您当前的位置:首页 > 发表论文>论文发表

结构化学实验论文

2023-12-07 13:48 来源:学术参考网 作者:未知

结构化学实验论文

论化学与人类的密切相关性这一论文需要从化学的定位、人类的日常活动、化学与人类日常生活的关联三大部分去展开。用词要求相对客观、准确、精炼。

正文:

化学是最重要的基础学科之一,化学与众多领域都有很强的相关性,在生命体中有化学、在衣食住行中有化学、在日常生活及环境中有化学,我们身边无时无刻都存在着化学反应,化学与人类及人类活动都密切相关。

化学和物理一样是自然科学的基础学科。化学是建立在实验的基础上的一门自然学科,化学所涉及到的领域非常多,不只是我们的衣食住行离不开化学,化学还与很多学科互相渗透,如物理学、生物学、地理学等,也推动了其他学科和技术的发展。

化学主要是研究物质的性质、组成、结构、变化,以及物质间相互作用,认识物质的结构与性能,开发新的反应和合成技术,提供具有各种功能的材料。如:人类衣食住行的改善,“两弹一星”的研制,医药新技术的开发,DNA序列的分析等都紧密依赖化学学科的进步。

化学专业的基础课程有:无机化学、分析化学、仪器分析、有机化学、物理化学、高分子科学、结构化学、纳米功能材料等,以及无机化学实验、分析化学实验、仪器分析实验、有机化学实验、物理化学实验等实验性课程。

化学的研究方向较多,不同的学校课程开设会略有不同。

以武汉大学为例,化学专业必修的课有:

无机化学、分析化学、物理化学、有机化学、结构化学、化学实验安全技术、无机化学实验、分析化学实验、物理化学实验、有机化学实验、分子模拟实验、化工基础、化工基础实验、综合化学实验等。

化学专业选修课有:生物化学、高分子科学导论、有机波谱分析、中级有机化学、中级无机化学、中级物理化学、现代分析化学、材料化学、表面化学、生物无机化学、生物有机化学、化学生物学导论、有机合成化学、化学分离技术、能源化学、功能高分子、量子化学、工业电化学、现代电化学、高分子合成与表征等。

化学专业旨在培养具有良好人文和科学素质,具有社会责任感,创新意识和实践能力强,掌握化学基本知识、基本理论和基本技能,身心健康,能胜任化学及相关领域科研、教学及其他工作的人才。

化学专业学制一般为四年制,毕业后授予理学士学位。

主要就业方向包括如下几个方面:

1、从事化工产品生产的工艺试验、工业设计和生产技术组织的技术人员。化学工业是现今众多产业发展的基础,在国民经济中占有重要地位,是国家的基础产业和支柱产业,虽然近几年化工行业发展有些低迷,但就现有的整个行业的体量来说能够提供的就业岗位还是非常多的,收入方面相对也不错。

2、国内中小学校或教育培训机构,从事化学学科教师教学工作,从事教学工作是大部分师范院校化学专业毕业生的首选。近几年培训行业现今正处于高速发展的阶段,不论线上还是线下都发展迅速,进入培训机构也是一个选择。

3、从事药品研发、药品化学工艺合成及药品生产等工作,进入医药企业的学生不仅仅在化学方面学习出色,在生物方面也要有一定的实力,一般本科生大部分可以从事的工作多为辅助类的工作。此类工作在专业技术方面有较高的要求。

4、也可以继续深造,未来进入相关领域实验室或高校,继续从事相关领域研究或教学工作。

化学方面论文的格式和范文

1、如果论文页码不多,前置部分并不一定要有,或只加个封面即可。
2、封面、标题等不要太花哨,一般以简洁大方为好。 3、如果论文很厚实,可考虑正反面排版打印。 4、页码较多的论文,可考虑用页眉标注论文标题及层次标题,如单页用文章标题,双页用层次标题。 5、不管论文长短,页码均需标注。页码标注由正文的首页开始,作为第1页,可以标注在页眉或页脚的中间或右边。论文的前置部分、封三和封底不编入页码。附件部分一般单独编排页码。 6、封底底色与封面一致为好,若用底图则与封面应有相关性。 7、若用订书钉装订,两枚钉应分别居于上下沿四分之一处,左缩进1厘米处

