车削机床
机床工具被广泛用于工业,以生产各类机械零件。有些是一般用途的机器,和其他人用来执行高度专业化的操作。使用最广泛的机床是普通车床,它提供了一个旋转轴的主要原则的议案,同时适当传授饲料动议的工具。的工件,必须牢牢掌握,经常在一个夹头。酒吧也可举行collets ,其中包含一个分裂套管推或拉对锥面。工件形状的尴尬往往是由螺栓的面板。
包含的启闭机制的驱动器,通常将改变齿轮和变速驱动器。长期工件支持他们最后提出了中心举行尾座。这个工具本身是一个工具举行后,允许设置工具的角度(横向和纵向) 。该工具后是安装在一个马车,而这反过来又获得支持的方式加工的床,确保刚性和免受震动。悬垂部分,停机坪的运输,可从事与饲料棒给予连续进给运动,或与丝杠切割的线程。很长工件的担保反对过度偏转的两个手指中心稳步休息休息或螺栓的车床床;后续其余贴近马车。
有时工具后坐在复合刀架其中包括幻灯片,可以设置在任何角度,因此,圆锥表面可以通过手喂养工具。参观双向工具后可旋转约竖井,并允许快速变化的工具,在预设的立场,从而加快连续行动
示踪剂或重复车床的设计制造形状不规则零件自动。基本操作这一车床如下。模板的任何一个单位或三维形状是放置在一个时段。阿导或指针然后继续沿着这条形状和其运动控制的切削刀具。重复可能包括方形或锥形,肩膀,半径,沟槽,蜡烛,和轮廓,工作,如电机轴,主轴,价值茎,活塞,杆,汽车车轴,涡轮轴,以及各种其他的物体也可以打开使用这种类型的车床。转塔车床的生产车床是用来制造任何数量的相同件。
螺杆机类似的建设炮塔车床,但他们的头上旨在保持和饲料长期酒吧的股票。否则,没有什么区别。
有些地方不太通顺,自己修改一下就OK了。
The thermodynamic calculation is the basis of the compressor calculation. With the help of the compressor-aided design system, the ordinary compressor is able to speed up its progress in calculation, which in turn reasonablizes the design; while the thermodynamic calculation of non-oil lubrication compressor caused errors or inaccuracy when pictures are retrieved by hand and figures are not best chosen. It is towards this problem that the compressor-aided design system for the thermodynamic calculation of non-oil lubrication compressor is made by digitalizing all the pictures and figures. This system will simplize the calculating process of the thermodynamic non-oil lubrication compressor, enable to select data on line, retrieve pictures and figures intelligently, output, save and print them and improve the accuracy and reliability of the calculating parameters as well.
Key words:compressor , thermodynamic calculation, aided design system, non-oil
摘要- Cobots是一类机器人的使用不断
无级变速发展高保真可编程
约束的表面。 Cobots消耗很少的电力
即使在提供高输出部队,其传输效率高众多的
传动比。 Cobotic变速箱也有能力
采取行动作为一个制动器或将成为完全免费。设计
和性能Cobotic手控制器,最近
发达国家六自由度触觉显示器,是审查。
这个装置表明,高动态范围和低功耗
消费实现的cobots 。彻底的比较
电源效率cobotic系统与传统的
机电系统提供。
三个关键要求机器人技术用于
假肢和康复是低体重,低功耗
消费和安全性。我们建议cobotic技术作为
传输架构,可以处理这些问题。
Cobots是机器人利用非完整约束
的指导车轮的相对速度有关的
机制的联系。阿cobotic传播是一个不断
无级变速器(无级变速器)之间的积极和消极
比率,可以涉及两个平移速度,两个
旋转速度,或旋转速度为平移
速度[ 1 ] 。我们最近推出了Cobotic手
控制器(图1 ) ,六自由度动力
合作机器人,并阐述其能力作为触觉界面[ 2 ,
3 ] 。通过本论文中,我们表明,
机械结构和传输中使用
Cobotic手控制器处理所有三个以上
上述要求的假肢和机器人
康复。
IntroductionMachining aims to generate the shape of work-piece form a solid body,or to improve the tolerances and surface finish of a previously formed work-piece,by removing excess materials in the form of chips. Machining is capable of creating geometric configurations,tolerances, and surface finishes often unobtainable by any other technique.However, machining removes materials, which has already been paid for, in the form of relatively small particles that are more difficult to recycle and are in greater danger of becoming mixed. Therefore,developments often aim at reducing or-if at all possible-eliminating machining, especially in mass production.For these reasons, machining has lost some important markets, yet, at the same time, it has also been developing and especially having captured new markets with the application of numerical control.Some feel for the important of machining may be gained from the observation that in 1983 there were about 2 million metal-cutting machine tools in the unite states ( of which some 5% were numerically controlled ) and that labor and overhead costs amounted to $125 billion, or 3% of the GNP.
