铝酸镧(LaAlO3)和钽酸钾(KTaO3)是两种绝缘体,但当它们组合在一起时,界面就能导电甚至出现超导现象。这种刚刚“问世”的界面超导引发了科学家强烈的兴趣,来自浙江大学物理学系、中科院物理所等机构的学者发现,可以像调控半导体器件那样,用电压连续调控LaAlO3/KTaO3界面的导电性质:随着门电压的变化,它呈现了从超导到绝缘体的连续转变。同时,研究团队还在这一界面观测到了可被连续调控的量子金属态等许多新奇的物理现象。
5月14日,相关论文Electric field control of superconductivity at the LaAlO3/KTaO3(111) interface (电场控制LaAlO3/KTaO3(111)界面超导)在《科学》杂志上线。论文的共同第一作者为浙大物理系博士生陈峥、刘源和北京航空航天大学博士后张慧,共同通讯作者是浙大物理学系谢燕武研究员,中科院物理所孙继荣研究员和周毅研究员。这一发现为人们 探索 低温量子现象呈现了一个崭新的视野,也为超导器件的研发提供了新的思路。
“后浪”的潜力
LaAlO3/KTaO3界面超导今年2月才刚刚在《科学》杂志正式“亮相”。在氧化物界面超导家族中,它是第2位入列的成员。第1位成员亮相于2007年,瑞士日内瓦大学的Triscone教授等首先发现了LaAlO3/SrTiO3界面存在超导现象,这标志着一类新的超导体系的诞生:氧化物界面超导。
Triscone曾用一堆乐高积木来形容这一领域的奇妙:不同的氧化物可以产生千变万化的组合,每种组合都有可能蕴含着未知的、新奇的性质。随后的研究发现,LaAlO3/SrTiO3的超导电性可以通过电压来开启或关闭,就像我们熟知的半导体晶体管。这不禁让人畅想,或许有一天我们能制造出像半导体一样可以精确调控的超导器件。
而一年多前“新生”于美国阿贡实验室的“后浪”LaAlO3/KTaO3的表现似乎更加抢眼。今年2月发表在《科学》杂志的论文指出,“LaAlO3/KTaO3的超导转变温度可达2.2 K,比“前浪”的0.3 K高出整整一个数量级。那么,它会有哪些新奇的性质?它的超导性能也能被调控吗?它对超导机制研究会有哪些价值?神秘的“后浪”吸引着谢燕武与他的合作伙伴们去一探究竟。
新的调控,新的机制
调控,是实验科学研究最重要的手段和内容。在这项研究中,研究团队发现了一种全新的调控机制,实现了LaAlO3/KTaO3导电性能的连续可调,器件随电压变化呈现了从超导到绝缘体的连续转变。
博士生陈峥和刘源在实验室制备样品
谢燕武介绍,导电电子在低温下两两配对,就会形成超导,目前已知的超导体系已经非常多,但能被电场调控的凤毛麟角。“”我们的调控方法本质就是调控电子‘队形’的空间分布,让它们在更靠近或更远离界面的地方运动。”大量的电子在氧化物界面附近运动时,会受到晶格缺陷(也称为“无序”)的影响。“就像开车时遇到障碍物。”谢燕武说,这种“无序”越贴近界面分布越密集,越远离界面则越稀疏。基于这一认识,研究团队提出了改变电子空间分布的思路,“如果有更多的电子靠近界面,那么整体来看它们遇到的‘障碍物’就变多了,这会显著影响电子以及配对后的超导库珀对的运动行为。”
每平方厘米界面通道里有80万亿个电子在运动,门电压通过改变它们的“队形”来影响界面导电性能。“山丘”形状示意了无序分布。
在这项实验中,研究人员测试了门电压从-200V到150V区间时界面的导电性能。“不论在超导转变温度之上还是之下,导电性都可被连续调控。”陈峥说,“我们还直接测量了在这一门电压区间电子‘队形’空间分布的变化,当导电通道在6纳米时,LaAlO3/KTaO3看起来是很好的超导,而当通道调整到2纳米时,它就成了绝缘体。”
在-200V到150V区间施加不同门电压时LaAlO3/KTaO3界面的面电阻(Rsheet)随温度(T)的变化。
“从表面看,我们与传统的方法用的都是门电压调控,但背后的调控机制是全新的。”孙继荣说,传统的方法,无论是半导体晶体管还是LaAlO3/SrTiO3,都是通过改变电子浓度从而实现对导电性能的调控,这里需要有个前提:电子浓度低。“相比之下,LaAlO3/KTaO3界面的电子浓度很高,不能满足传统的调控机制,因此需要 探索 全新的调控机制。”孙继荣说,新的调控仍然以类似于晶体管的方式工作,但本质上打破了对于电子浓度的限制。
量子金属态
博士生陈峥与刘源全程参与了样品的制备和测试。陈峥说,研究过程中最难忘的是第一次测出LaAlO3/KTaO3超导性的那一天,“表明我们已经掌握了制备这一新界面超导体系的方法,可以开始我们的调控研究了!”随着实验的推进,越来越多的数据涌现出来。当他们把它们放到一起时,惊奇地发现在低温下是一条又一条水平线条,也就是说,无论温度在0~1K的区间内如何变化,LaAlO3/KTaO3界面的电阻几乎始终是恒定的。“量子金属是同时具有部分超导和金属特性的新奇量子物态,这是一种典型的量子金属态。”周毅说,“已知的量子金属态都只处于某个量子临界点上。而这个系统可以连续调控,量子金属作为相图上一个物相的形式存在,这个新发现令我们异常激动。”