谁能帮我写篇生命科学相关的论文 给高分

毫无疑问,生命科学与化学有着密不可分的联系,我甚至认为生命科学就是用化学来解释生命。然而,仅仅知道一种物质的化学成分是远远不够的,结构才是其功能的基础。我们知道,构成元素相同的物质,由于结构不同,可能在功能上就相去甚远:左、右旋光物质的不同生理作用就是一个很好的例子。但是,我们不能孤立地来阐述生命科学与结构化学的关系,也就是说不能把生命科学看成一块,再把结构化学看成另一块,然后再说明他们间千丝万缕的联系;我认为,结构化学与生命科学是揉合在一起的,很多结构化学家在生命科学领域就有不凡的建树。鲍林就是以化学向生物学渗透的先驱者,他不仅进行了大分子研究,还对镰刀形细胞贫血分子病和大脑化学进行了大量的研究。然而我认为,最能体现结构化学与生命科学揉合一体的历史故事,就是鲍林与沃森和克里克关于DNA结构之争。在这个过程中,我们无法定义他们到底是化学家还是生物学家。而且,结构化学的知识不仅为他们建立模型提供了理论支持,而且在帮助他们判别真理与谬误、为他们的结论提供事实支持等方面起到了至关重要的作用。从这个故事中我们不仅可以看出,解决DNA结构这个世界性的生命科学课题,是许多化学家、物理学家、晶体学家、生化学家共同努力的结果,而且能受到许多在科学研究上的启发。在多学科交叉渗透的今天,我们更不能仅仅只重视专业课的学习,必须同时汲取其他学科的知识,为将来的研究打下基础。

在一九二四年以前,没有一个人真正懂得DNA的重要性。但就在那一年,科学家罗伯特·福尔根发现了一种方法能将DNA染成淡紫色。在这种方法的帮助下,科学家们发现DNA仅存在于细胞核中。到了一九三一年,科学家乔基姆·哈默林用实验证明了植物长成什么样子完全取决于细胞核。随后的一切实验事实都表明,发出遗传信息的正是细胞核里的DNA。

于是,在美洲和欧、亚、非三洲各试验室里的人们都开始研究这个问题。在美国,著名的化学家莱纳斯·鲍林开始了对DNA的研究。在剑桥大学的卡文迪斯实验室里,英国人弗朗西斯·克里克和美国人詹姆斯·沃森也着手进行对奇异的DNA结构的探索。这是一场用结构化学来解释生命科学的竞赛,也是“一个远方传奇大力士被两个无名小卒砍倒的故事”。虽然我们已经知道了这场竞赛的结果,但我认为,这一探索的过程更让人留下深刻的印象。我将双方的研究进行了一些对比,确实从中学到了一些东西,希望和大家一起探讨。

一、双方的开端:

当时的鲍林已经是化学界的“权威”,他致力于蛋白质的研究。1951年夏天,鲍林开始深入研究有关DNA的材料,并常常找人讨论。他认为,与蛋白质相比,弄清DNA的结构不会很难,“这算不上一个最为紧迫的问题”。DNA在重量上是染色体的一种重要成分,但蛋白质也一样。大多数学者认为,蛋白质部分最有可能包含着遗传的信息。相对而言,DNA似乎就比较简单了,它很可能只是一种结构性的成分,只是用来帮助染色体折叠和打开的。鲍林就这样认为。在1952年初,几乎所有重要的遗传学学者都持这一种观点。我们可以看看后来鲍林自己的话:“我以前就知道DNA是一种遗传物质的论点,然而我没有接受这一论点。你们知道,那时我正热衷于蛋白质的研究,我认为蛋白质最有可能是遗传物质,不可能是核酸 当然,核酸也有作用。在我著述的有关核酸的文字材料中,我总会提到核蛋白的概念。当时,我考虑得更多的是蛋白质,而不是核酸。”虽然如此,鲍林还是着手研究DNA的结构。此时,他需要清晰的DNA X光照片,他曾先后写信给相片持有者物理学家威尔金斯(英国)及其上司,但均遭拒绝。1951年11月,《美国化学学会学报》上刊登了一篇论述DNA结构的文章。鲍林据其深厚的结构化学基础,一下子就看出这篇文章的结果是错的;同时,此事刺激了他开始思考DNA是如何构筑起来的问题。鲍林设想,如果碱基朝外,那么螺旋的内核就应当是由磷酸堆积起来的。磷酸聚集在中间,碱基朝外,这与X射线的资料是“吻合”的。在鲍林的头脑中,DNA结构的问题就已经转化为如何将磷酸堆积在一起的问题了。我们现在知道,鲍林的这一开端是错的,并最终使他败给了沃森和克里克。另外还必须一提的是,鲍林对DNA研究总是被各种事务打断,使他曾多次中断自己的思路。是否是因为鲍林没能看到威尔金斯的相片而导致他的失败呢?暂且不回答这个问题,我们先来看看沃森和克里克是如何开始的。
在战争期间,克里克原来是从事武器方面研究的。后来他决定研究生物。于是他到剑桥大学学习分子学。至于沃森,他本来就一直在研究DNA。他到剑桥大学是为了对此作进一步的研究。他们都是热心探索的人。“沃·克组合”相对于鲍林的地位可以说是“一个在天,一个在地”,他们并没有引起人们多大的重视,也没有引起鲍林的注意。他们就凭着一股劲和对目标的执着追求开始了他们的研究。还必须提到的是另外两位对他们的成功起着至关重要的作用的人:一位是上文提到的物理学家威尔金斯,另一位是青年女晶体学家罗莎琳德·富兰克林。他们拍出了非常漂亮的DNA X光照片,不仅启发了沃森和克里克,而且为他们的发现提供了佐证。
鲍林颇为自信,感到自己有能力解开DNA之谜。唯一的问题是,会不会有人抢先取得胜果,但是,他不会把这一点真正放在心上。他认为威尔金斯和富兰克林两人(更不用说沃森和克里克了),没有谁有足够的化学基础对鲍林产生严重的威胁。