纯手译,供参考。
3.5. Effect of moisture content and height of fall on germination of seed
Soybean seed is susceptible to mechanical damage. The severity of damage varies with the m:c:
of seed because the dryer seed is harder. The experiments conducted in the laboratory to study the
quality loss in soybean seed due to free-fall on to a cement (Table 6) and a galvanized iron floor
(Table 7), from different heights, indicated that height of fall produces significant effects on
germination. An average germination loss of 10% and 31% was noticed when the seed fell from a
height of 1 and 2m, respectively, on to the cement floor. This drop in germination was 7.5% and
22% when dropped from the same heights on to galvanized iron floor. This indicates that great
care should be taken while handling soybean seed. Its free-fall, as far as possible, should be kept to o1m. The seed lots held at 12% m:c: suffered less damage during free-fall from different heights than the lots held at 10% and 11% m:c:
3.5 含水量和自由下落高度在种子发芽率方面的影响。
豆种很容易受到机械损伤的影响。 因为越干的豆种越硬, 所以损伤的严重程度是随着含水量的改变而变化的。 在是实验室进行的试验操作研究了豆种从不同高度自由下落到水泥地和电镀铁板上分别造成的质量缺失(见表7), 表明了高度对豆种发芽质量方面的重要影响。从1米和2米的高度自由下落到水泥地上会分别降低豆种10%和31%的发芽率。 从同样的高度下落到电镀铁板上会分别降低7.5%和22%的发芽率。 这个试验表明当处理豆种的时候应该非常小心。它的下落高度应该尽可能的保持在0-1米含水量在12%的豆种在下落中所收到的损伤比含水量在10%和11%的要低。
3.6. Effect of moisture content and height of fall on vigor index of seed
Similar trends to germination results were noticed in the study of seed vigor (Table 8). There
was significant loss of seed vigor when the seed was dropped from a height of 1, 1.5, and 2m on to the cement floor. Comparatively, the vigor loss was less when the seed was dropped on to the
galvanized iron floor from the same heights (Table 9).
3.6 含水量和自由下落高度在豆种的活力指数方面的影响。
豆种活力方面的研究结果和发芽率方面的接近(见表8)。 当豆种从1,1.5,2米的地方分别下落到水泥板上的时候造成豆种活力很大的缺损。 相对来讲, 当豆种从同样高度下落到电镀铁板上的时候,豆种活力收到的影响要小的多。(见表9)
3.7. Practical implications
The study shows that soybean variety‘‘MACS-13’’ is susceptible to deterioration after
processing. The vertical bucket elevator causes E20% damage in processing, necessitating the need to design the cups of the bucket elevators from softer materials and cushioning the impact points with softer materials. The effect of impact is reduced if the variety is processed at or above 12% m:c: The seed also retains germination ability for a longer period at 12% m:c: Since the seed has a very delicate seed coat, its free-fall should be kept to less than 1m which implies that freefalls of seeds when seeds are transferred from one stage to the next should be less than 1m.
3.7. 现实意义
这个研究表明大豆MACS-13种类在经过处理过程之后极容易变质。链斗升降机会在处理过程中会导致20%的损伤,升降机的斗应该采取更柔软的材料去设计并且依靠更软的材质去降低冲击。 如果含水量不低于12%,在处理过程当中也可以降低冲击造成的影响。在12%这个含水量上,豆种保存发芽能力的时间也会更长一些。由于豆种有一个非常脆弱的豆皮, 它的下落高度应该尽量保持低于1米的高度, 也就是说它从一个环节传输到另一个环节的下落距离应该少于一米。
4. Conclusions
The conclusions that can be drawn from this study are:
1. Handling soybean seed (MACS 13) by a vertical bucket elevator significantly decreased germination and increased splits and seed coat damage.
2. In the processing sequence tested, the air-screen cleaner and gravity separator improved the apparent seed germination by removing damaged seeds.
3. Seed lots at 12% m:c:; dry basis, suffered less mechanical damage than the seed lots at a lower m:c:
4. Soybean seed lots at 12% m:c:; dry basis, retained germination ability for a longer period than the seed lots at lower m:c:; as predicted by the accelerated aging test.
5. Germination of soybean seed decreased more than 10% when the seed was dropped from equal heights on to a concrete floor compared to a galvanized iron floor.
4. 结论。
从这个研究中得到的结论是:
1. 使用垂直链斗升降机会严重导致豆种发芽率下降,增加破裂以及豆皮的损伤。
2. 在处理程序方面的检测, 空气过滤机和重力沉降分离器能够通过转移受损的种子来提高豆种发芽率方面的表现。
3. 含水量在12%的豆种,折干计算,所受的机械损伤比含水量低于12%的豆种要小。
4. 含水量在12%的豆种,折干计算,所保存发芽能力的周期比含水量低的更长,加速老化试验指出。
5. 豆种下落到水泥板上后, 发芽率要比从同样的高度下落到电镀铁板上降低10%。