写个论文才给20分???
算了,讲点吧
流体力学的主旨中心是围绕:流速越大压强越小,相反反之
相关机械有:飞机。喷雾器。。。。。。
利用性能较好,是纯天然的。。。呵呵
憋不出来了。。。没内容写了。。。。
再给你些例子:
1、挂在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“9”的位置。这是由于秒针在“9”位置处受到重力矩的阻碍作用最大。
2、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。这是由于水从水龙头冲出时引起水管共振的缘故.
3、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光.
4、冰冻的猪肉在水中比在同温度的空气中解冻得快。烧烫的铁钉放入水中比在同温度的空气中冷却得快。装有滚烫的开水的杯子浸入水中比在同温度的空气中冷却得快。这些现象都表明:水的热传递性比空气好,
5、锅内盛有冷水时,锅底外表面附着的水滴在火焰上较长时间才能被烧干,且直到烧干也不沸腾,这是由于水滴、锅和锅内的水三者保持热传导,温度大致相同,只要锅内的水未沸腾,水滴也不会沸腾,水滴在火焰上靠蒸发而渐渐地被烧干,
6、走样的镜子,人距镜越远越走样.因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样.
7、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出, 只从喷口喷出.这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。
8、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此而摆动,从而运动方向就不断变化。
9、吊扇在正常转动时悬挂点受的拉力比未转动时要小,转速越大,拉力减小越多.这是因为吊扇转动时空气对吊扇叶片有向上的反作用力.转速越大,此反作用力越大.
10、电炉“燃烧”是电能转化为内能,不需要氧气,氧气只能使电炉丝氧化而缩短其使用寿命。
11、从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变。这是由于纸片各部分凸凹不同,形状备异,因而在下落过程中,其表面各处的气流速度不同,根据流体力学原理,流速大,压强小,致使纸片上各处受空气作用力不均匀,且随纸片运动情况的变化而变化,所以纸片不断翻滚,曲折下落
[1] Wang J. H., Shi J. X., Discussion of Boundary Conditions of Transpiration Problems Using LTNE Model, ASME J. of Heat Transfer, Jan. 2008,Vol.130, No.1. [2] Wang J. H., Wang H. N., A Discussion of Transpiration Cooling Problems Through an Analytical Solution of Local Thermal Non-Equilibrium Model, ASME J. of Heat Transfer, Oct. 2006, Vol. 128, 1093-1098.[3] Shi J. X., Wang J. H., Inverse problem of transpiration cooling for estimating wall heat flux by LTNE model and CGM method, International J. of Heat and Mass Transfer, (2009)52: 2714-2720.[4]Liu H. C., Wang J. H., Numerical Investigation on Synthetical Performances of Fluid Flow and Heat Transfer of Semiattached Rib-channels,International J. of Heat and Mass Transfer, (2010)53:[5] Wang J. H., Gan M., Detecting and Characterization of Penetrating Pores of Porous Materials, Materials Characterization, 58(2007)8-12.[6] Shi J. X., Wang J. H., Optimized Structure of Two Layered Porous Media with Genetic Algorithm for Transpiration Cooling, International J. of Thermal Science, (2008)47:1595 -1601.[7] Shi J. X., Wang J. H., Inverse problem of estimating space and time dependent hot surface heat flux in transient transpiration cooling process, International J. of Thermal Science, (2009)48:1398-1404[8] Wang J. H., Han X. S., Numerical Investigation of Transpiration and Ablation Cooling, Heat Mass Transfer, (2007)43:274-284.[9] Wang J. H., Wang H. N., Sun J. G., Wang J., Numerical Simulation of Control Ablation by Transpiration Cooling, Heat Mass Transfer, (2007) 43:471-478.[10] Shi J. X., Wang, J. H., A Numerical Investigation on the Laminar Boundary Flow Layer with Transpiration Cooling, Transp Porous Med, 2008. 9, DOI 10.1007/s11242 -008-9279-8.[11] Peng L. M., Wang J. H., Li H., Zhao J. H., He L., Synthesis and Microstructural Characterization of Ti-Al 3 Ti Metal-intermetallic Laminate Composites, Scripta Materialia, 52 (2005) 243-248.[12] Peng L. M., Wang J. H. , Li H., He L., Zhao J. H., Synthesis and Mechanical Properties of Ternary Molybdenum Carbosilicide and Its Composite, J. of Materials Science, 40 (2005) 2705-2707.[13] Peng L.M., Li H., Wang J. H. , Processing and Mechanical Behavior of Laminated Ti- Al 3 Ti Composites, J. of Materials Science and Eng. A 406 (2005)309-318.[14] Wang J. H., Messner J., Stetter H., An Experimental Investigation of Transpiration Cooling, Part I- An Application Investigation on Infrared Measurement Technique, International J. of Rotating Machinery, April 2003, Vol 9, No. 3, 154-163.[15] Wang J. H., Messner J., Stetter H., An Experimental Investigation of Transpiration Cooling, Part II- Comparison of Cooling Methods and Media, International J. of Rotating Machinery, Aug. 2004,Vol 9, No.10, 355-363.[16] Peng L. M., Li H., Wang J. H., Gong, M., High Strength and High Fracture Toughness Ceramic-iron Aluminid3 (Fe 3 Al) Composites, Materials Letters 60 (2006) 883-887.[17] Peng L. M., Li H., Wang J. H., Gong, M., Synthesis and Microstructural Characterization of Aluminum Borate Whiskers, Ceramics International 32 (2006)365-368.