二、对对手的不同看法:

鲍林是自负的,他不相信有人能够在他之前发现DNA的结构,特别是他认为没有人有他那样深厚的化学功底。他“知道”, 沃森是一个好学生,但因成绩还不够突出,因而他到加州理工学院当研究生的申请未被批准。克里克已经三十五六岁了,还在读研究生,年龄是大了一些。况且,卡迪文斯实验室的科学家们至今尚未在任何竞赛中打败过鲍林。甚至有人认为,沃森和克里克看上去就像是一对“杂耍演员”。
而沃森和克里克则不同。对于年方19的沃森来说,鲍林是一位值得仿效的榜样。在卢瓦蒙会议上,沃森就是围聚在鲍林身边的人之一,他十分用心地听了鲍林的讲话。克里克开始并不是鲍林的崇拜者,他是鲍林的竞争对手,因为鲍林曾用阿尔法螺旋表明他们的一篇关于蛋白质结构的论文漏洞百出,让克里克承受了由此而来的屈辱。从此,克里克借鉴了鲍林的研究方法。说实话,他们对鲍林这位怪杰都极为佩服。更重要的是,他们两人都互相倾慕,他们可谓是天生一对。相对于鲍林来说,沃森和克里克谦逊多了。

三、研究方法及进程:

鲍林首先想到DNA的结构可能是螺旋型,因为其他构型与他所看到和掌握的照片资料不相符合。但他认为,DNA是由三条链互相缠绕在一起,磷酸处于中央的位置。之后,他的工作重点就聚焦于找出磷酸分子在中央合理的排列方法。虽然他知道自己提出的构型不能完美地符合实验测算得出的数据和X光衍射照片,但他认为这些都只是细枝末节的东西,就像他发现蛋白质阿尔法螺旋一样 开始的时候也有难以解释的数据,他大胆地将之忽略,而其后的事实证明了他这种策略是明智的。另外,鲍林有些急于求成,他希望能够尽快地发表相关文章,抢在其他科学家之前,宣布自己再次成功地解决了又一世界性的难题。于是,他很快地发表了他“发现”的DNA结构。
鲍林将自己的论文也寄给了沃森和克里克。他们两人虚惊了一场,因为他们发现,鲍林设想的这种构型是他们最初设想的结果,当时他们将这一结果给晶体学家富兰克林看的时候,被她以充足的论据否认,因为水容量问题与这种构型严重不符。也正是因为这次错误,他们两人被认为不适合研究DNA构型问题,被拆散到不同的课题组,从事别的研究。但沃森和克里克并没有就此放弃,他们仍然私下坚持不懈地进行研究和探索。他们在研究方法上一直就有共识:与其推导出复杂的数学模型,直接而又明确地解释X光的衍射结果,还不如借助化学常识构筑结构的一个模型。正如沃森所说,他们决定“仿效鲍林,并在他本人发起的这场竞赛中将他击败”。富兰克林的批评已经促使他们将磷酸放到了分子的外侧;又受到奥地利生物化学家切加夫的启示,得知内侧各对碱基之间存在着一一对应的关系。他们开始设想,在螺旋中,嘌呤和嘧啶以某种方式挨次排列在分子中心下部。之后,他们看到了富兰克林最新的DNA照片,不仅使他们确认了DNA是一种螺旋,而且他们得到了几个主要参数。由此,他们开始着手制造模型,通过不懈的努力,最终获得了成功。

可以看出,不论是成功者还是失败者,他们都用了一种结构化学中重要的研究方法 建模。同时,沃森和克里克不仅受到了多学科领域的科学家的启示和帮助,而且他们自己都承认,他们的研究方法来源于伟大的化学家 鲍林。由此可见,生命科学是集多学科,特别是化学的大成所在,他与化学,乃至物理、数学的揉合可见一斑。

为什么鲍林会失败?

