您当前的位置:首页 > 发表论文>论文发表

汽车和半导体论文

2023-12-10 18:07 来源:学术参考网 作者:未知

汽车和半导体论文

  关于智能传感器与汽车电子的分析
  摘要:现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。
  关键词:智能传感器
  1 汽车电子操控和安全系统谈起
  近几年来我国汽车工业增长迅速,发展势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。其实,汽车工业的增长必将包含与汽车产业相关的IT 产业的增长。例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、高档轿车中汽车电子已占30%以上,而且这个比例还在不断地快速增长,预期很快将达到50%。
  电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的完美结合。汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。这也是最近电子信息产业界对汽车电子空前关注的原因之一。但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
  实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的最佳状态。
  还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以最大限度的保障雨雪天气驾驶时的稳定性。现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保证在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
  从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:
  1.1 电子操控系统的动作必须快速、正确、可靠。传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。
  1.2 现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。因此器件和电路的微型化、集成化是不可回避的道路。
  1.3 电子控制单元必须具有足够的智能化程度。以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU 必须具有自检、自维护能力,不断确认气囊系统的可正常运作的可靠性,确保动作的“万无一失”。
  1.4 汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
  1.5 与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。一些微传感器和智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
  2 智能传感器:微传感器与集成电路融合的新一代电子器件
  微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS (微机电系统)名称下的。这里介绍当前一些欧美专著中常用的技术名词的定义和技术内涵。
  首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。 它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指出的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
  智能传感器(Smart Sensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
  在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口 (SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成 CMOS 电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快。
  顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将Smart Sensor(或device)和Intelligent sensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
  相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD 阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、高档长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
  微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
  MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS 的最好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS 工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
  微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS 的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。
  通过控制芯片上的微反射镜阵列,实现光输入/输出的交叉互联。这是目前全光交换技术的成熟的最佳方案。市场上可买到的MEMS光开关已达1296路,开关转换时间约为20ms。
  微机械(也称为纳米机械)则尚处于开发试验阶段,但已有许多很重要的实验室产品涌现,如著名的纳米电机、微昆虫、微直升机和潜水艇等。技术产业界普遍认为,它们的开发成功和投入实际应用将对工业技术和生活质量产生深远的影响。

关于半导体的一片600字论文

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

中国半导体产业现状

  我国半导体产业现状及前景分析

  全球半导体产业向亚太转移,我国半导体产业融入全球产业链

  全球半导体市场规模06年达到247.7亿美元。主要应用领域包括计算机、消费电子、通信等。在电子制造业转移和成本差异等因素的作用下,全球半导体产业向亚太地区转移趋势明显。我国内地半导体产业发展滞后于先进国家,内地企业多位于全球产业链的中下游环节。我国半导体产业成为全球产业链的组成部分,产量和产值提高迅速,但是产品技术含量和附加值偏低。

  2007年半导体产业大幅波动,长远发展前景良好

  半导体产业的硅周期难以消除。2007年上半年,在内存价格上升等因素作用下,全球半导体市场增速明显下滑。至2007年下半年,由于多余库存的降低、资本支出的控制,半导体市场开始回升。预计2008年,半导体产业增速恢复到一个较高的水平。长远来看,支撑半导体产业发展的下游应用领域仍然处在平稳发展阶段,半导体产业的技术更新也不曾停滞。产品更新与需求形成互动,推动半导体产业持续增长。

  我国半导体市场规模增速远快于全球市场

  我国半导体市场既受全球市场的影响,也具有自身的运行特点。
  我国半导体应用产业中,PC等传统领域仍保持平稳增长,消费电子、数字电视、汽车电子、医疗电子等领域处于快速成长期,3G通信等领域处于成长前期。我国集成电路市场规模增速远快于全球市场,是全球市场增长的重要拉动元素。2006年,我国集成电路市场已经成为全球最大市场。
  我国半导体产业规模迅速扩大,产业结构逐步优化
  我国半导体产业规模同样快速提高。在封装测试业保持高速增长的同时,设计和制造业的比例逐步提高,产业结构得到优化。在相关管理部门、科研机构和企业的共同努力下,我国系统地开展了标准制定和专利申请工作,有效地保障本土企业从设计、制造等中上游产业链环节分享内地快速增长的电子设备市场。
  分立器件、半导体材料行业是我国半导体产业的重要组成部分
  集成电路是半导体产业的最大组成部分。分立器件、半导体材料和封装材料也是半导体产业的重要组成部分。我国内地分立器件和半导体材料市场和产业也处于快速增长之中。

