您当前的位置:首页 > 发表论文>论文发表

天文学博士论文

2023-12-11 03:24 来源:学术参考网 作者:未知

天文学博士论文

哈勃的全名叫埃德温·鲍威尔·哈勃,1889年11月20日生于美国密苏里州马什菲尔德。哈勃的祖先在17世纪从英国移居美国,他的父亲约翰·鲍威尔·哈勃是一名律师,母亲婚前叫维琴尼亚·李·詹姆斯。哈勃在肯塔基度过了他的童年生涯,后来在芝加哥上高级中学,在校时学习和体育运动两方面都很出色。高中毕业后他获得了一项奖学金进入芝加哥大学,1910年毕业于该校天文系,获理学士学位。他还是该校有名的拳击运动员,一位体育运动教练想训练他同当时世界冠军杰克·约翰逊进行拳击,培养他成为一代拳王,但他却在1910年作为罗兹奖学金获得者来到英国牛津女王学院攻读法学,1912年修完所有法学课程,获文学士学位。1913年哈勃回到美国,在肯塔基州路易斯维尔开了一家法律事务所,但翌年便放弃了这个职位来到芝加哥大学叶凯士天文台,成为弗罗斯特的助手和研究生。1917年他完成了“暗弱星云的照相研究”的学位论文而获博士学位。

美国最有声望的天文学家海尔早年曾与哈勃有一段师生情。哈勃刚跨入芝加哥大学校门时,海尔虽已就任威尔逊山天文台台长但却未完全脱离芝加哥大学和所属的叶凯士天文台,他培养了年青的哈勃对天文学的兴趣。十多年过去了,海尔得知哈勃重返芝加哥大学并出色地完成了天文学博士论文,认为后者很有发展前途,于是以威尔逊山天文台台长的身份邀请后者去该台工作。当时该台152米的反射望远镜已投入观测,举世无双的口径254米的胡克望远镜也即将建成。哈勃认为威尔逊山的工作条件极佳,但当时美国参加了第一次世界大战,他被征入伍。他打电报给海尔说,一旦他复员便接受海尔的邀请去威尔逊山天文台工作。此后哈勃随美国远征军到法国服役,在军中晋升到陆军少校军衔。1918年11月11日停战日之后,他又随美国占领军留驻德国,直到1919年10月才返回美国。

毛淑德:一些天文学轶事

如今,中国天文正努力向前,走上世界舞台 | 图源:pixabay.com

导 读

“遂古之初,谁传道之?”,中国先民对于宇宙的好奇与 探索 古已有之,中国天文也曾有过辉煌灿烂的 历史 ,拥有世界上最完美的彗星以及超新星记录。四百多年前,随着望远镜的诞生,中国天文、 科技 反而逐渐落后于人,令人痛心遗憾。如今,随着一代代天文人的努力,中国天文正努力向前,走上世界舞台。

天体很远,而天文很近。对于大多数天文学家来说, 探索 宇宙不仅仅是一份工作,更源于人类对于宇宙超脱世俗和浩瀚无垠的热爱。今天,我们重新刊发清华大学天文系教授毛淑德的评论文章,谈谈天文学术圈的轶事杂谈,以飨读者。文章首发于2017年7月18日《知识分子》微信公众号。

撰文 | 毛淑德

责编 | 郑晓晨

空气,看不见,摸不着,却关乎存亡。

学术气氛 ,对一个一流的研究所来说,从某种意义上讲,就如同空气之于人类的重要性一样。但学术气氛这一科研要素,却很难定量评估,不如基金项目和发表论文的多寡那么直观、定量可比,往往不得重视。

图1 普林斯顿大学天体物理系 Peyton Hall:典雅的两层建筑(地上和地下各一层)。这里有我敬仰的教授和四年的美好回忆,摄于2015年7月17号。

这些年来,我访问过众多国内外研究所、天文机构,可以很明显的感觉到两种截然不同的状态, 有些研究所内门庭紧闭,大家互不交流往来,沉闷感油然而生,有些则不然。

拿我曾多次访问的 英国剑桥大学天文研究所 为例,该所在国际上享有很高的声誉,第一任所长是工作比肩诺贝尔奖的 Fred Hoyle 教授 [1] 。天文所每天上、下午各有一次茶歇,大家自发地聚集在一个开放空间进行学术讨论,其中不乏皇家学会会员 [2] ,那种沸沸扬扬的讨论场面足以震撼每一位访客,浓郁的学术气氛扑面而来。