鲍林有着深厚的化学知识作为自己研究的基础。照常理而言,成功的应该是他,但他为什么输给了沃森和克里克呢?鲍林输在浮躁和自负上。他急于求成,因为DNA是当时最大的课题,他要去抢占这一高地。他没有把研究的准备工作做好就想碰碰自己的运气了。同时,他顺利解决阿尔法螺旋给他套上了成功的光环,他的确是世界上解决巨分子结构的最佳人选,但他也从此染上了自负的恶习,他以为自己不再需要做别人需要做的那些研究的准备工作了。他过于相信自己的直觉和运气,结果输掉了这场大比拼。

沃森和克里克为什么会成功?

其实这个问题的答案从前面的叙述中都可以看出,但我觉得最重要的一点是不懈的思索与踏实的努力。克里克不就是在因头疼而不得不休息,却又忍不住开始计算时找到了有关DNA结构的答案吗?他们虽然被拆散到两个不同的研究小组,但仍然踏实地合作与工作,正是这样,幸运之神才降临在他们的头上。另外还有一点,就是他们没有放过看似微不足道的东西。奥地利生物化学家切加夫将碱基一一对应的关系同样告诉了鲍林,但却没有得到鲍林的重视,而沃森和克里克并没有放过这一点,而最终获得启发,找到了DNA的正确结构。

结构化学与生命科学的揉合已无需多说,我相信这种相互融合在将来会愈演愈烈。最后我想总结的是有关鲍林的研究方法,毕竟沃森与克里克的成功也来源于此,相信它对所有的科研者都会有所帮助:

鲍林的研究方法

实验研究和理论探讨相结合
鲍林比一般的化学研究生掌握了更多的数学和物理学知识。他一方面是重视实验,强调经验知识;另一方面又深信化学结构问题可以通过应用现代物理学的理论来解决。他常采用半经验的方法:既有根据物理学基本原理进行的演绎推导或论证,又有对实验资料的归纳,二者互相补充。
量子力学与化学经验相结合
鲍林在总结过去对离子半径的研究时曾指出:“应用量子力学可以近似计算……但是,这种理论计算是十分复杂的,需要很大的工作量;因此,从化学方面考虑,最好有一套经验或半经验的离子半径数据……”
他的主要做法是:
不断提出新的概念,利用它来概括实验资料和总结化学结构规律。
发展简单的理论。
努力把量子力学的研究成果转译成化学家的习用语言。
采用移植方法 开拓边缘学科
鲍林不断把结构化学的理论和实验方法移植到生物学、医学以及核物理的研究中去。他按照自己的专长不断地把新的理论原理和新的实验方法移植于另一领域,解决新的研究课题,努力开拓新的边缘学科地带。这是他五十多年来研究成果绵绵不断的重要原因。
直觉和模型方法
在鲍林的研究工作中,直觉的运用占有非常突出的地位。无论是鲍林本人还是别人对他的评述都常常提到直觉。综合起来大致有以下表现:
1.是与数学计算不同的一种寻求答案的方式。
2.一种好奇心,它引起鲍林对某个科学课题的注意,并直接领悟到有可能用经验的方式来解答它。
3.和想象一样,“不能归结为仅仅采用通常的逻辑规则和过程”,它和某种“深邃的洞察力”有关。
4.鲍林对一个晶体的结构的确定,分为两步:一是推测,二是证实。这种“推测”,或者是鲍林本人自称的“随机方法”也在直觉之列。
5.“借助于对化学事实的非凡记忆”,是“经过实践”养成的。
从整体看待世界 从实践对待科学
鲍林作为一位自然科学家,物质世界的统一性对于他来说似乎是不言而喻的。鲍林重视理论思维,并不完全同意实证主义的见解。他强调自己“是纯粹从实践的方面对待科学;可以说是实用地对待科学。”贯穿鲍林研究方法中的极其宝贵的思想正是这种“从实践的方面对待科学”的态度。

求化学论文: 化学反应中的能量转化与利用

化学反应中的能量转化与利用

人类的祖先在与自然界的长期斗争中,很早就开始利用火。他们用火来取暖、烧烤食物,进而又用火来烧制陶器、炼铜、炼铁,等等。因此,我们可以说,人类的文明是从火堆中萌发的,火在人类的进化中起了很重要的作用!
化学研究的对象是自然界中的各种各样的物质。浩瀚的宇宙和地球上人类用肉眼能见到的和不能直接观察到的以原子或分子形态存在的物质,都是我们要了解和研究的对象。