器件实物照片。中间核心桥路部分宽20微米,长100微米。
《科学》杂志的审稿人对这项研究给与了非常积极的回应,他们认为,这种完全可调的超导性是一项引人入胜的突破,该项研究充分深入,几乎覆盖了过去10多年人们在LaAlO3/SrTiO3体系中获得的认识。
谢燕武说,对于新材料的研究主要来自于两方面动力:一方面想通过新材料的研究来发现新的物理现象,获得更多的科学见解;另一方面也试图为开发新器件提供有益的线索。“我们在LaAlO3/KTaO3体系中的研究可为理解超导机制,尤其是理解高温超导中的机制提供全新的素材,同时也为将来开发超导器件提供了新的视野。”
这项研究的团队成员还包括浙大物理系博士生孙艳秋、张蒙,以及浙大材料学院田鹤教授和刘中然博士。
研究得到了浙江大学量子交叉中心同仁在技术和设备等方面的全方位支持,同时还得到了浙江大学“双一流”建设专项经费、国家重点研发计划、国家自然科学基金、和浙江省重点研发计划等支持。
浙大物理系谢燕武课题组
论文DOI: 10.1126/science.abb3848
(原题为《浙大团队Science再发文!解密如何利用电场控制氧化物界面超导》。编辑张钟文)
品 名:超导陶瓷
拼音:chao1dao3tao2ci2
英文名称:superconductivity ceramics
说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。
奇异的超导陶瓷
1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。
1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!
高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。
超导技术的主体是超导材料,就是没有电阻、或电阻极小的导电材料,电能在流经过程中几乎不会损失。
实现超导常须将导体下降至一定温度(起码零下一百多摄氏度),电阻才突然趋近于零。具有这种特性的材料称为超导材料。近年来,随看材料科学的发展,超导材料的性能不断优化,实现超导的临界温度在提高。 目前科学家虽已合成出在室温下具有超导性能的复合材料,但这还仅限于实验室中。至于它的应用前景(作用),具代表性的有以下几方面:
(1)超导无电阻无损耗首先被想到用于长途输电线路中,但目前不可能,因为这不是一般的导线且需要降温。
(2)接着被想到的是用于大容量的电气设备中,如超导大容量发电机,发电机线圈超导无电阻无损耗,发电效率极高,功率更大。
(3)还有就是应用到需要产生强磁的装置中,如磁力悬浮列车,核磁共振装置等。因为强磁的产生依赖于电磁线圈中的大电流。超导线圈就有超大电流,产生超强磁场。
从实际出发,第(2)、(3)点才是今后超导技术应用的突破点。
望采纳。
超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。
然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。
超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。
在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。
在普通导体中会发生什么情况
上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。
超导体会发生什么变化
超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。
超导体
超导体,气体液化问题是19世纪物理学的热点之一。1911年昂内斯发现:汞的电阻在42K左右的低温度时急剧下降,以致完全消失(即零电阻)。1913年他在一篇论文中首次以“超导电性”一词来表达这一现象。由于“对低温下物质性质的研究,并使氦气液化”方面的成就,昂内斯获1913年诺贝尔物理学奖。
直到50年后,人们才获得了突破性的进展,“BCS"理论的提出标志着超导电性理论现代阶段的开始“BCS"理论是由美国物理学家巴丁、库珀和施里弗于1957年首先提出的,并以三位科学家姓名第一个大写字母命名这一理论。这一理论的核心是计算出超导体中存在电子相互吸引从而形成一种共振态,即存在“电子对”。