我的母校 普林斯顿大学天体物理系 也是一个学术气氛相当浓厚的地方。1988-1992年,我在那里攻读博士学位,当时博士还是四年学制 (现已改为五年) 。彼时,系里不过只有15名教授,与学生总数相当。四年下来,每位教授平均指导一名学生。研究生前两年主修基础课,课程倒是不多,不过五门 (恒星物理、星际间界质、星系动力学、高能天体物理、河外天文学/宇宙学) 。

除此之外,每名研究生每年还需要准备两次前沿报告,分别关于理论天体物理和观测天文学。其余时间,学生们每学期将在不同导师的指导下开展研究,完成相应课题并发表。如此两年下来,学生们往往能够深入了解天文学各领域知识和进展,明确自己的兴趣与特长,从而选定合适的博士论文题目,最终完成自己的博士学业。

与英国剑桥大学天文研究所一样,普林斯顿天体物理系里每天下午三点也有个 茶歇 ,少不了众多教授和学生的参与,大家习惯于一边惬意地喝茶,一边严谨地讨论科学问题。

这些年过去,很多事很多人渐渐在脑海中淡去,唯有茶歇时的某些讨论仍令我记忆犹新,比如某次关于1987A超新星的讨论。当时,有人声称1987A超新星产生了一个周期为半秒的脉冲星信号 [3] ,但理论上讲,转速如此快的脉冲星不应或很难存在,因为巨大的离心力会将中子星撕地粉碎 (见附录) 。

大家对发表的观测结果很是困惑,茶歇时议论纷纷,系主任 Jerry Ostriker 教授也加入了讨论,面对大家的问询,他想也没想地回道:“应该是噪音,” 他顿了顿,又补充道,“如果不是噪音,我还有三个理论解释”。有意思的是,这个所谓的 “半秒脉冲星信号”,最终被证明确实是假的。

后来,Jerry在一次喝茶时调侃,称自己在《自然》杂志上发表的所有文章也都是有错误的,因为《自然》杂志往往过于追求新闻效应而缺乏足够考证,并不能盲信。喝茶时能听到教授们对那些尚无定论的课题展开激烈讨论,这一过程往往比上课还要获益良多。

图2 普林斯顿幽静的研究生宿舍(graduate college,笔者摄于2017年7月)

提及 Jerry Ostriker 教授,他的思维敏捷、能言善辩 (有人说是诡辩) 在天文圈里是出了名的。我曾担任过他半年的研究助理,不时找他讨论,往往进门前坚信他的错漏,出来时却已被他说服。如此反复,最终常常难以达成共识 (不过,后来的观测表明,由他提出的 “BL Lac天体是由于微引力透镜效应造成的” 这一理论确实不对) 。

犹记得第一次见到 Jerry Ostriker 教授,是在1988年的一个秋天,我怀着忐忑不安的心情拜访他,希望可以在他的指导下开展一些课题研究。他问我:“你想做什么?”,“量子宇宙学。” 我答道。他愣了足足半分钟才道:“这个比较难,除了这个,你可以在我的一百多篇文章中任意挑选一个题目”。我研读了半年文献后,选择了一个有关微波背景辐射的课题。

时值天文学家通过火箭实验发现,微波背景辐射的能谱偏离黑体辐射 (见图3左) ,而 Jerry Ostriker 教授恰巧有个理论可以解释这一偏离,于是他建议我计算一下。可惜,当时我初到美国,迷上了计算机,在课题上花的时间寥寥,进展缓慢。更不幸的是,这个课题尚未完成,就在1990年被 COBE卫星发现之前的观测结果是错误的,微波背景辐射能谱明明是完美的普朗克黑体谱 (见图3右) 。

这次并不成功的合作,有部分原因可归于科学的不可预见性,但却令我深以为憾。直到2004年,我以及另外两名天文学家终于和他一起合作完成了一篇关于引力透镜和暗物质子结构的文章,总算是了了遗憾,达成了与他合作的心愿!