随着科学技术的发展,人们已能通过先进的科学仪器观察一些物质的原子排列状况。1990年前后,美国等少数国家首先在-269℃的低温下移动了原子。1993年,中国科学院北京真空物理实验室的研究人员,在常温下以超真空扫描隧道显微镜(图1)为手段,通过用探针拨出硅晶体表面的硅原子的方法,在硅晶体的表面形成了一定规整的图形(见上图)。这种在晶体表面开展的操纵原子的研究,达到了世界水平。图中的“中国”两字就是这样形成,并经放大约180万倍在计算机屏幕上显示出来的。这两个字的“笔画”宽度约2nm①,是目前已知的最小的汉字。

我国是世界四大文明古国之一,在化学发展史上有过极其辉煌的业绩。冶金、陶瓷、酿造、造纸、火药等都是在世界上发明和应用得比较早的国家。如商代的司母戊鼎是目前已知的最大的古青铜器(图2);1972年在河北出土的商代铁刃青铜钺是我国目前发现的最早的铁器。我国古代的一些书籍中很早就有关于化学的记载。著名医药学家李时珍的巨著《本草纲目》(公元1596年)中,还记载了许多有关化学鉴定的试验方法。中华人民共和国建立以后,我国的化学和化学工业,以及化学基础理论研究等方面,都取得了长足的进步。1965年,我国的科学工作者在世界上第一次用化学方法合成了具有生物活性的蛋白质——结晶牛胰岛素(图3),到了20世纪80年代,又在世界上首次用人工方法合成了一种具有与天然分子相同的化学结构和完整生物活性的核糖核酸②,为人类揭开生命奥秘做出了贡献。此外,我国还人工合成了许多结构复杂的天然有机化合物,如叶绿素(图4)、血红素、维生素B12,以及一些特效药物等。

今日化学学科正积极向一些与国民经济和社会生活关系密切的材料、能源、环境、生命等学科渗透,使化学的作用与地位日益显著。反过来,这种学科间的渗透,对化学学科的发展起着重要的促进作用。

人类很早就开始使用材料,从石器时代到现代,人类所使用的材料不断地发生变化,材料的种类越来越多,用途也越来越广。我们对于材料的认识,应该包括为人类社会所需要并能用于制造有用器物的物质这两层涵义。也就是说,并不是所有的物质都可以称为材料。材料按其化学组成或状态、性质、效应、用途等可以分为若干类。例如,按化学组成分类,陶瓷属于非金属材料;合金属于金属材料;橡胶、化纤等属于有机高分子材料。历史的发展表明:没有新材料的出现,就没有工业的进步和大量新产品的涌现。因此,许多科学家都认为新材料是高技术的突破口,只有更好地开发和应用具有特殊性能的新材料,才能拥有更强大的经济优势和技术潜力。化学不仅在一般材料的研究、生产和应用中发挥了巨大的作用,而且在研制具有特殊性能的新材料方面也会继续发挥其独特的优势。总起来讲,适应科技迅猛发展所需的诸如耐腐蚀、耐高温、耐辐射、耐磨损的结构材料,以及敏感、记录、半导体、光导纤维、液晶高分子等信息材料和超导体、离子交换树脂与交换膜等高功能材料,它们的制取都是需要化学进一步参与研究的重要课题。

位于北京周口店的北京猿人遗址中的炭层,表明人类使用能源的历史已非常久远。人类社会的发展与能源消费的增长是密切相关的,我们现在使用的能源主要来自化石燃料——煤、石油和天然气等,但化石燃料是一种不可再生,并且储藏量有限的能源,而且在开采和燃烧过程中还会对自然环境造成污染。为了更好地解决能源问题,人们一方面在研究如何提高燃料的燃烧效率,另一方面也在寻找新的能源。这些都离不开化学工作者的努力。例如,核能和太阳能的发电装置离不开特殊材料的研制;用氢作为能源需要考虑贮氢材料和如何廉价得到氢,等等。

环境问题是当今世界各国都非常关注的问题。在世界人口不断增长、生产不断发展、人民生活水平不断提高的过程中,由于人们对环境与生产发展的关系认识不够,以及对废弃物处理不当,使环境受到了不同程度的破坏,如土地的沙漠化、水资源危机、酸雨、臭氧层的破坏、有毒化学品造成的污染等。因此,保护环境已成为当前和未来的一项全球性的重大课题之一,也是我国的一项基本国策。在这些关系到国计民生的环境问题中,化学工作者是大有作为的。因为污染问题的解决主要还得靠化学等方法。有的专家提出,如果对燃烧产物如CO2、H2O、N2等利用太阳能使它们重新组合,使之变成CH4、CH3OH、NH3等的构想(图5)能够成为现实,那么,不仅可以消除对大气的污染,还可以节约燃料,缓解能源危机。

