基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。
基本原理
CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,其序列由一个前导区(Leader)、多个短而高度保守的重复序列区(Repeat)和多个间隔区(Spacer)组成。
前导区一般位于CRISPR簇上游,是富含AT长度为300~500bp的区域,被认为可能是CRISPR簇的启动子序列。重复序列区长度为21~48bp,含有回文序列,可形成发卡结构。
重复序列之间被长度为26~72bp的间隔区隔开。Spacer区域由俘获的外源DNA组成,类似免疫记忆,当含有同样序列的外源DNA入侵时,可被细菌机体识别,并进行剪切使之表达沉默,达到保护自身安全的目的。
工作原理
当细菌抵御噬菌体等外源DNA入侵时,在前导区的调控下,CRISPR被转录为长得RNA前体(Pre RISPR RNA,pre-crRNA),然后加工成一系列短的含有保守重复序列和间隔区的成熟crRNA,最终识别并结合到与其互补的外源DNA序列上发挥剪切作用。
目前发现的CRISPR/Cas系统有三种不同类型即I型、II型和III型,它们存在于大约40%已测序的真细菌和90%已测序的古细菌中。其中II型的组成较为简单,以Cas9蛋白以及向导RNA(gRNA)为核心组成,也是目前研究中最深入的类型。
2019年10月21日,哈佛大学Broad研究所刘如谦(David R. Liu)教授团队在Nature上发表“Search-and-replace genome editing without double-strand breaks or donor DNA”的研究论文,开发了一种全新的精准基因编辑工具——prime editing。
Prime editing不会产生DNA双链断裂,不需要供体DNA。
Prime editing需要设计一种特殊的gRNA,也就是pegRNA。与普通的gRNA不同,这种pegRNA不但能够结合想要进行编辑的特定DNA区域,还自带“修改模板”。Cas9-逆转录酶融合蛋白会在pegRNA的引导下,精准地切开一条DNA链,然后根据“修改模板”,合成含有正确序列的DNA。细胞内的DNA修复机制会自动把这段新合成的序列整合进基因组。
Prime editing系统由两部分构成:
其一 是nCas9 (H840A)与工程化改造的逆转录酶(Reverse Transcriptase, RT)融合构成的效应蛋白; 其二 是pegRNA(Prime Editing Guide RNA),包括了single-guide RNA(sgRNA)、引物结合位点(Prime Binding Site,PBS)和储存有靶向位点编辑信息的反转录模板(RT templet with edit)。
基本工作原理为:
首先是在pegRNA的引导下,nCas9 (H840A)切口酶切断含PAM的靶点DNA链,断裂的靶DNA链与pegRNA的3'末端PBS序列互补并结合,之后逆转录酶发挥功能,沿RT模板序列开始逆转录反应。反应结束后DNA链的切口处会形成处在动态平衡中的5'-和3'-flap结构,其中3'-flap的DNA链携带有目标突变,而5'-flap结构的DNA链则无任何突变。细胞内5'-flap结构易被结构特异性内切酶识别并切除,之后经DNA连接和修复后靶位点处便实现了精准的基因编辑。(流程图如下)