图3 左)Matsumoto et al. (1988)用火箭观测到的微波背景辐射能谱。其中黑点2,3明显偏离温度为2.74K(摄氏零下270.26度)的黑体辐射谱。右)COBE 卫星观测到的能谱是完美的普朗克黑体曲线;黑点为数据点,红线为普朗克曲线。

除了 Jerry Ostriker 教授,系里的其他教授也都是天文界的翘楚,包括我的导师,Bohdan Paczynski 教授 (我已另有撰文纪念他 [4]) 、James Gunn 教授、Richard Gott 等。其中,James Gunn 教授是天文界唯一一位能够同时兼顾理论、观测和仪器制造的全能科学家。据我所知,在仪器制造方面,他曾参与设计了Palomar天文台的双色光谱仪和哈勃望远镜上的仪器 (WFPC) ,也正是他所制造的五色相机保证了SLOAN数字巡天计划能在2000年顺利开展。

目前,基于SLOAN数字巡天计划的文章、引文成千上万,这一计划也成为天文史上最成功的巡天计划,将在几十年内对天文学领域产生极其深远的影响。另一位教授 Richard Gott 对 James Gunn 教授的评价非常贴切, “如若末日降临,世间只剩Gunn教授一名天文学家,他也能恢复重建整个天文学。”

James Gunn 教授的夫人 Jill Knapp 也是系里的教授,且在观测方面颇有建树。我申请普林斯顿研究生时,她恰好负责系里的招生,曾警告我美国官僚主义的严重,早早地打破了我的美好幻想。他们夫妻伉俪情深,几乎每天都同时上、下班,有一次还见他们肩并肩坐在系所楼前的石阶上,仰望星空,真是无尽的浪漫!

Richard Gott 也是一位颇具传奇色彩的教授。他非常健谈,且能畅聊数个小时不休,这一点曾让许多学生很是无奈。所以,如若必须见他,大家都会选择即将下班的时间点,或者提前和其他学生约好,定点 ‘驰援’。他是相对论和宇宙大尺度结构领域的专家,我曾有幸和他一起合作完成了一篇关于宇宙拓扑结构的论文。也正是他,与北大的李立新教授联合发现了利用宇宙弦或可实现时空穿越。

有人玩笑说,时空穿越对其他人来讲或许不可能,但Gott 不同,他是万能的上帝 (Gott原为德文,有 “上帝” 之意) 。有一次,办公楼前的一棵树被闪电击中而拦腰折断,大家调侃道:“这大概是来自上帝的警告,因为我们弄错了宇宙学。”

普林斯顿天体物理系除了这些声名赫赫的教授外,每周三还会邀请一位国际知名学者前来做学术报告 (colloquium) ,这是拓宽知识面的宝贵机会,几乎每个教授和学生都会自发参加。高年级学长甚至曾告诫我,一定要去参加学术报告,哪怕在那里睡觉。

实际上,曾被费曼在书中多次提及的天体物理系第一任系主任——大名鼎鼎的 Henry Russell 教授,他就是逢报告必睡的典型 [5] 。这一优良传统显然得到了很好的传承,据我博士生期间观察,当时的系主任 Jerry Ostriker 教授听报告时也几乎场场入睡,不过令人拍案称奇的是,报告一结束,他便能立马醒来提问,且问题往往犀利而正中要害。

图4 普林斯顿Nassau街上的Hoagie Haven 小店 | 图源:twitter.com/hoagiehaven

学术报告之外,物理系的学生们常邀请报告人共进午餐 (Wednesday Lunch,Wunch) ,餐点通常是采购于普林斯顿人尽皆知的小餐馆Hoagie Haven [6] 中的三明治。大家不遗余力地利用午餐时间,一方面向报告人宣传自己的工作,一方面打听物理系之外的讯息。这样的餐会,我参加过多次,其中印象最深的是 S.Chardrasekhar,James Binney 和 Peter Goldreich 三位教授。

图5 Subrahmanyan Chandrasekhar 教授 (1910.10.19-1995.8.21)| 图源:芝加哥大学

Chandrasekhar教授供职于芝加哥大学,他是 Jerry Ostriker 教授的导师,曾因发现白矮星的质量上限而获得1983年的诺贝尔物理学奖。据说,他授课时,曾创造了班内所有成员 (李政道和杨振宁,包括他自己) 都获得诺贝尔奖的 “奇迹” [7] 。他一生涉猎极广 [8] ,且工作方式奇特:某一时期只专注于一个领域的工作,解决问题发表专著后,进入下一个领域,并从此再不涉足上一个领域。

