文>论文发表

功能材料导论论文

2023-12-09 13:04 来源:学术参考网 作者:未知

功能材料导论论文

到万方这类论文数据库找,那里论文多,且质量高。自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮你下载到这论文的

写关于光学功能材料的论文,知道的给我一篇,没有的给我些资料,加图片,谢谢了。

  稀土掺杂氟化物多波长红外显示材料的研究
  摘 要
  本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。
  关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+
  Abstract
  This paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed materials.
  Key Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+
  目 录
  摘要
  Abstract
  第一章 绪论 1
  1.1 稀土元素的光谱理论简介 1
  1.1.1 稀土元素简介 1
  1.1.2 稀土离子能级 1
  1.1.3 晶体场理论 2
  1.1.4 基质晶格的影响 2
  1.2 上转换发光材料的发展概况 3
  1.3 上转换发光的基本理论 4
  1.3.1 激发态吸收 4
  1.3.2 光子雪崩上转换 4
  1.3.3 能量传递上转换 5
  1.4 敏化机制与掺杂方式 6
  1.4.1 敏化机制 6
  1.4.2 掺杂方式 7
  1.5 上转换发光材料的应用 8
  1.6 本论文研究目的及内容 8
  第二章 红外激光显示材料的合成与表征 10
  2.1 红外激光显示材料的合成 10
  2.1.1 实验药品 10
  2.1.2 实验仪器 10
  2.1.3 样品的制备 11
  2.2 红外激光显示材料的表征 12
  2.2.1 XRD 12
  2.2.2 荧光光谱 12
  第三章 结果与讨论 14
  3.1 基质材料的确定 14
  3.2 助熔剂的选择 15
  3.3 烧结时间的确定 15
  3.4 烧结温度的确定 16
  3.5 掺杂浓度的确定 17
  结 论 21
  参考文献 22
  致 谢 23第一章 绪论
  1.1 稀土元素的光谱理论简介
  1.1.1 稀土元素简介
  稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。
  稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。
  稀土发光材料具有许多优点:
  (1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;
  (2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;
  (3)荧光寿命跨越从纳秒到毫秒6个数量级;
  (4)吸收激发能量的能力强,转换效率高;
  (5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。
  1.1.2稀土离子能级
  稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。
  稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。
  1.1.3 晶体场理论
  晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。
  稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。
  1.1.4 基质晶格的影响
  基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:
  (1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。
  1.2 上转换发光材料的发展概况
  发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。
  60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。
  从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。
  目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。
  迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。
  1.3 上转换发光的基本理论
  通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。
  1.3.1激发态吸收
  激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。

  图1-1 上转换的激发态吸收过程
  1.3.2 光子雪崩上转换
  光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。

  图1-2 光子雪崩上转换
  1.3.3能量传递上转换
  能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。

  (a)普通能量传递 (b)多步连续能量传递

  (c)交叉弛豫能量传递 (d)合作发光能量传递

  (e)合作敏化上转换能量传递
  图1-3 几种能量传递过程的示意图
  稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:
  Itamin ∝ Iexcitationn
  其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。
  1.4 敏化机制与掺杂方式
  1.4.1 敏化机制
  通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:
  Dexc+A→D+Aexc
  D表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。
  (1)直接上转换敏化
  对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。

  图1-4 直接上转换敏化
  (2)间接上转换敏化
  由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。

  图1-5 间接上转换敏化
  1.4.2 掺杂方式
  表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。
  表1-1 常见的掺杂体系
  稀土离子组合 激发波长 基质材料 敏化机制
  单掺杂 Er3+ 980nm ZrO2纳米晶体 —
  Nd3+ 576nm ZnO–SiO2–B2O3 —
  Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —
  双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化
  Yb3+:Ho3+ 980nm YVO4 直接敏化
  Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化
  Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化
  Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化
  Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化
  Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化
  三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化
  Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化
  Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化
  1.5 上转换发光材料的应用
  稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。
  1.6 本论文研究目的及内容
  Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。
  本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。
  第二章 红外激光显示材料的合成与表征
  经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。
  本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。
  2.1 红外激光显示材料的合成
  2.1.1 实验药品
  (1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。
  (2)ErF3、YbF3的配制
  制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。
  实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:
  Er2O3+6HNO3→2Er(NO3)3+3H2O
  Yb2O3+6HNO3→2Yb(NO3)3+3H2O
  再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:
  Er(NO3)3+3HF→ErF3↓+3HNO3
  Yb(NO3)3+3HF→YbF3↓+3HNO3
  生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。
  2.1.2 实验仪器
  SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)
  PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)
  202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)
  SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)
  WGY-10型荧光分光光度计(天津市港东科技发展有限公司)
  DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)
  1064nm半导体激光器(长春新产业光电技术有限公司)
  4-13型箱式电阻炉(沈阳市节能电炉厂)
  2.1.3 样品的制备
  (1)实验方法
  本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。
  高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。
  (2)实验步骤
  根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:

  图2-1 实验流程图
  2.2 红外激光显示材料的表征
  2.2.1 XRD
  X射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo M.Rietveld鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。
  本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、RS0.3mm.、SS1 mm,扫描速度10度/min(普通扫描)、0.02度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

急需一份有关功能高分子材料的论文(2000多字)谢谢。。。

仅供参考;

《功能高分子材料》课程是高分子材料、复合材料、材料化学和应用化学专业的核心主干课程,它是建立在高分子化学和高分子物理基础上,并与其它多种学科如物理学、生物学、医学、分离科学等交叉的综合性课程。由于涉及领域非常广泛,如涵盖了吸附分离功能高分子材料、反应型功能高分子材料、电功能高分子材料、光功能高分子材料、高分子功能膜材料、生物医用功能高分子材料、液晶高分子材料、环境敏感高分子材料等,该门课程教学质量的优劣对学生能否深入了解功能性高分子的设计、表征和应用非常重要。考虑到《功能高分子材料》课程一般是在大三的下学期或大四的上学期开设,这时学生面临着考研复习和找工作等问题,很难静下心来进行深入的学习。

因此,采用传统的教学方式难以达到满意的教学效果。针对这些问题,结合我校高分子材料专业教学的实际情况,笔者对《功能高分子材料》课程的教学从教材选定、教学内容和教学方式方面进行了探索。下面,笔者就自己的点滴体会进行论述。

1教材的选定和内容的精讲自高分子学科在我国诞生以来,功能高分子材料的发展非常迅速,目前为止国内所见的教材已有十多种。由于功能高分子材料发展非常迅速,为了获取最新的知识,不能选择那些出版年月较老的教材。另外,还要保证教材编写的质量。经过对不同教材的比较,结合我校实际,最终选用了赵文元和王亦军编著的由化学工业出版社于2008年出版的教材。该教材是在1996年版的基础上,加入了许多新的功能高分子方面的研究内容,并结合实际对一部分内容进行了一定的删改。经过对该教材一段时间的试用,我们发现效果较好。另外,针对课时有限而授课内容多的矛盾,应突出教学重点,选择最热门和重要的部分进行精讲,其它部分略讲或者学生自学。

2多媒体教学与传统教学方式相结合多媒体教学是指运用计算机并借助于预先制作的教学课件来开展教学活动的过程。与传统教学方法相比,它具有课堂容量大、图文并茂、形象生动、易于突出教学重点和难点等优点。近几年来,越来越多的课程开始实行多媒体教学。功能高分子材料方面新概念多,涉及领域广,借助多媒体技术,不仅可向学生直观地展示有关功能高分子设计实例,而且可插入适当的生产生活实例,使抽象枯燥的功能高分子材料课程更加具体生动。同时,要注意的是多媒体教学效果的好坏,在很大程度上取决于教学课件的水平。因此,老师应努力提高教学课件的制作水平。另外,我们也注意到,多媒体教学的上课进度明显要快于传统的板书教学。这样,对于某些特别重要的理论公式的学习和推导,通过多媒体教学难以使学生在较短的时间内完全理解,这时就应该采用传统的板书教学方式。因此,我们应采取多媒体教学与传统教学相结合的教学方式,根据教学内容进行相应的调整,既保证学生对课程感兴趣,又能让学生真正深入的理解功能高分子材料的知识。

