您当前的位置:首页 > 发表论文>论文发表

三代半导体论文

2023-12-10 17:11 来源:学术参考网 作者:未知

三代半导体论文

GaN作为第三代半导体材料,因其优良的特性,日益成为研究的热点,在微电子和光电子领域具有十分广阔的应用优势和发展前景。
本论文采用电子回旋共振(ECR)微波等离子体辅助金属有机物化学气相沉积(PAMOCVD)方法,以氮等离子体为氮源,研究了大晶格失配(14%)异质结GaN/Al_2O_3(0001)的低温(700℃)外延生长。为了释放因晶格失配产生的应力,以降低在GaN外延膜中引起的缺陷密度,我们对蓝宝石衬底采用了氢等离子体清洗、氮等离子体氮化以及低温生长缓冲层的方法。我们用X射线衍射(XRD)来表征晶体的结构,用原子力显微镜(AMF)来表征表面形貌。通过高能电子衍射仪(RHEED)、对实验结果进行分析比较,对GaN薄膜的清洗、氮化、缓冲层和外延生长实验参数进行了优化。XRD和AFM的结果表明,我们在蓝宝石衬底上获得了晶质良好的GaN薄膜。实验中采用了氢氮混合等离子体清洗的方法,提高了清洗的质量。文中讨论了氮化层的原子排列点阵相对于蓝宝石衬底(0001)面旋转了30°的机理;解释了在六方相的缓冲层上在较低温度下外延生长GaN的过程中出现立方相GaN的现象。另外,在分析实验流程的特点的基础上,对ES...
GaN,
one
of
the
third
generation
semiconductor
materials,
becomes
the
hot
point
of
research
because
of
its
excellent
characteristics.
It
has
wide
potential
application
and
development
in
the
fields
of
microelectronics
and
optoelectronics.
This
dissertation
presents
the
investigation
on
the
epitaxy
growth
with
large
lattice
mismatch
(14%)
heterostructures
GaN/Al2O3(0001),
by
an
electron
cyclotron
resonance
(ECR)
plasma
assisted
metalorganic
chemical
vapor
deposition
(PAMOCVD)
with
a
nitrogen
plasma
as
a
ni...
【DOI】
CNKI:CDMD:2.2004.094289
可可
别忘了加分哦!!!

第三代半导体大热,揭秘骗子露笑科技

露笑 科技 最近有点火啊。

在老师们骂他是骗子、“露笑 科技 把人整笑了”后,露笑 科技 也迎来大跌,跌了20%左右。

股吧、雪球众人都各持己见,论战不休。

但是并没有业内人士出来说道说道这个,这就有点神奇了。

行外看热闹,非专业人士说的东西,大家要有一些判断。

现代科学的发展进步,其实已经到了普通人很难理解的程度了,不信你看看下面这个“标准模型”的公式:

要是你不懂这个标准模型的话,第三代半导体,你也就是连入门都说不上了。

不知道老师们懂不懂这个啊。

01

首先简介一下第三代半导体

1. 导体和半导体

量子力学认为,组成物质的原子是由原子核和电子组成的,电子以电子轨道的方式在核外运动。

原子和原子组成物体时,会有很多相同的电子混在一起,这个相混的过程就是化学反应,形成化学键,就产生了新分子。

但是两个相同的电子没法呆在一个轨道上,为了让这些电子不在一个轨道上打架,于是很多轨道就再分裂出好几个轨道。

可是这么多轨道,一不小心挨得近了,就会挤在一起,形成宽轨道,这个宽轨道,就叫做能带。

有些宽轨道上,挤满了电子,电子就没法移动,宏观上就表现为绝缘,这个就叫做价带。

而有些款轨道,则空旷的很,电子大把空间自由移动,宏观上就表现为导电,这个就叫做导带。

固体里面充满了价带和导带,价带和导带之间往往是有间隙的,这个间隙就叫做禁带。

导带和价带之间挨得很近,那么电子就可以毫不费力地从价带变更车道到导带上,这就是导体。

如果稍微离得远了点,电子自身就不能跨过禁带,但是如果也不是离得非常远,禁带在5ev内,那么给电子加个额外能量,电子也能跨过禁带,这就是半导体。

假如禁带大于5ev,那基本就歇逼菜了,电子在普通情况下是跨不过去的,这就是绝缘体。

当然,凡事都有例外嘛,如果能量足够大,别说5ev的禁带,就是5000ev的禁带也能一冲而过,这个就叫击穿场强(这个东西很重要,不信继续看下去)。

当然,禁带越宽,击穿场强越高。

击穿场强越高,就越耐草。

2. 第三代半导体

不要被第三代给吓着了,哈哈。

第三代半导体,严谨地来说,叫做宽禁带半导体,也就是禁带宽于现在的硅基半导体。

按照半导体材料能带结构的不同,禁带宽度如果小于2.3ev,那就是窄禁带半导体,代表材料有:GaAs、Si、Ge、InP(有读者可能不了解化学,这几个材料翻译成中文就是:砷化镓、硅、锗、磷化铟)。

如果禁带宽度大于2.3ev,那就叫做宽禁带半导体,代表材料有:GaN、SiC、AlN、AlGaN(中文名:氮化镓、碳化硅、氮化铝、氮化镓铝)。

由前文分析,我们可知,半导体禁带宽度越大,则其电子跃迁到导带需要的能量也就越大。

呵呵,那当然击穿场强也越大了,这意味着材料能承受的温度和电压更加高。

由此可知,宽禁带半导体和集成电路,也就是和逻辑芯片,没有什么太大关系了。

逻辑芯片的核心在于怎么把晶体管做小,也就是制程提高。

而电力电子器件、激光器,则是怎么考虑承受更高的电压、电流、频率、温度,然后有更小的电力损耗,以应用在各种恶劣环境和大功率环境下。

想的是怎么耐草的问题。

所以,宽禁带半导体大展身手的地方,在电力电子器件、激光发生器上。

目前比较有希望的两种材料是碳化硅和氮化镓,其他的长晶很困难。

碳化硅主要用在功率器件上,现在最热的就是用在电动车上,因为带来电力损耗减少,能够提高电动车的续航。

以后在光伏和风电发电中,用上碳化硅的话,也能够提高发电效率,促进度电成本下降。

所以在这么一个政治家推动的电气化时代,其需求是很迫切的。

氮化镓则主要是用于微波器件上,比如5G基站的射频芯片就要用到它,否则效果就比较差。

特别是军方的电磁对抗,更加需要氮化镓,来增加单位微波功率。

在5G时代,氮化镓是不可或缺的。

02

露笑是个大坑吗

国内的话,研究宽禁带半导体主要有3个流派,中科院物理所、中科院上海硅酸盐所、山东大学,最主要的研究方向就是宽禁带半导体衬底的晶体生长。

因为这个行业最源头的,以及最难的,就是衬底片的制造。

就像硅基的半导体,要是没有硅片,那做毛个芯片呢?

这三个流派都是90年代开始就开启研究了,起步时间和国外是差不太多的,读者有兴趣可以自行搜索下他们的论文。

中科院物理所是陈小龙领头,成立产学研转化的企业是天科合达。

这个企业去年撤回了IPO,有些奇怪。

坊间传闻,据说是陈小龙出走了。

天科合达的金主是新疆生产建设兵团,控股方是天富集团,A股的影子股是天富集团控股的天富能源,占了10.66%的股份。

山东大学是徐现刚领头,产学研的企业是山东天岳。

原本的领头人是徐现刚的老师蒋民华院士,遗憾的是这位大佬不幸于2011年逝世,事未竟而身先死,科学真的是烧人的事业啊。

这里向领路的大佬致以崇高的敬意!