1962年英国剑桥大学研究生约瑟夫森根据“BCS”理论预言,在薄绝缘层隔开的两种超导材料之间有电流通过,即“电子对”能穿过薄绝缘层(隧道效应);同时还产生一些特殊的现象,如电流通过簿绝缘层无需加电压,倘若加电压,电流反而停止而产生高频振荡。这一超导物理现象称为“约瑟夫森效应”。这一效应在美国的贝尔实验室得到证实。“约瑟夫森效应”有力的支持了“BCS理论”。因此,巴丁、库怕、施里弗荣获1972年诺贝尔物理奖。约瑟夫森则获得1973年度诺贝尔物理奖。
德国物理学家柏诺兹和瑞士物理学家缪勒从1983年开始集中力量研究稀土元素氧化物的超导电性。1986年他们终于发现了一种氧化物材料,其超导转变温度比以往的超导材料高出12度。这一发现导致了超导研究的重大突破,美国、中国、日本等国的科学家纷纷投入研究,很快就发现了在液氮温区(-196C以下)获得超导电性的陶瓷材料,此后不断发现高临界温度的超导材料。这就为超导的应用提供了条件。帕诺兹和缪勒也因此获1987年诺贝尔物理奖。
超导体处于主导地位
柯宝泰
超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。
然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。
超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。
在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。
在普通导体中会发生什么情况
上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。
超导体会发生什么变化
超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。
人们早已知道,随着温度的降低,金属的电阻会减小,但是并不知道在温度接近绝对零度时,电阻会降低到什么程度。为了弄清这个问题,荷兰物理学家昂尼斯(1853~1926)开始对极低温度下金属电阻的研究。1911 年,他在测量低温下水银的电阻时发现,水银的电阻并不像人们预想的那样随着温度的降低连续地减小,而是当温度降到—269℃左右时突然完全消失。以后还发现一些金属或合金,当温度降到某一温度时,电阻也会变为零。这种现象叫做超导现象,能够发生超导现象的物质叫做超导体。物质的电阻变为零时的温度叫做这种物质的超导转变温度或超导临界温度,用TC 表示。物质低于TC 时具有超导性,高于TC 时失去超导性。
超导体的发现,在科学技术上有很大的意义。例如,由于现代生产的发展,对电能的需要迅速增长,有人统计,几乎每隔10 年对电能的需要就会增长一倍。但输电线有电阻,由于电流的热效应,使损失在输送电路上的电能大约超过。如果我们能够找到常温下的超导材料,就可以在发电、送电、电动机等方面大规模地利用超导性能,它将在现代技术的一切领域内引起一场巨大的变革。所以常温超导体的研究,是目前的一个重要课题,即使得不到常温超导体,能寻找到转变温度较高的超导体亦有重大意义。在这方面,我国的研究工作走在世界前列,1989 年已找到TC 达—141℃的超导材料,这是在高临界温度超导体研究方面取得的重大突破。
超导体
气体液化问题是19世纪物理的热点之一。1894年荷兰莱顿大学实验物理学教授卡麦林·昂内斯建立了著名的低温试验室。1908年昂内斯成功地液化了地球上最后一种“永久气体”———氦气,并且获得了接近绝对零度(零下273.2摄氏度,标为OK)的低温:4.25K。——1.15K
。(相当于零下摄氏度)。为此,朋友们风趣地称他为“绝对零度先生”。这样低的温度为超导现象的发现提供了有力保证。经过多次实验,1911年昂内斯发现:汞的电阻在4.2K。
左右的低温度时急剧下降,以致完全消失(即零电阻)。1913年他在一篇论文中首次以“超导电性”一词来表达这一现象。由于“对低温下物质性质的研究,并使氦气液化”方面的成就,昂内斯获1913年诺贝尔物理学奖。
“超导电性”现象被发现之后,引起了各国科学家的关注和研究,并寄于很大期望。通过研究,人们发现:所有超导物质,如钛、锌、铊、铅、汞等,当温度降至临界温度(超导转变温度)时,皆显现出某些共同特征:(1)电阻为零,一个超导体环移去电源之后,还能保持原有的电流。有人做过实验,发现超导环中的电流持续了二年半而无显著衰减;(2)完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的,只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。
超导电性的本质究竟是什么。一开始人们便从实验和理论两个方面进行探索。不少著名科学家为此负出了巨大努力。然而直到50年人才获得了突破性的进展,“BCS”理论的提出标志着超导电性理论现代阶段的开始。