某次,Chandrasekhar教授前往普林斯顿高等研究院访问期间,两位印度研究生费了九牛二虎之力将他请来参加我们的午餐会,大家都非常激动。按照惯例,大家依次介绍自己的工作,期待他的评价,结果他仅说了一句 “你们做的东西我都不清楚”,便开始重点描述他自己手头的工作,当时他正在研究牛顿的《自然哲学的数学原理》, 对牛顿推崇备至 [9] 。不得不说,他的言行中处处透露出一名学者的清高与孤傲,给我留下了极深的印象,他的一句话让我牢记至今—— 科学追求,永无止境 (the endless pursuit of science) 。

图6 牛津大学James Binney 教授 | 笔者摄于2017年3月30日

另一位来自加州理工学院的 Peter Goldreich 教授也对我影响深远,他曾在行星形成、动力学以及脉冲星原理等方面都做出了杰出的贡献。午餐会时,他坦率地提及,科研往往会碰壁 (run into a brick wall) ,碰壁时也无需泄气,不过是换一个课题或改变一下研究方式,仅此而已。此后几十年漫漫科研路,我每每碰到困难时,不时忆起他的话,方能保持初心坚持至今。

我们的午餐会也曾邀请过牛津大学的 James Binney 教授,他撰写的《星系天文学》和《星系动力学》颇为流行,天文界几乎人手一册。James Binney教授知识面极广,午餐会时能够对每一个学生的工作做出详细评点。

后来,我应邀前往牛津去参加一位博士生的毕业答辩,再次与 James Binney 教授相遇。英国的博士毕业答辩 (viva) 委员会通常由一个校外考官和一个校内考官组成。答辩前,由每个教授各自撰写评语。答辩时,学生可以在5-10分钟内做一个简短的工作总结,重点是提问环节,教授可就论文中的任何内容提问,时间不限, (往往) 问到学生答不出来为止。答辩结束后,两位教授将一起撰写答辩和综合评语。

在英国,参加一位学生的博士论文答辩,从论文研读到评语撰写,往往需要花费很长的时间,报酬却很少,大约150英镑左右。相比而言,国内的答辩往往流于形式。但即便如此,还是有不少教授反映,英国的博士文凭含金量正在逐年下降。当时,我担任那位博士生的校外考官,而 James Binney 教授恰好是那场博士答辩的校内考官。

答辩时还发生了一个小插曲,当时我们正聊得高兴,他突然一拍脑袋,“糟了,我忘了穿学位袍 (academic gown) ”,立马带着我大步流星地前往他的Merton学院去取学位袍,总算是保证了答辩的合规有效。答辩时,他精力充沛,不停发问,三个小时后仍没有任何停止的迹象,我最后不得不打断他,算是解救了那位答辩的学生——Vaslily Belokurov,现已成为剑桥大学教授。

2017年3月末,James Binney 教授作为中科院的国际杰出学者,应邀访问了国内多所大学及研究机构。在受邀在清华大学作报告时,快到报告时间,才见他自远处大步流星的走来,与三十年前匆忙取学位袍的他殊无二致。

前些年,我在加州理工学院偶遇了 Jill Knapp 教授,她对我说,“讨论才是我们天文学家必须要做的事情 (all we astronomers do is talk) ”,令我颇为触动,毕竟,我们这些天文人都不是急功近利的商人,平生所愿不过是能留下一些可传于世,可表于书的工作,周围良好的学术气氛,专业互补的讨论至关重要。

但愿不久的未来, 大多数天文研究院所、机构都能敞开大门,以开放的胸襟让每一位访客都能感受到其由内而外散发出的浓郁学术气氛 ,虽然,这本应是一个科研单位永葆活力的根本,却也正是跻身世界一流的关键之所在!

附 录

让我们考虑一个恒星(见图),其质量为M, 半径为R,转动角频率为ω。在旋转坐标系下,处于恒星表面的粒子上将受到两个力:万有引力和离心力。为了保证脉冲星不被撕碎,则万有引力(F)必须大于离心力(F’):F=mGM/R2 F’=mω2R , ω=2π/T ,其中T为周期。据此,我们可得出 :

对于一个脉冲星,M 1.4太阳质量=2.8*1030kg,R 10km,则T 1ms。除非质量很大,或半径很小 (这需要比较特殊的状态方程),旋转周期很难小于1毫秒。

参考文献:

1.http://en.wikipedia.org/wiki/B2FH_paper

2.Martin Rees (皇家学会前会长), Richard Ellis, Max Pettini, Andy Fabian, Robert Kennicutt 和 Donald Lynden-Bell.