3联系生活实际,引出所要讲述的功能高分子材料以生活中的实际例子或新闻报道中的最新科技进展为例子,引出将要介绍的功能高分子材料。这样既能让学生意识到功能高分子材料的重要性,提高学习的积极性,又能让学生了解到最新的研究成果,提高对科学研究的兴趣。如从全球都非常关注的环保问题出发,引出废水和废气处理方面的功能高分子材料,介绍这些功能高分子材料的设计思路和原理,让学生从理论和实际相结合的角度深入理解所学的功能高分子知识。同时,还可以提出一些生活中材料的不足,让学生发挥主观能动性,提出解决这些材料不足之处的方法或设计新的功能高分子材料的想法。这样,学生的学习兴趣会大大的提高,教学效果也会明显得到改善。

4利用网络资源,紧跟最新研究进展,实时补充新的教学内容功能高分子材料是一门发展非常迅速的学科,每隔一段时间都有新的研究成果诞生,我们应根据情况实时的补充那些热门和重要的研究成果到教学内容中,让学生了解到最新的功能高分子知识,提高学生对功能高分子材料的兴趣。互联网上资源丰富,内容更新快,是老师补充教学内容的最佳途径。目前,利用网络资源作为课堂教学的辅助手段,是学生喜闻乐见的形式。老师可以制作一个功能高分子的网页,提供最新研究成果的链接,方便学生浏览。同时,还可以鼓励学生在网上搜索最新的研究成果,再在课堂上以口头报告的形式传达给同学。这样,既能让学生对功能高分子材料进行全面的了解,又能让学生主动的参与教学,达到较好的教学效果。

5互动式教学,学生做“学术报告”课堂教学是教学的关键性环节,如何启发学生积极思考,调动学生的学习积极性,是老师们一直在探索的问题。针对功能高分子材料涵盖领域多,可以从热门的领域中选择几个作为报告题目,然后让学生分成若干个小组,共同完成查找资料和组织讲稿的工作。最后,从各小组中选出一人作为代表上台做“学术报告”,每个小组之间互相提问。

(高分悬赏)请给一篇有关功能材料研究发展方向的短文(200-300字)

引言:提起“纳米”这个词,可能很多人都听说过,但什么是纳米,什么是纳米材料,可能很多人并不一定清楚,本文主要对纳米及纳米材料的研究现状和发展前景做了简介,相信随着科学技术的发展,会有越来越多的纳米材料走进人们的生活,为人类造福。

纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。

在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。 研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。 1研究形状和趋势 纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。 纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米cu材料,硬度比粗晶cu提高5倍;晶粒为7urn的pd,屈服应力比粗晶pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望, 根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(nsf)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国darpa(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近年来制定了各种计划用于纳米科技的研究,例如 ogala计划、erato计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资1.28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资1.2亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从2.5亿美元增 加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。 2国际动态和发展战略 1999年7月8日《自然》(400卷)发布重要消息 题为“美国政府计划加大投资支持纳米技术的兴 起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从2.5亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原1.97亿美元的资助强度提高到2.5亿美元。《美国商业周刊》8月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功100urn芯片,美国明尼苏达大学和普林斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。 最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 3国内研究进展 我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介入,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。 目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学、东北大学、西安交通大学、天津大学、青岛化工学院、华东师范大学,华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学 研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达 92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常hall-petch效应。 近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到 3mm 3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是制备成功一维纳米丝和纳米电缆,该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(crn)、磷化钴(cop)和硫化锑(sbs)纳米微晶,论文发表在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,论文发表在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金---从四氯化碳(cc14)制成金刚石”一文,予以高度评价。 我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。 在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导cvd、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、mcm-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。 综上所述,“八五”期间我国在纳米材料研究上获得了一批创新性的成果,形成了一支高水平的科研队伍,基础研究在国际上占有一席之地,应用开发研究也出现了新局面,为我国纳米材料研究的继续发展奠定了基础。10年来,我国科技工作者在国内外学术刊物上共发表纳米材料和纳米结构的论文2400多篇,在国际上排名第五位,其中纳米碳管和纳米团簇在1998年度欧洲文献情报交流会上德国马普学会固体所一篇研究报告中报道中国科技工作者发表论文已超过德国,在国际排名第三位,在国际历次召开的有关纳米材料和纳米结构的国际会议上,我国纳米材料科技工作者共做邀请报告24次。到目前为止,纳米材料研究获得国家自然科学三等奖1项,国家发明奖2项;院部级自然科学一、二等奖3项,发明一等奖3项,科技进步特等奖1项;申请专利 79项,其中发明专利占50%,已正式授权的发明专利6项,已实现成果转化的发明专利6项。 最近几年,我国纳米科技工作者在国际上发表了一些有影响的学术论文,引起了国际同行的关注和称赞。在《自然》和《科学》杂志上发表有关纳米材料和纳米结构制备方面的论文6篇,影响因子在6以上的学术论文(phys.rev.lett,j.ain.chem.soc .)近20篇,影响因子在3以上的31篇,被sci和ei收录的文章占整个发表论文的 59%。 1998年 6月在瑞典斯特哥尔摩召开的国际第四届纳米材料会议上,对中国纳米材料研究给予了很高评价,指出这几年来中国在纳米材料制备方面取得了激动人心的成果,在大会总结中选择了8个纳米材料研究式作取得了比较好的国家在闭幕式上进行介绍,中国是在美国、日本、德国、瑞典之后进行了大会发言。