[18] Peng L. M., Wang J. H., Li H., Gong M., Processing and Mechanical Properties of Multiphase Composites Based on Mo-Si-Al-C system, J. of Alloys and Compounds 420(2006) 77-82.[19]贾闪,王晓春,王建华, 具有发散冷却功能的曲目结构边界层特性实验研究,航空动力学报,(2010)第25卷,第2期.[20] 周杰,王建华,气动汽车高压气体减压过程的能量损失与补偿,液压与气动,(2007)第7期,28-32.[21] 谢远远,王建华,发散冷却控制烧蚀过程的数值研究,航空动力学报,(2008)第23卷,第8期.[22] 时骏祥,王建华,发散冷却最小冷却介质注射量的数值研究,航空动力学报,(2007)第22卷,第2期.[23] 马龙,王建华,吴向宇,杜治能,利用红外技术进行层板冷却特性实验研究,航空动力学报,(2007)第23卷,第4期.[24] 孙纪国,王建华,烧结多孔结构的渗透和流阻特性研究,航空动力学报,(2008)第23卷,第1期.[25] 李谦,王建华,吴向宇,杨士杰,冷却介质在层板内流动特性研究,第一部分,利用粒子图像测速技术再现复杂流场,实验流体力学,(2007)第21卷,第4期.[26] 王储,王建华,杜治能,杨士杰,冷却介质在层板内流动特性研究,第二部分,数值模拟复杂结构内流场,实验流体力学,(2007)第21卷,第4期. [1]Wang J. H.,Liu Y. L., Wang X. C., Du Z. N., Yang S.J., Characteristics of Tip Leakage of the Turbine Blade with Cutback Squealer and Coolant Injection, Proc. of ASME Turbo Expo 2010 Power for Land, Sea, and Air, June 14-18, 2010, Glasgow, UK, GT2010-22566.[2]Wang J. H.,Liu H. C., Mao M., Li X., Zhang Z. Q., Numerical Investigation of Fluid Flow and Heat Transfer Performances of Semiattached Rib Channel Design, Proc. of ASME Turbo Expo 2010 Power for Land, Sea, and Air, June 14-18, 2010, Glasgow, UK, GT2010-22563.[3]Zhang H., Wang J. H., Wu X. Y., Lu H. Y., A Simplified Approach to Design Transverse Ribs Which Array Alternately in Rectangular Channel,Proc. of ASME Turbo Expo 2010 Power for Land, Sea, and Air, June 14-18, 2010, Glasgow, UK, GT2010-22562.[4] Wang J. H., Lv X. J., Liu Q.D., Wu X. Y., An Experimental Investigation on Cooling Performance of a Laminated Configuration Using Infrared Thermal Image Technique, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 8-12, 2009, Orlando, Florida, USA, GT2009-59838.[5] Wang J. H., Xu H. Z., Lv X. J., Du Z. N., Yang S. J., A Nnmerical Investigation on Fluid-Thermal- Structure Coupling Characteristics of Laminated Film Cooling Configurations, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 8-12, 2009, Orlando, Florida, USA, GT2009-59604.[6] Wang, J. H., Xu, H. Z., Liu, Y. L., Du, Z. N., Yang, S. J., Experimental and Numerical Investigations on Turbine Airfoil Cooling Designs, Part I-An Investigation on Flow Features by Particle Image Velocimetry, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 14-17, 2008, Berlin, Germany, GT2008-50673.[7] Wang, J. H., Xu, H. Z., Liu, Y. L., Wu, X. Y., Yang, S. J., Experimental and Numerical Investigations on Turbine Airfoil Cooling Designs, Part II-An Investigation on Heat Transfer Features by Infrared Thermal Imaging Technique, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 14-17, 2008, Berlin, Germany, GT2008-50674.[8] Wang, J. H., Messner, J., Casey, V. M., Performance Investigation on Film and Tran- spiration Cooling, Proc. of ASME Turbo Expo 2004 Power for Land, Sea, and Air, 14-17 June 2004, Vienna, Austria,GT2004-54132, ISBN: 0-7917-3739-4.[9] Wang H. N., Wang, J. H., A Numerical Investigation of Ablation and Transpiration Cooling Using the Local Thermal Non-equilibrium Model, Proc. of 42nd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, 09-12, July, 2006, Sacarmento California, USA 2006-AIAA-5264.[10] Wang, J. H., Messner, J., Stetter, H., An Experimental Investigation of Transpiration Cooling, Part I- An Application Investigation on Infrared Measurement Technique, Proc. ISROMAC-9, 10-14 Feb. 2002, Honolulu, Hawaii, USA.[11] Wang, J. H., Messner, J., Stetter, H., An Experimental Investigation of Transpiration Cooling, Part II- Comparison of Cooling Methods and Media, Proc. ISROMAC-9, 10-14 Feb. 2002, Honolulu, Hawaii, USA.[12] Stetter, H., Wang, J. H., Basic Performance Characteristics of a Transpiration Cooling Method for Turbine Nozzle Guide Vane Using Evaporating Liquids, Proc. of 4th European Conference on Turbomachinery, 20-23 March 2001, Firenze , Italy , ISBN 88-86281-57-9.[13] Stetter, H., Wang, J. H., Messner, J., An Experimental Investigation of Transpiration Cooling, Part I- Feasibility Test and Performance Estimation, Proc. ISROMAC-8, 26-30 March 2000 Honolulu, Hawaii, USA, Vol. 1, pp.778-785, ISBN#0-9652469-9-x.[14] Wang, J. H., Stetter, H., An Experimental Investigation of Transpiration Cooling, Part II- Performance Comparison With Film Cooling, Proc. ISROMAC-8, 26-30 March 2000, Honolulu, Hawaii, USA, Vol. 1, pp.786-792, ISBN#0-9652469-9-x.