您当前的位置:首页 > 发表论文>论文发表

功能材料编辑加工

2023-12-07 13:41 来源:学术参考网 作者:未知

功能材料编辑加工

退修,分二种情况,一种是退修给原作者对稿件进行修改,这种情况是有修改意见的,如没有看到可直接联系期刊,一种是退稿给责任编辑进行稿件加工的。这种是没有退修意见的。

什么是有机智能材料?有机智能材料有哪些

智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。一般说来,智能材料有七大功能,即传感功能、反馈功能、信息识别与积累功能、响应功能、自诊断能力、自修复能力和自适应能力。

目录

定义
分类
实际成果
研究方向
智能材料如何出现的
智能材料的特征
构成
举例说明
编辑本段定义
  智能材料目前还没有统一的定义。不过,现有的智能材料的多种定义仍然是大同小异。大体来说,智能材 智能材料
料就是指具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料。具体来说,智能材料需具备以下内涵:   (1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电,光,热,应力,应变,化学,核辐射等;   (2)具有驱动功能,能够响应外界变化;   (3)能够按照设定的方式选择和控制响应;   (4)反应比较灵敏,及时和恰当;   (5)当外部刺激消除后,能够迅速恢复到原始状态。   智能材料又可以称为敏感材料,其英文翻译也有若干种,常用的有Intelligent material,Intelligent material and structure,Smart material,Smart material and structure,Adaptive material and structure等.。
编辑本段分类
  作为一种新型材料,一般认为,智能材料由传感器或敏感元件等与传统材料结合而成。这种材料可以自我发现故障,自我修复,并根据实际情况作出优化反应,发挥控制功能。 智能材料可分为两大类:   (1)嵌入式智能材料,又称智能材料结构或智能材料系统。在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。   (2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。   这只是一种比较笼统的分类方法,由于智能材料还在不断的研究和开发之中,因此相继又出现了许多具有智能结构的新型的智能材料。如,英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料在航空上的应用取得大量创新成果。
编辑本段实际成果
  在建筑方面,科学家正集中力量研制使桥梁、高大的建筑设施以及地下管道等能自诊其“健康”状况,并 智能材料
能自行“医治疾病”的材料。英国科学家已开发出了两种“自愈合”纤维。这两种纤维能分别感知混凝土中的裂纹和钢筋的腐蚀,并能自动粘合混凝土的裂纹或阻止钢筋的腐蚀。粘合裂纹的纤维是用玻璃丝和聚丙烯制成的多孔状中空纤维,将其掺入混凝土中后,在混凝土过度挠曲时,它会被撕裂,从而释放出一些化学物质,来充填和粘合混凝土中的裂缝。防腐蚀纤维则被包在钢筋周围。当钢筋周围的酸度达到一定值时,纤维的涂层就会溶解,从纤维中释放出能阻止混凝土中的钢筋被腐蚀的物质。   在飞机制造方面,科学家正在研制具有如下功能的智能材料:当飞机在飞行中遇到涡流或猛烈的逆风时,机翼中的智能材料能迅速变形,并带动机翼改变形状,从而消除涡流或逆风的影响,使飞机仍能平稳地飞行。可进行损伤评估和寿命预测的飞机自诊断监测系统。该系统可自行判断突然的结构损伤和累积损伤,根据飞行经历和损伤数据预计飞机结构的寿命,从而在保证安全的情况下,大大减少停飞检修次数和常规维护费用,使商业飞机能获得可观的经济效益。此外,还有人设想用智能材料制成涂料,涂在机身和机翼上,当机身或机翼内出现应力时,涂料会改变颜色,以此警告。   在医疗方面,智能材料和结构可用来制造无需马达控制并有触觉响应的假肢。这些假肢可模仿人体肌肉的平滑运动,利用其可控的形状回复作用力,灵巧地抓起易碎物体,如盛满水的纸杯等。药物自动投放系统也是智能材料一显身手的领地。日本推出了一种能根据血液中的葡萄糖浓度而扩张和收缩的聚合物。葡萄糖浓度低时,聚合物条带会缩成小球,葡萄糖浓度高时,小球会伸展成带。借助于这一特性,这种聚合物可制成人造胰细胞。将用这种聚合物包封的胰岛素小球,注入糖尿病患者的血液中,小球就可以模拟胰细 应用在人体中
胞工作。血液中的血糖浓度高时,小球释放出胰岛素,血糖浓度低时,胰岛素被密封。这样,病人血糖浓度就会始终保持在正常的水平上。   军事方面,在航空航天器蒙皮中植入能探测激光、核辐射等多种传感器的智能蒙皮,可用于对敌方威胁进行监视和预警。美国正在为未来的弹道导弹监视和预警卫星研究在复合材料蒙皮中植入核爆光纤传感器、X射线光纤探测器等多种智能蒙皮。这种智能蒙皮将安装在天基防御系统平台表面,对敌方威胁进行实时监视和预警,提高武器平台抵御破坏的能力。智能材料还能降低军用系统噪声。美国军方发明出一种可涂在潜艇上的智能材料,它可使潜艇噪声降低60分贝,并使潜艇探测目标的时间缩短100倍。   除上述几个方面外,智能材料的再一个重要进展标志就是形状记忆合金,或称记忆合金。这种合金在一定温度下成形后,能记住自己的形状。当温度降到一定值(相变温度)以下时,它的形状会发生变化;当温 形状记忆合金
度再升高到相变温度以上时,它又会自动恢复原来的形状。目前记忆合金的基础研究和应用研究已比较成熟。一些国家用记忆合金制成了卫星用自展天线。在稍高的温度下焊接成一定形状后,在室温下将其折叠,装在卫星上发射。卫星上天后,由于受到强的日光照射,温度会升高,天线自动展开。除此之外,还有人用记忆合金制成了窗户自动开闭器。当温度升至一定程度后窗户自动打开,温度下降时自动关闭。用记忆合金作支撑架的乳罩也很有特色,乳罩在水中可以任意揉搓清洗,但当它被戴到身上时会自动保持自己的形状,并能根据穿着者体形的变化在一定范围内变化。
编辑本段研究方向
  智能材料是一种集材料与结构、智然处理、执行系统、控制系统和传感系统于一体的复杂的材料体系。它的设计与合成几乎横跨所有的高技术学科领域。构成智然材料的基本材料组元有压电材料、形状记忆材料、光导纤维、电(磁)流变液、磁致伸缩材料和智然高分子材料等。智然材料的出现将使人类文明进入一个新的高度,但目前距离实用阶段还有一定的距离。今后的研究重点包括以下六个方面:   (1) 智能材料概念设计的仿生学理论研究   (2) 材料智然内禀特性及智商评价体系的研究   (3) 耗散结构理论应用于智能材料的研究   (4) 机敏材料的复合-集成原理及设计理论   (5) 智能结构集成的非线性理论   (6) 仿人智能控制理论
编辑本段智能材料如何出现的
  智能材料的构想来源于仿生(仿生就是模仿大自然中生物的一些独特功能制造人类使用的工具,如模仿蜻蜓制造飞机等等),它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。因此智能材料必须具备感知、驱动和控制这三个基本要素。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。
编辑本段智能材料的特征
  因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征:   (1)传感功能(Sensor)   能够感知外界或自身所处的环境条件,如负载、应力、应变、振动、热、光、电、磁、化学、核辐射等的强度及其变化。   (2)反馈功能(Feedback)   可通过传感网络,对系统输入与输出信息进行对比,并将其结果提供给控制系统。   (3)信息识别与积累功能   能够识别传感网络得到的各类信息并将其积累起来。   (4)响应功能   能够根据外界环境和内部条件变化,适时动态地作出相应的反应,并采取必要行动。   (5)自诊断能力(Self-diagnosis)   能通过分析比较系统目前的状况与过去的情况,对诸如系统故障与判断失误等问题进行自诊断并予以校正。   (6)自修复能力(Self-recovery)   能通过自繁殖、自生长、原位复合等再生机制,来修补某些局部损伤或破坏。   (7)自调节能力(Self-adjusting)   对不断变化的外部环境和条件,能及时地自动调整自身结构和功能,并相应地改变自己的状态和行为,从而使材料系统始终以一种优化方式对外界变化作出恰如其分的响应。
编辑本段构成
  一般来说智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。   (1)基体材料   基体材料担负着承载的作用,一般宜选用轻质材料。一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。其次也可选用金属材料,以轻质有色合金为主。   (2)敏感材料   敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH值等)。常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。   (3)驱动材料   因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。   (4)其它功能材料   包括导电材料、磁性材料、光纤和半导体材料等。
编辑本段举例说明
  为增加感性认识,现举一个简单的应用了智能材料的例子:某些太阳镜的镜片当中含有智能材料,这种智能材料能感知周围的光,并能够对光的强弱进行判断,当光强时,它就变暗,当光弱时,它就会变的透明。