对健康的关注也是人类面对的重要课题。我们知道,用以保证人体健康的营养、药物的研究、人体中的元素对人体生理作用的研究,以及揭开生命的奥秘等,都离不开化学。因此,如何在这些方面正确地运用化学知识,与其他学科协调研究就成为调节生命活动和提高人体素质的重要手段。

此外,在资源的合理开发和利用、提高农作物的产量,以及癌症治疗的研究等方面,化学也都扮演着极其重要的角色。

综上所述,在研究材料、能源、环境、生命科学等方面,以及在我们的日常生活中,我们不难看出,化学对社会的发展和人类的进步起着非常重要的作用。

化学对于我们如此重要,这就要求我们必须掌握一定的化学知识。在初中,我们学习了氧气、氢气、碳、铁和一些常见的酸、碱、盐的基础知识和某些基本技能,并具备了初步解释和解决一些简单化学问题的能力。为了适应未来社会的需要,在高中阶段,我们仍需要继续学习化学,提高自己的科学素质,为今后进一步学习和参加社会主义建设打好基础。

在高中学习化学时,我们不仅要像初中学习化学那样,注重化学实验的作用,掌握有关化学基础知识和基本技能,还要重视训练科学方法①,这对于培养我们的科学态度,提高分析问题和解决问题的能力是很有帮助的。在学习时,我们还必须紧密联系社会、生活、生产等实际,要细心观察,并善于发现和提出问题。除了学好教科书中的内容以外,还应多阅读一些课外书籍和资料,培养自学能力,以获得更多的知识,努力使自己成为具有较高素质的现代社会的公民,为实现祖国社会主义现代化建设的宏伟目标贡献自己的力量。

讨论

你如何理解“化学——人类进步的关键”这句话?
化学成为一门独立学科的时间虽然不长,但化学作为一种实用的技术,早在史前时期就得到了具体的应用,如用火烧制陶器等。化学的发展经历了古代、近代和现代等不同的时期。铜、铁等金属以及合金的冶炼、酒的酿造等都是化学的早期成就。煤、石油、天然气等化石燃料的开采和利用、造纸术的发明和发展等,对人类社会的进步都发挥了重要的作用。药物化学的兴起和冶金化学的广泛探究,则为近代化学的诞生和发展奠定了良好的基础。原子分子学说的建立,是近代化学发展的里程碑。在近代化学发展的历程中,人们相继发现了大量的元素,同时也揭示了物质世界的一项根本性的规律——元素周期律。在原子的核模型的建立、高度准确的光谱实验数据的获得、辐射实验现象,以及光电效应的发现等基础上建立起来的现代物质结构理论,使人们能够深入地、科学地认识物质内部的奥秘,以及微观粒子的运动规律,这将使对物质的研究深入到了原子、分子水平的微观领域。同时,化学与其他学科之间的相互渗透,使化学所涉及的领域越来越广,扫描隧道显微镜的研制成功,使人们能够清楚地观察到原子的图像和动态的化学变化。交叉分子束实验①则可以使人们详细地研究化学反应的微观机理。