  上市公司

  我国内地半导体产业上市公司面对诸多挑战。技术升级和产品更新是企业生存发展的前提。半导体材料生产企业有较强的定价能力,在保持产品换代的前提下,有较大的成长空间;封装测试公司整体状况较好;分立器件企业发展不均。

  全球半导体产业简况

  根据WSTS统计,2006年全球半导体市场销售额达2477亿美元,比2005年增长8.9%;产量为5192亿颗,比2005年增长14.0%;ASP为0.477美元,比2005年下降4.5%。
  从全球范围来看,包括计算机(Computer)、通信(Communication)、消费电子(ConsumerElectronics)在内的3C产业是半导体产品的最大应用领域,其后是汽车电子和工业控制等领域。
  美、日、欧、韩以及中国台湾是目前半导体产业领先的国家和地区。2006年世界前25位的半导体公司全部位于美国、日本、欧洲、韩国。2005年,美国和日本分别占有48%和23%的市场份额,合计达71%。韩国和台湾的半导体产业进步很快。韩国三星已经位列全球第二;台积电(TSMC)的收入在2007年上半年有了很大的提高,排名快速升至第6,成为2007年上半年进入前20名的唯一一家台湾公司,这从一个侧面反映了台湾代工业非常发达。

  中国市场简况

  中国已经成为全球第一大半导体市场,并且保持较高的增长速度。2006年,中国半导体市场规模突破5800亿,其中集成电路市场达4863亿美元,比2005年增长27.8%,远高于全球市场8.9%的增速。我国市场已经达到全球市场份额的四分之一强。
  在市场增长的同时,我国半导体产业成长迅速。以集成电路产业为例,2006年国内生产集成电路355.6亿块,同比增长36.2%。实现收入1006.3亿元,同比增长43.3%。我国半导体产业规模占世界比重还比较低,但远高于全球总体水平的增长率让我们看到了希望。
  中国集成电路的应用领域与国际市场有类似之处。2006年,3C(计算机、通信、消费电子)占了全部应用市场的88.5%,高于全球比例。而汽车电子1.3%的比例,比起2005年的1.1%有所提高,仍明显低于全球市场的8.0%。与此相对应的是,我国汽车市场销量呈增长态势,汽车电子国产化比例逐步提高。这说明,在汽车电子等领域,我国集成电路应用仍有较大成长空间。

  我国在国际半导体产业中所处地位

  我国半导体市场进口率高,超过80%的半导体器件是进口的。国内半导体产业收入远小于国内市场规模。
  2006年国内IC市场规模达5800亿,而同期国内IC产业收入是1006.3亿。
  我国有多个电子信息产品产量已经位居全球第一,包括台式机、笔记本电脑、手机、数码相机、电视机、DVD、MP3等。中国已超过美国成为世界上最大的集成电路产品应用国。但目前国内企业只能满足不到20%的集成电路产品需求,其他依赖进口。
  中国大陆市场的半导体产品前十名的都是跨国公司。这十家公司平均21%的收入来自中国市场。这与中国市场占全球市场规模的比例基本吻合。2006年这十家公司在中国的收入总和占到中国大陆半导体市场规模的34.51%。上述两组数字从另一个侧面反映出跨国公司占有国内较高市场份额。国内半导体市场对进口产品依赖性高。
  虽然我国半导体进口量非常大,但出口比例也非常高。2005年国内半导体产品有64%出口。这种现象被称为“大进大出”,主要是由我国产业链特点造成的。
  总的来看,我国IC进口远远超过出口。据海关统计,2006年我国集成电路和微电子组件进口额为1035亿美元,出口额为200亿美元,逆差巨大。
  由于我国具有劳动力竞争优势,国际半导体企业把技术含量相对较低、劳动密集型的产业链环节向我国转移。我国半导体产业逐渐成为国际产业链的一环。产业链调整和转移的结果是,我国半导体产业在低技术、劳动密集型和低附加值的环节得到了优先发展。2006年,我国IC设计、制造和封装测试业所占的比重分别是18.5%、30.7%和50.8%。一般认为比较合理的比例是3:4:3。封装测试在我国先行一步,发展最快,规模也最大,是全球半导体产业向中国转移比较充分的环节。而处于上游的IC设计成为最薄弱的环节。芯片制造业介于前两者之间,目前跨国公司已经开始把芯片制造逐步向我国转移,中芯国际等国内企业发展也比较快。
  这样的产业结构特点说明,国内的半导体企业多数并未直接面对半导体产品的用户—电子设备制造商和工业、军事设备制造商,甚至多数也没有直接分享国内市场。更多的是充当国际半导体产业链的一个中间环节,间接服务于国际国内电子设备市场。这种结构,利润水平偏低,定价能力不强,客户结构对于企业业绩影响较大。究其原因,还是国内技术水平低,高端核心芯片、关键设备、材料、IP等基本依赖进口,相关标准和专利受制于人。国内企业发展也不够成熟,规模偏小,设计、制造、应用三个环节脱节。
  与产业链地位相对应,我国大陆的企业多为Foundry(代工)企业,这与台湾的产业特点相类似。国际上大的半导体跨国公司多为IDM形式。