山东天岳前段时间参加了上市辅导,相信很快就会跟大家在A股见面。

大家对他的热情也是非常高涨啊,穿透下来只有他股权2%的柘中股份都被资金顶了7个板。

中科院上海硅酸盐所,则是陈之战领头。

陈之战之前在世纪金光干过,后来20年5月份,和露笑 科技 走在了一起。

这个露笑 科技 ,算是最近的股吧热门了。

涨了一倍之后,前几天就出来自媒体的老师们在微信公众号、抖音等平台出来说,这是家蹭热点的骗子公司。

对比大家一定要有自己的判断,要知道这些老师并不是业内人士,很有可能不懂技术,只是翻了一下二手资料。

露笑 科技 曾经追逐热点,投资的锂电池、光伏也都失败了。

但是并不能以此推导出他的管理层就是坏家伙。

露笑 科技 原来的主营业务漆包线,是人都知道的传统行业,竞争激烈,管理层当然也知道这是没有什么前途的。

谋取转型,某种程度上说明管理层是有进取心的。

但转型是困难的,踏足一个未知领域,哪有这么简单。

这个头疼的东西,山西的煤老板们最清楚了。

而做一级投资的都知道,热门行业的好项目,是拼爹的玩意儿,要各种关系、资源的,那个东西是你手上有钱就能投的进去的吗?

但是如果没有投到厉害的公司身上,那大概率是要被有爹的给干死的。

在低潮期捡漏,像高瓴投腾讯、段永平投网易,都是高难度动作,传奇故事,需要天时地利人和来配合,这种机会不仅是少,而且非常难把握。

碳化硅这个东西嘛,以往并不是很热,因为商业化应用的领域没有出来。

陈小龙在媒体采访时就曾经透露到,天科合达在成立后的10多年里未曾盈利,给投资方和团队都带来了非常大的压力。

而美国军方扶持起来的CREE,就算有军方爸爸,但是在2016年的时候也顶不住,想要把企业卖给英飞凌。

而电动车领域里,就在2020年,特别疫情期间,大家还怀疑,补贴退坡之后,会不会就面临死亡了。

当时还有人专门写了《预言一场电动爹大逃杀》来看空呢。

那你们想想,碳化硅器件目前最好的应用场景,在去年都还是这个熊样,谁又会多留意碳化硅呢?

当时的大热门还是功率器件的国产替代,是硅基的IGBT、MOSFET,是斯达半导体、新洁能。

所以20年露笑 科技 找到陈之战,或许和以往的投资,有些不同吧。

国内碳化硅衬底还局限在二极管的应用,芯片质量主要来自于衬底,也因此几乎国内SiC器件都来自国外。

目前碳化硅四寸片,做的比较好的是天科合达、河北同光以及山西烁科等几家企业。

但是六寸量产(每个月稳定出货量在几百片)的厂商,目前还基本没有。

也就是说,三大流派其实还是半斤八两,都还需要突破,否则华为怎么对天科合达和山东天岳都一起投资呢?

当下这个阶段就是,谁能率先突破,谁就会享有先发优势,并在行业景气的助力下,实现超额收益,获得市场的估值溢价。

或许当合肥露笑半导体的碳化硅衬底片出来后,华为也会进来投资一笔呢。

合肥市政府号称最牛风投,人家可不是傻子。

至于说露笑 科技 没有技术积累,这真不知道怎么说,陈之战大哥和他的团队、学生已经研究了20多年了。

很可能是,露笑 科技 的蓝宝石业务部门,19年在给中科钢研代工碳化硅长晶炉的时候,突然发觉这是个有戏的行业,随后才找到了陈之战。

总之,对于露笑 科技 ,大家要有自己的判断,核心点有且只有一个,陈之战团队能不能扎下根来。

最后,做个总结。

君临认为,目前碳化硅的投资,最好的应该是衬底环节,这个环节现在产能不足、壁垒极高。

而衬底的企业,则主要是看已经研究了20多年的国内三大流派旗下企业。

按照中国的科研环境、功率器件企业发展状况来说,其他的团队压根没法分杯羹。

材料技术是积累出来的,烧人烧时间,更加烧钱。

现在行业热了再来开始研发,短时间根本不可能见效。

中科院的两个研究所,山东大学蒋院士的团队,科研的资源肯定是最丰富的,但是人家陈小龙都说压力很大,所以别的团队申请科研基金都不容易。

露笑 科技 说9月份能试生产,年底批量生产,而且是6英寸的,有陈之战在,应该不是讲大话。

一旦衬底片年底真的量产了,那就是国内领先了,以国内资金对 科技 的热度,自然会有神秘的东方估值力量。

宽禁带半导体领域里,全球都还是在懵懵懂懂的阶段,咱们和美国虽然有差距,但也不是这么大。

特别是他的主要应用领域,新能源发电、新能源 汽车 、5G通讯、航空航天、电磁对抗,咱们国家都是最大的应用市场和制造商,特别是光伏、风电、电动车、5G这些大规模民用的领域。

技术的进步还是源自经济利益的驱使,产业的需求对于技术进步的作用是最大的。

所以宽禁带半导体的投资在目前是大有可为,很有可能在我们国家诞生全球龙头,这个想象空间大不大?