4 纳米产业发展趋势

(1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。2000年,中国的信息产业创造了gdp5800亿人民币。纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。

(2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到0.1ppm,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。

(3)能源环保中的纳米技术:合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。

(4)纳米生物医药:这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。

(5)纳米新材料:虽然纳米新材料不是最终产品,但是很重要。据美国测算,到21世纪30年代,汽车上40%钢铁和金属材料要被轻质高强材料所代替,这样可以节省汽油40%,减少co2,排放40%,就这一项,每年就可给美国创造社会效益1000亿美元。此外,还有各种功能材料,玻璃透明度好但份量重,用纳米改进它,使它变轻,使这种材料不仅有力学性能,而且还具有其他功能,还有光的变色、贮光,反射各种紫外线、红外线,光的吸收、贮藏等功能。

(6)纳米技术对传统产业改造:对于中国来说,当前是纳米技术切入传统产业、将纳米技术和各个领域技术相结合的最好机遇。首先是家电、轻工、电子行业。合肥美菱集团从1996开始研制纳米冰箱,可折叠的pvc磁性冰箱门封不发霉,用的是抗菌涂料,里面的果盘都采用纳米材料,发展轻工、电子和家用电器可以带动涂料、材料、电子原器件等行业发展;其次是纺织。人造纤维是化纤和纺织行业发展的趋势,中国纺织要在进入wto后能占据有利地位,现在就必须全方位应用纳米技术、纳米材料。去年关于保温被、保温衣的电视宣传,提到应用了纳米技术,特殊功能的有防静电的、阻燃的等等,把纳米的导电材料组装到里面,可以在11万伏的高压下,把人体屏蔽,在这一方面,纺织行业应用纳米技术形势看好;第三是电力工业。利用纳米技术改造20万伏和11万伏的变压输电瓷瓶,可以全方位提高11万伏的瓷瓶耐电冲击的性能,而且釉不结霜,其它综合性能都很好;第四是建材工业中的油漆和涂料,包括各种陶瓷的釉料、油墨,纳米技术的介入,可以使产品性能升级。

1999年8月20日《美国商业周刊》在展望21世纪可能有突破性进展的领域时,对生命科学和生物技术、纳米科学和纳米技术及从外星球上索取能源进行了预测和评价,并指出这是人类跨入21世纪面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为下一世纪先进的国家。挑战严峻,机遇难得,我们必须加倍重视纳米科技的研究,注意纳米技术与其它领域的交叉,加速知识创新和技术创新,为21世纪中国经济的腾飞奠定雄厚的基础。

编者按:激动人心的纳米时代已经到来,人们的生活即刻将发生巨大的变化,然而,我们也要清醒地看到,市场上真正成熟的纳米材料并不是很多。中科院院士白春礼院士认为,“真正意义的纳米时代还没有到来,我们正在充满信心地迎接纳米时代的到来。”

白春礼说,“人类进入纳米科技时代的重要标志是纳米器件的研制水平和应用程度。”纳米科技发展到今天,距离纳米时代的到来还有多远呢,白春礼说,“纳米研究目前还有许多基础研究在进行中,在纳米尺度上还有大量原理性问题尚待研究,纳米科技现在的发展水平大概相当于计算机技术在20世纪50年代的发展水平,人类最终进入纳米时代还需要30到50年的时间,50年后纳米科技有可能像今天计算机技术一样普及。”

对于纳米科技,科学的态度是积极参与,脚踏实地地推动这一前沿科技的健康发展,既不需要商业炒作,也不需要科学炒作。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页