有关化学的学年论文

这是我去年化学的一篇年度论文~是关于铝合金的!~

化学:P56实践活动(2000字论文)
简 论 铝 合 金

大多数金属强度低,很软,但两种软金属合在一起就会成为一种较硬的金属,叫“合金”。
改变金属的配比和成分,合金的性质就会改变。多数合金由两种或两种以上金属合成,但有些合金含非金属元素。现在让我来介绍一下铝合金吧~
喷铸成型是一种新型的铝合金成型方法。喷铸成型生产方法其特色是:熔融金属液在极短暂的时间内,经由雾化装置将金属液喷散成微小颗粒(10~500微米),喷铸堆积在预定的沉积板上。这种喷铸成型的制程方法是建材、汽车部件、核电厂使用复合材等最佳选择哦~
铝合金是家装工程中一种很受欢迎的材料,是因为它质轻、坚固、用途广泛。
日本神户制钢厂近年着手开发由纳米微细结晶粒构成的锌铝合金的新用途。因为它具有变形缓冲作用,制钢所准备将其用于汽车防撞材料的开发。据报道,“纳米微细结晶粒锌铝合金”是神户制钢所2004年开发的新材料,已用于大阪市旅馆的防震装置。报道介绍到,这种合金在遇到外力突然撞击时会像口香糖一样伸缩,因此在交通事故和地震突然发生时,它可以减少外力的冲击。可见这种材料很厉害哦~
用铝合金材料造的船艇等水上运输工具还比用一般材料造的具有更多用途,有节能、长寿命、易于保养、好保管的优点,是居家休闲、运动、运输等活动的首选哦~
近年研制出一种新型的高性能铝合金热顶铸造热帽材料,这种材料有很多优点哦~像是:绝热性能高啦~结实坚固,不会掉落材料,对铝熔体不会产生化学性的与物理性的污染啦~不与水气发生作用,因而不增加铝熔体的氢含量啦~铸造时不与铝熔体发生反应,因此使用寿命长且易清理啦~表面坚硬,便于搬运~耐热冲击与热循环,在使用过程中不会破裂~不含纤维性物质,可降低回收成本等等的优点~可见化学为我们的科技和生活贡献很大哦!!
而铝合金轮毂也以其美观大方、安全舒适等特点博得了越来越多私家车主的青睐呢~现在,几乎所有的新车型都采用了铝合金轮毂,并且很多车主朋友也将原来车上用的轮毂换成铝合金轮毂。为什幺它会这么受欢迎呢?哦~原来是因为它具有安全、舒适和节能的优点呢!安全——对于高速行驶的汽车来说,因轮毂变形、制动等产生的高温爆胎、制动效能降低等现象 已屡见不鲜。而铝合金的热传导系数比钢、铁等大三倍,散热效果自然要好得多,从而增强 了制动效能,提高了轮胎和制动盘的使用寿命,有效地保障了汽车的安全行驶~的确安全哦!舒适——装有铝合金轮毂的汽车一般都采用扁平轮胎。扁平轮胎的缓冲和吸震性能优于普通轮胎。这样,汽车在不平的道路上或高速行驶时,舒适性会大大提高~的确舒适哦!节能——由于铝合金轮毂重量轻(与同样规格的铝或钢轮毂相差约2kg)、制造精度高,所以在 高速转动时变形小,惯性阻力也小。这有利于提高汽车的直线行驶性能,减轻轮胎滚动阻力,从而减少油耗~的确节能呢!!
而由于铝的化学性质很活泼,所以它表面也形成了一层致密性的薄膜,防止它继续被氧化。而铝合金也保留了这一特点。关于铝合金的特性与用途,我查找了十几种不同牌号的铝合金呢~现在让我来一一介绍一下吧~(注意:LF为防锈铝;LY为硬铝;LC为超硬铝;LT为特殊铝;LD为锻铝哦~~~)
牌号为LF21:这是应用最广的一种防锈铝,它的强度不高,不能热处理强化,在退火状态下有高的塑性,而蚀性好,焊接性好,切削加工性不良。用于制造要求高可塑性和良好焊接性、在液体或气体介质中工作的低载荷零件如油箱、油管、液体容器等;线材可制作铆钉。
牌号为LF13:它耐蚀性高、焊接性能好。导热性、导电性比纯铝低得多。可用冷变形加工进行强化而不能热处理强化。适用于作焊接结构件。
牌号为LF5/LF10:它们为铝镁系防锈铝(LF10的含镁量稍高于LF5)强度与LF3相当,热处理不能强化,退火状态塑性高,半冷作硬化塑性中等,焊接性能尚好,LF5用于制作在液体中工作的焊接零件、管道和容器以及其它零件。LF10主要用来制造铆钉。
牌号为LF6:它有较高的强度和耐蚀性,退火和挤压状态下塑性尚好,用氩弧焊的焊缝气密性和塑性尚可。切削加工性良好。用于焊接容器、受力零件、飞机蒙皮及骨架零件。
牌号为LF5-1:它为不可热处理强化铝合金,有一定的强度,耐蚀性、切削性良好。阳极化处理后表面美观,可加工成光学机械部件、船舶部件及导线夹等。
牌号为LF2/LF3:它的强度比LF21较高,塑性与耐蚀性高,热处理不能强化,焊接性好(LF3的焊接性优于LF2),在冷作硬化状态下的切削性较好,可抛光。用于制造在液体中工作的中等强度的焊接件、冷冲压零件和容器等。