至于氮化镓等材料,以及外延、器件设计制造等环节,行业本就是新兴的,肯定也是有大机会的,君临会在后续的跟踪文章中持续输出,带领读者彻底搞定这个领域。

“缺芯”之痛与世界半导体江湖

2019年5月,美国商务部将华为列入实体清单,禁止美国企业向华为出口技术和零部件;2020年5月,美国进一步升级对华为贸易禁令,要求凡使用了美国技术或设计的半导体芯片出口华为时,必须得到美国政府的许可证,进一步切断华为通过第三方获取芯片或代工生产的渠道。

此前,高通、英特尔和博通等美国公司都向华为提供芯片,用于华为智能手机和其他电信设备,华为手机使用谷歌的安卓操作系统。华为自研的麒麟高端手机芯片,也依赖台积电代工。随着美国芯片禁令实施,华为手机业务遭遇重创,消费者业务收入大幅下滑,海外市场拓展也受到影响。

美国凭借芯片技术优势对中国企业“卡脖子”,使半导体产业陡然成为中美 科技 竞争的风暴眼。“缺芯”之痛,突显了中国半导体产业的技术短板。它如一记振聋发聩的警钟,惊醒国人看清国际 科技 竞争的残酷现实。

半导体产业是 科技 创新的龙头和先导,在信息 科技 和高端制造中占据核心地位。攻克半导体核心技术难题,解决高端芯片受制于人的现状,成为中国高 科技 发展和产业升级的当务之急。

全球半导体版图

半导体产业很典型地体现了供应链的全球化,各国在半导体产业链上分工协作,相互依赖。美国、韩国、日本、中国、欧洲等国家或地区发挥各自优势,共同组成了紧密协作的全球半导体产业链。

根据美国半导体行业协会发布的最新数据,美国的半导体企业销售额占据全球的47%,排名第二的是韩国,占比为19%,日本和欧盟半导体企业销售额占比均为10%,并列第三。中国台湾和中国大陆半导体企业销售额占比分别为6%和5%。

具体来看,美国牢牢控制半导体产业链的头部,包括最前端EDA/IP、芯片设计和关键设备等。具体而言,在全球产业链总增加值中,美国在EDA/IP上,占据74%份额;在逻辑芯片设计上,占据67%;在存储芯片设计上,占据29%;在半导体制造设备上,占据41%。

日本在芯片设计、半导体制造设备、半导体材料等重要环节掌握核心技术;韩国在存储芯片设计、半导体材料上发挥关键作用;欧洲在芯片设计、半导体制造设备和半导体材料上贡献突出;中国则在晶圆制造上发挥重要作用。

中国大陆在全球晶圆制造(后道封装、测试)增加值占比高达38%;中国台湾在全球半导体材料、晶圆制造(前道制造、后道封装、测试)增加值占比分别达到22%和47%。

以上国家和地区构成了全球半导体产业供应链的主体。

芯片是人类智慧的结晶,芯片制造是全球顶尖的高端制造产业之一,是典型的资本密集和技术密集行业。制造的过程之复杂、技术之尖端、对制造设备的苛刻要求,决定了芯片产业链的复杂性。半导体制造中的大部分设备,包含了数百家不同供应商提供的模块、激光、机电组件、控制芯片、光学、电源等,均需依托高度专业化的复杂供应链。每一个单一制造链条都可能汇集了成千上万的产品,凝聚着数十万人多年研发的积累。