  2007全球半导体市场波动,未来增长前景良好

  半导体产业长期具有行业波动性

  硅周期性依然将长期存在。这是由半导体产业所处的位置决定的。半导体产业本身具有较长的产业链环节。
  同时,半导体产业本身是电子设备大产业链的一个中间环节。下游需求和价格变动等外在扰动因素、产业技术升级等内在扰动因素必然在整个产业链产生传导作用。传导过程存在延时,从而导致半导体公司的反应滞后。半导体产业只有提高自身的下游需求预见性,及早对价格、需求和库存等变动做出预测,从而尽量减小波动的幅度。但是,半导体产业的波动性将长期存在。
  2006年全球手机销售量增加21%

  2006年全球手机销售量为9.908亿部,同比增长21%,其中,2006年四季度售出2.84亿部,占全年28.5%。
  Gartner预测2007年手机销量为12亿部,比2006年增加2亿部。手机市场增长平稳。手机作为个人移 动终端,除了通信和已经得到初步普及的音乐播放功能外,将集成越来越多的功能,包括GPS、手机电视等等。3G的逐渐部署也极大促进手机市场的增长。手机用芯片包括信号处理、内存和电源管理等。图9反映了手机用内存需求的增加情况。

  2006至2011年全球数字电视机市场将增长一倍

  iSuppli预测,从2006年至2011年全球数字电视机半导体市场将增长一倍,从71亿美元增至142亿美元。
  数字电视机的芯片应用包括输入/输出电路、驱动电路、电源管理等方面。带动数字电视机增长的因素有多种,包括平板电视价格下降,新一代DVD播放机普及,高清电视推广等。此外,许多国家的政府都宣布了从模拟电视切换到数字电视广播系统的计划。例如,2009年2月17日,全美模拟电视将停播,全部切换为数字电视广播。

  中国内地半导体产业的“生态”环境

  中国大陆半导体产业作为国际产业链的一个环节,企业形态以代工型企业(foundry)为主,产业结构偏重封装测试环节,半导体制造快速发展,未来我国半导体产业与国际产业大环境的联系将愈发密切。
  总的来看,国内企业规模和市场份额相对较小,产品单一,企业发展和技术水平还不够成熟稳定,行业处于成长期。下游通信、消费电子、汽车电子等产业同样是正在上升的市场,发展程度低于国际先进水平,发展速度快于国际平均水平。各种因素共同作用,使得我国半导体产业发展并非完全与国际同步,具备自身的产业“生态环境”,具有不同的发展特点。
  2007年上半年,虽然全球市场增速只有2%,但我国内地依然保持了较高的增长速度。上半年中国集成电路总产量同比增长15.2%,达到192.74亿块。共实现销售收入总额607.22亿元,同比增长33.2%。收入增长与2006上半年的48%相比有所回落,部分是受国际市场的影响,但相当大的程度还是国内产业收入基数增大等因素及内在发展规律所致。

  我国半导体市场和产业规模增长远快于全球整体增速

  受益于国际电子制造业向我国内地转移,以及国内计算机、通信、电子消费等需求的拉动,我国内地半导体市场规模的增长远快于全球市场的增长速度,已经成为全球半导体市场增长的重要推动区域。
  作为半导体产业的重要组成部分,国内集成电路产业规模也是全球增长最快的。上世纪90年代初,我国IC产业规模仅有10亿元,至2000年突破百亿元,用了近10年时间;而从2000年的百亿元增至2006年的千亿元,只用了6年时间。今年年底,中国集成电路产业收入总额有望超过全球8%,提前实现我国“十一五”规划提出的“到2010年国内集成电路产业规模占全球8%份额”的目标。