牌号为LY1:它为铆接铝合金结构用的主要铆钉材料,在淬火和自然时效后的强度较低,但有很高的塑性和良好的工艺性能,焊接性与LY11相同,切削性能尚可,耐蚀性不高,广泛用作中等强度和工作温度<100℃的结构用铆钉材料。
牌号为LY2:它为耐热硬铝,有较高的强度,热变形时塑性高,可热处理强化,在淬火及人工时效状态下使用,切削加工性良好,耐蚀性比LD7、LD8耐热锻铝较好,在挤压半成品中,有形成粗晶环的倾向,用于制造在较高温度下工作的承力结构件。
牌号为LT4/LY8/LY9:它们均为铆钉用合金,LY4有较好的耐热性,可在125-250℃内使用,LY9的强度较高,但其共同缺点是铆钉必须在淬火后2-6小时内使用。LT8适用于制作中等强度的铆钉。
牌号为LY10:它有较高的剪切强度,铆接过程不受热处理时间的限制,但耐腐性不好。工作温度不宜超过100℃。
牌号为LY11:它是应用最早的一种标准硬铝,中等强度,可热处理强化,在淬火和自然时效状态下使用,点焊性能良好,气焊及氩弧焊时有裂纹倾向,热态下可塑性尚可,切削加工性在淬火时效状态下尚好,耐蚀性不高。用于制作中等强度的零件和构件,冲压连接部件,局部镦粗的零件(如螺钉、铆钉)。
牌号为LY12:它是高强度硬铝,可热处理强化,在退火和刚淬火状态下塑性中等,点焊性能好,气焊和氩弧时有裂纹倾向,抗蚀性不高,切削加工性在淬火和冷作硬化后尚好,退火后低。用于制造要求高负荷的零件以及在150℃以下工作的零件。
牌号为LY16/LY17:它们都是耐热硬铝,常温下强度不高而在高温下 有较高的蠕变强度,热态下塑性较高,可热处理强化,焊接性能良好抗蚀性不高,切削加工性尚好。用于制造250-350℃下工作的零件,板材可用于制作常温或高温下工作的焊接件。
牌号为LC3:它是超硬铝铆合金,可热处理强化,剪切强度较高,耐蚀性和切削加工性尚可,铆接时不受热处理时间的限制。用于制作受力结构的铆钉。
牌号为LC4/LC9:它们都是高强度铝合金,在退火和刚淬火状态下的可塑性中等,可热处理强化,通常在淬火、人工时效状态下使用,此时得到的强度比一般硬铝高得多,但塑性较低,有应力集中倾向,点焊性能良好,气焊不良,热处理后的切削加工性良好,退火状态稍差,LC9板材的静疲劳、缺口敏感、抗应力腐蚀性能稍优于LC4。用于制造承力构件和高载荷零件等。
牌号为LT1:它是一种含Si5%的低合金化二元铝硅合金,其力学性能不高,但抗蚀性很高,压力加工性能良好。适用于制造焊条和焊棒,用于焊接铝合金制品。
牌号为LD2:它是中等强度,在热态和退火状态下可塑性高,易于锻造、冲压,在淬火和自然状态下具有LF21一样好的耐蚀性,易于点焊和氢原子焊,气焊尚可。切削加工性在淬火时效后尚可。用于制造塑性和高耐蚀性、中等载荷的零件以及形状复杂的锻件。
牌号为LD2-1/LD2-2:它们耐蚀性好,焊接性能良好。用于制造大型焊接构件、锻件及挤件。
牌号为LD5:它是高强度锻铝,热态下有高的可塑性,易于锻造、冲压,可热处理强化,工艺性能较好,抗蚀性也较好,但有晶间腐蚀倾向,切削加工性和点焊、滚焊、接触焊性能良好,电焊、气焊性能不好。用于制造形状复杂和中等强度的锻件和冲压件等。
牌号为LD6:它在热压力加工时都有很好的工艺性能,可进行点焊和滚焊,热处理后易产生应力腐蚀倾向和晶间腐蚀敏感性。可制造复杂形状和中等强度的锻造零件和模锻件。
牌号为LD7/LD8/LD9:它们都是耐热锻铝,可热处理强化,点焊、滚焊和接触焊性能良好,电焊性能差,耐蚀性和切削加工性尚好,LD8的热强性和可塑性比LD7差。用作在高温下工作的复杂锻件。
牌号为LD10:它是高强度铝,热强性较好,但在热态下可塑性差,其它性能同LD5。用于制造高负荷和形状简单的锻件、模锻件。
牌号为LD30:它用于制造中等强度(σb>27kgf/mm2)在+50~-70℃ 围内工作并要求在潮湿和海水介质中具有合格耐蚀性能的零件。
牌号为LD31:它用于制造强度不高(σb>20kgf/mm2)耐蚀性能好,有美观装饰表面,在+50~-70℃工作的零件,其合金经特殊机械处理后有较高的导电性能,在电气工业上得到,广泛应用。
……
我所搜集的资料就只有这些,但也足以可见铝合金的家族是多么庞大啊!
化学的世界犹如浩瀚的海洋——丰富多彩、无穷无尽~让我们一起来学好化学,在这个神秘而广阔的空间里遨游吧!

文笔粗拙..但修改一下,希望可以帮到你~

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页