芯片技术也涉及广泛的学科,需要长时期的基础研究和应用技术创新的成果累积。举例来说,一项半导体新技术方法从发布论文,到规模化量产,至少需要10-15年的时间。作为全球最先进的半导体光刻技术基础的极紫外线EUV应用,从早期的概念演示到如今的商业化花费了将近40年的时间,而EUV生产所需要的光刻机设备的10万个零部件来自全球5000多家供应商。

芯片制造的复杂性,创造了一个由无数细分专业方向组成的全球化产业链。在半导体市场中,专业的世界级公司通过几十年有针对性的研发,在自己擅长的领域建立了牢固的市场地位。比如,荷兰ASML垄断着世界光刻机的生产;美国高通、英特尔、韩国三星、中国台湾的台积电等也都形成了各自的技术优势。目前全世界最先进制程的高端芯片几乎都由台积电和三星生产。

中美芯片供应链各有软肋

“缺芯”,不仅困扰着中国企业。

自去年下半年以来,受新冠疫情及美国贸易禁令干扰,芯片产能及供应不足,全球信息产业和智能制造都遭遇了严重的“芯片荒”。

随着新一轮新冠疫情在东南亚蔓延, 汽车 行业芯片短缺进一步加剧,全球三家最大的 汽车 制造商装配线均出现中断。丰田称 9 月全球减产 40%。美国车企也不能幸免,福特 汽车 旗下一家工厂暂停组装 F-150 皮卡,通用 汽车 北美地区生产线停工时间也被迫延长。

蔓延全球的芯片荒,迫使各国对全球半导体供应链的安全性、可靠性进行重新审视和评估。中美两个大国在半导体供应链上各有优势,也各有软肋。

中国芯片产业起步较晚,但近年来加速追赶。根据中国半导体行业协会统计,2020年中国集成电路产业销售额为8848亿元,同比增长17%,5年增长了超过一倍。其中,设计业销售额为3778.4亿元,同比增长23.3%;制造业销售额为2560.1亿元,同比增长19.1%;封装测试业销售额2509.5亿元,同比增长6.8%。中国2020年出口集成电路2598亿块,出口金额1166亿美元,同比增长14.8%。

中国芯片核心技术与美国有较大差距,主要突破在芯片设计领域,芯片设计水平位列全球第二。在制造的封测环节也不是我们的短板。中国芯片制造的短板主要在三方面:核心原材料不能自己自足、芯片制造工艺与国际领先水平有较大差距、关键制造设备依赖进口。

由于不能独立完成先进制程芯片的生产制造,大量高端芯片依赖进口。2020年中国进口芯片5435亿块,进口金额3500.4亿美元。

美国是世界芯片头号强国,拥有世界领先的半导体公司,但其核心能力是主导芯片产业链的前端,包括设计、制造设备的关键技术等,但上游资源和制造能力也依赖国外。美国在全球半导体制造市场的市占率急速下降,从 1990 年 37% 滑落至目前 12%左右。

波士顿咨询公司和美国半导体行业协会在今年4月联合发布的《在不确定的时代加强全球半导体产业链》的报告显示,若按设备制造/组装所在地统计,2019年中国大陆半导体企业销售额占比高达35%;美国则排名第二,销售额占比为19%。

世界芯片的主要制造产能集中在亚洲, 2020 年中国台湾半导体产能全球占比为 22%,其次是韩国 21%,日本和中国大陆皆为 15%。这意味着美国在芯片的制造和生产环节,也存在很大的脆弱性。这也是伴随东南亚疫情爆发导致芯片产业链产能受限,美国同样遭遇“芯片荒”的原因。

对半导体产业链脆弱性的担忧,推动美国加大对半导体产业的投资和政策扶持。今年5月美国参议院通过一项两党一致同意的芯片投资法案,批准了520亿美元的紧急拨款,用以支持美国半导体芯片的生产和研发,以提升美国国内半导体产业链的韧性和竞争力。今年2月24日,美国总统拜登签署一项行政命令,推动美国加强与日本、韩国及中国台湾等盟国/地区合作,加速建立不依赖中国大陆的半导体供应链。

除了产能问题,美国在全球半导体竞争中的另一个软肋就是对中国市场的依赖。中国是全球最大的半导体需求市场,每年中国半导体的进口额都超过3000亿美元,大多数美国半导体龙头企业至少有25%的销售额来自中国市场。可以说,中国是美国及全球主要半导体供应商的最大金主。如果失去中国这个最富活力、最具成长性的市场,那么依赖高资本投入的美国各主要芯片供应商的研发成本将难以支撑,影响其研发投入及未来竞争力。