  我国半导体应用产业处在高速发展阶段

  PC、手机等传统领域发展依然平稳,同时多媒体播放GPS和手机电视为手机等移 动终端带来了新的增长点。
  我国数字电视、3G、汽车电子、医疗电子等领域发展进程有别于国际水平,未来几年内将进入高速发展阶段,有力促进国内半导体需求。

  抢占标准制高点,充分利用国内市场资源

  其实,从目前的角度来看,我国市场规模的快速增长,国内企业在某种程度的程度还不是直接受益者。这是由国内半导体产业在国际产业链中所处的位置所决定的。这一情况在逐步改善,其中最重要的一点,就是我国在标准和专利方面取得突破。
  国内的管理部门、专家团队、科研机构和企业已经具有了产业发展的规划能力和前瞻性。在国内相关发展规划的指导下,产业管理部门、科研机构和企业的共同努力,促使3G通信标准TD-SCDMA、数字音视频编解码标准AVS标准、数字电视地面传输国家标准DTMB等系列国内标准出台;手机电视标准虽然尚未明确,但CMMB等国内标准已经打下了良好的基础。这些国有标准虽然未必使国内公司独享这些领域的半导体设计和制造市场,但是标准的制定主要是依靠国内科研机构和企业。在标准制定的过程之中,这些科研机构和企业已经系统地实现了相关技术,研发出了验证产品,取得先入优势。标准制定的同时,国内科研机构已经开展专利池的建设。这样,国内半导体产业就具备了分享这些领域的国内市场的有利条件。我们有理由相信,国内数字电视、消费电子等产业进一步发展,已经对国内半导体产业等上游产业具有了昔日不可比拟的带动能力,本土半导体公司可以更加直接的“触摸”到国内半导体应用产业了。

  产业链结构缓慢向上游迁移

  自有标准体系的建立,使国内半导体产业的发展具备了一定的优势。身处有利的“生态环境”内,我国半导体产业发展前景良好。目前,我国半导体产业结构已经在逐渐发生变化。2002年,中国IC设计、制造和封装测试业所占的比重分别为8.1%、17.6%、和74.3%,2006年,这一数字变为18.5%、30.7%和50.8%。设计、制造、封装测试三业并举,我国半导体产业才能产生更好的协同作用,国际公认的合理比例是3:4:3。我国半导体产业比例的改变,说明我国集成电路产业在向中上游延伸,但距离理想的比例还有差距。设计和制造业需要更快的提高。

  芯片设计水平和收入逐步提高

  从集成电路产业链的角度来看,只有掌握了设计,使产业链结构趋于合理,才能掌握我国IC产业的主动权,才能进入IC产业的高附加值领域。近年来,我国集成电路的设计水平不断提高。20%的设计企业能够进行0.18微米、100万门的IC设计,最高设计水平已达90纳米、5000万门。
  虽然我国半导体产业很多没有直接分享国内3G、消费电子等领域的高成长。但是,这些领域确实对我国IC设计业的发展提供了良好的发展契机。例如,鼎芯承担了中国3G“TD-SCDMA产业化”国家专项,并在2006年成为中国TD产业联盟第一家射频成员;展讯通信(上海)有限公司是一家致力于手机芯片研发的半导体企业,2006年的销售额达3.32亿元。内地排名第一的芯片设计企业是珠海炬力集成电路设计有限公司(晶门科技总部位于香港),MP3芯片产品做的比较成功,去年的销售额达到了13.46亿美元。中星微电子和展讯通信公司先后获得国家科技最高奖—国家科技进步一等奖。

  芯片生产线快速增长

  我国新建IC芯片生产线增长很快。从2006年至今增加了10条线,平均每年增加6条。已经达到最高90纳米、主流技术0.18微米的技术水平。12英寸和8英寸芯片生产线产能在国内晶圆总产能中所占的比重则已经超过60%。跨国企业加快了把芯片制造环节向国内转移的速度,Intel也将在大连投资25亿兴建一座芯片生产厂。
  建成投产后形成月产12英寸、90纳米集成电路芯片52000片的生产能力,主要产品为CPU芯片组。目前我国大尺寸线比例仍然偏小,生产线的总数占全世界的比例也还小于10%。“十一五”期间我国IC生产线有望保持快速增加。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页