复合材料都包括哪些方面,哪方面比较好

概念
复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。
[编辑本段]分类
复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。
60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。
[编辑本段]性能
复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。
[编辑本段]成型方法
复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。
[编辑本段]应用
复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。
复合材料的发展和应用
复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。
随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。
从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。
另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。
树脂基复合材料的增强材料
树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。
1、玻璃纤维
目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。
2、碳纤维
碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。
3、芳纶纤维
20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。
4、超高分子量聚乙烯纤维
超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。
5、热固性树脂基复合材料
热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年代发展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。
1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。
热塑性树脂基复合材料
热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。
高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。
滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。
云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。
我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。
我国复合材料的发展潜力和热点
我国复合材料发展潜力很大,但须处理好以下热点问题。
1、复合材料创新
复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。
2、聚丙烯腈基纤维发展
我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。
3、玻璃纤维结构调整
我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。
4、开发能源、交通用复合材料市场
一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。
5、纤维复合材料基础设施应用
国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。
6、复合材料综合处理与再生
重点发展物理回收(粉碎回收)、化学回收(热裂解)和能量回收,加强技术路线、综合处理技术研究,示范生产线建设,再生利用研究,大力拓展再生利用材料在石膏中的应用、在拉挤制品中的应用以及在SMC/BMC模压制品中的应用和典型产品中的应用。
21世纪的高性能树脂基复合材料技术是赋予复合材料自修复性、自分解性、自诊断性、自制功能等为一体的智能化材料。以开发高刚度、高强度、高湿热环境下使用的复合材料为重点,构筑材料、成型加工、设计、检查一体化的材料系统。组织系统上将是联盟和集团化,这将更充分的利用各方面的资源(技术资源、物质资源),紧密联系各方面的优势,以推动复合材料工业的进一步发展。

什么叫功能型材料?

简单的说就是具有一定特点,满足某些特殊要求的材料

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页