这从另一方面说,恰是中国的优势,中国庞大的市场需求和发展空间,足以支撑芯片产业链的高强度资本投入与技术研发,并推动技术和产品迭代。

“中国芯”提速

随着中国推进《中国制造2025》,芯片制造一直是中国 科技 发展的优先事项。如今,美国在芯片供应和制造上进行霸凌式断供,使中国构建自主可控、安全高效的半导体产业链的目标更加紧迫。

客观上,半导体产业链需要各国协作,这从成本和技术进步角度,对各国都是互利共赢。但美国的断供行为改变了传统的商业与贸易逻辑。在大国竞争的背景下,对具有战略意义的半导体和芯片产业链,安全、可靠成为主导的逻辑。

中国要成为制造强国,实现在全球产业链、价值链的跃升,摆脱关键技术受制于人的困境,芯片制造这道坎儿就必须跨过。

随着越来越多的中国高 科技 企业被列入美国实体清单,迫使半导体产业链中的许多中国企业不得不“抱团取暖”,携手合作,努力寻求供应链的“本土化”。“中国芯”突围,成为中国 科技 界、产业界不得不面对的一场“新的长征”。中国半导体产业进入攻坚期,也由此迎来发展的重大战略机遇期。

在国家“十四五”规划和2035远景目标纲要中,把 科技 自立自强作为创新驱动的战略优先目标,致力打造“自主可控、安全高效”的产业链、供应链;国家将集中资金和优势 科技 力量,打好关键核心技术攻坚战,在卡脖子领域实现更多“由零到一”的突破。国家明确提出到2025年实现芯片自给率70%的目标。

2020年8月,国务院印发《新时期促进集成电路产业和软件产业高质量发展的若干政策》,瞄准国产芯片受制于人的短板,在投融资、人才和市场落地等方面进一步加大政策支持,助力打通和拓展企业融资渠道,加快促进集成电路全产业链联动,做大做强人才培养体系等。

全国多地制定半导体产业发展规划和扶持政策,积极打造半导体产业链。长三角地区是我国半导体产业重点聚集区,深圳市则是珠三角地区集成电路产业的龙头,京津冀及中西部地区的半导体产业也正在加快布局。

作为中国创新基地,上海市政府6月21日发布《战略性新兴产业和先导产业发展“十四五”规划》,其中集成电路产业列为第一位的发展项目,提出产业规模年均增速达到20%左右,力争在制造领域有两家企业营收进入世界前列,并在芯片设计、制造设备和材料领域培育一批上市企业。

上海市的规划中,对芯片制造也制定出具体目标和实施路径:加快研制具有国际一流水平的刻蚀机、清洗机、离子注入机、量测设备等高端产品;开展核心装备关键零部件研发;提升12英寸硅片、先进光刻胶研发和产业化能力。到2025年,基本建成具有全球影响力的集成电路产业创新高地,先进制造工艺进一步提升,芯片设计能力国际领先,核心装备和关键材料国产化水平进一步提高,基本形成自主可控的产业体系。

上海联合中科院和产业龙头企业,投资5000亿元,打造世界级芯片产业基地:东方芯港。目前东方芯港项目已引进40余家行业标杆企业,初步形成了覆盖芯片设计、特色工艺制造、新型存储、第三代半导体、封装测试以及装备、材料等环节的集成电路全产业链生态体系。

在国家政策指引和强劲市场的驱动下,国家、企业、科研机构、大学、 社会 资金等集体发力,中国芯片行业正展现出空前的发展动能和势头。

在外部倒逼和内部技术提升的共同作用下,中国芯片产业第一次迎来资金、技术、人才、设备、材料、工艺、设计、软件等各发展要素和环节的整体爆发。国产芯片也在加速试错、改造、提升,正在经历从“不可用”到“基本可用”、再到“好用”的转变。

中国终将重构全球半导体格局

中国芯片制造重大技术突破接踵而至:

中微半导体公司成功研制了5纳米等离子蚀刻机。经过三年的发展,中微公司5纳米蚀刻机的制造技术更加成熟。该设备已交付台积电投入使用。

上海微电子已经成功研发出我国首款28纳米光刻机设备,预计将在2021年交付使用,实现了光刻机技术从无到有的突破。

中芯国际成功推出N+1芯片工艺技术,依托该工艺,中芯国际芯片制程不断向新的高度突破,同时成熟的28纳米制程扩大产能。

7月29日,南大光电承担的国家 科技 重大专项“极大规模集成电路制造装备及成套工艺”之光刻胶项目通过了专家组验收。

8月2日青岛芯恩公司宣布8寸晶圆投片成功,良率达90%以上,12寸晶圆厂也将于8月15日开始投片。

2017年,合肥晶合集成电路12寸晶圆制造基地建成投产,至2021年合肥集成电路企业数量已发展到近280家。

中国半导体行业集中蓄势发力,在关键技术和设备等瓶颈领域,从无到有,由易入难,积小成而大成,关键技术和工艺水平正在取得整体跃迁。

小成靠朋友,大成靠对手。某种意义上,我们应该感谢美国的遏制与封锁,逼迫我们在芯片和半导体行业加速摆脱对外部的依赖。

回望新中国 科技 发展史,凡是西方封锁和控制的领域,也是中国技术发展最快的领域:远的如两弹一星、核潜艇,近的如北斗导航系统以及登月、空间站、火星探测等航天工程。在外部压力的逼迫下,中国 科技 与研发潜能将前所未有地爆发。

实际上,中国的整体 科技 实力与美国的差距正在迅速缩小。在一些尖端领域,比如高温超导、纳米材料、超级计算机、航天技术、量子通讯、5G技术、人工智能、古生物考古、生命科学等领域已经居于世界前沿水平。

英国世界大学新闻网站8月29日刊发分析文章,梳理了中国 科技 水平的颠覆性变化:

在创新领域,中国在全球研发支出排名第二,全球创新指数在中等收入国家中排名第一,正在从创新落伍者转变为创新领导者。

人才方面,拥有庞大的高端理工人才库,中国已是知识资本的重要创造者,美中 科技 关系从高度不对称转变为在能力和实力上更加对等。

技术转让方面,中国从单纯的学习者和技术接收者,转变为技术转让的来源和跨境技术标准的塑造者。

人才回流,中国正在扭转人才流失问题,积极从世界各地招募科学和工程人才。

这些变化表明,中国 科技 整体实力已经从追赶转变为能够与国际前沿竞争,由全球 科技 中的边缘角色转变为具有重要影响力的国家之一。

中国的基础研究水平也在突飞猛进。据《日经新闻》8月10日报道,在统计2017年至2019年间全球被引用次数排名前10%的论文时,中国首次超过美国,位居榜首位置。报道还着重指出中国在人工智能领域相关论文总数占据20.7%,美国为19.8%,显示中国在人工智能领域的研究成果正在超越美国。

另有日本学者在研究2021QS世界大学排名后,发现世界排名前20的理工类大学中,中国有7所上榜,清华大学居于第一位,而美国有5所。如果进一步细分到“机械工程”、“电气与电子工程”,中国大学在排名前20中的数量更是全面碾压美国。

芯片技术反映了一个国家整体 科技 水平和综合研发实力,中国的基础研究、应用研究、人才实力具备了突破芯片核心技术的基础和能力。

正如世界光刻机龙头企业——荷兰ASML总裁温尼克今年4月接受采访时所说:美国不能无限打压中国,对中国实施出口管制,将逼迫中国寻求 科技 自主,现在不把光刻机卖给中国,估计3年后中国就会自己掌握这个技术。“一旦中国被逼急了,不出15年他们就会什么都能自己做。”

温尼克的忧虑,正在一步步变成现实。全球半导体产业正进入重大变革期,中国在芯片制造领域的发愤图强,正在改写世界半导体产业的竞争格局。

中国的市场优势加上国家政策优势、资金优势以及基础研究的深入,打破美国在芯片制造领域的技术垄断和封锁,这一天不会太遥远。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页