3.Murdin, P. 1990, Nature, 347, 511.

4.赛先生天文,“Bohdan Paczynski教授去世十周年祭”,毛淑德

5.“If Professor Russell falls asleep -- and he will undoubtedly fall asleep -- it doesn't mean that the seminar is bad; …” 摘自费曼 “Surely, you are Joking, Mr. Feynman”

6.http://

7.后来发现这是个误传,其实另一位著名天天物理学家,Donald Osterbrock 其实也在班上。

8.详见 ;他的研究领域涉及:恒星结构,星系动力学,辐射转移,等离子体物理,流体和磁流体不稳定性,椭球体的平衡态(ellipsoidal figures of equilibrium),黑洞的数学理论,还有下面提到的对牛顿的研究。

9.S. Chandrasekhar, “Newton's Principia for the Common Reader”

毛淑德

《知识分子》总编

毛淑德,教授,博士生导师,《知识分子》总编。1987年考取由李政道先生主持的CUSPEA项目,次年赴美,1992年获普林斯顿大学天体物理系博士学位,博士后期间供职于哈佛-史密松天体物理中心、马普天体物理所;2000年前往英国曼彻斯特大学,2006年升任教授。2010年回国。现为清华大学天文系主任,主要研究方向为星系动力学、系外行星搜寻、引力透镜以及暗物质研究。

有关天文学的论文,不需要太深的,要至少2000字,要80%为原创呦。

宇宙是有限的?镜像是无限的?

宇宙是有限的还是无限的?有没有中心?有没有边/有没有生老病死?有没有年龄?这些恐怕是自从有人类活动以来一直被关心的问题。宇宙学——它是从整体角度探讨宇宙结构与演化的天文学分支学科,其主要目的是利用已有的物理定律,或利用一些局部成立的定律,合情理地对宇宙作出推论。

早在20世纪以前就有有关宇宙的记载。西方有关宇宙的研究可以分为四各时期。第一个时期是启蒙时期,主要是远古时代有关宇宙的神话传说。第二个时期是从公元前6世纪到公元前1世纪以至到中世纪(15世纪)为止,那时地心学主宰宇宙学。第三个时期是从16~世纪到17世纪,16世纪哥白尼的日心学说,开始把宇宙学从神话中解放出来,到17世纪,牛顿开辟了了以力学方法研究宇宙学的新经验,形成了经典宇宙学。第四时期,18世纪到19世纪,把研究扩大到银河系和河外星系,为现代宇宙学的发展奠定了基础。作为世界上四大文明古国之一的中国,在天文学方面有着灿烂的历史在天象记载、天文仪器制作和宇宙理论方面都为我们留下了珍贵的记录。

现代宇宙学是从爱恩思坦1917年发表的论文《对广意相对论的宇宙学的考察》开始的,1922~1927年,原苏联数学家佛里得曼(A.Fredmann)、比利时科学家勒梅特(A.G.lemaitre)提出和发展了宇宙膨胀模型。1948年,邦迪(Bondi,H)、哥尔德(Gold,T)、霍伊尔(Huyle,F.)提出完善的宇宙学原理与稳恒的宇宙学原理模型。还有一些宇宙论研究者,把总星系的膨胀同万有引力常数G联系起来,1975年美国范佛兰登认为G正以每年百分之一的速度减少。有人提出了引力常数G的减少是总星系膨胀的原因。

哈勃膨胀、微波辐射、轻元素的合成以及宇宙的测量被认为是现代宇宙学的四大基石。今天的宇宙学研究更依赖于观测技术以及科学水平的提高。这些观测事实都支持了目前流行的大爆炸宇宙学的理论观点

现代宇宙学认为宇宙没有中心。现代宇宙模型中主要有五种模型:牛顿无限、静止宇宙模型、爱恩思坦静态模型、佛里得曼宇宙模型、稳恒态宇宙模型和大爆炸宇宙模型。

  美国数学家杰弗里·威克斯的最新宇宙模型令科学界震惊:一个大小有限、形状如同足球的镜子迷宫;宇宙之所以令人产生无边无界的“错觉”, 是因为这个有限空间通过“返转”效应无限重复映现自身。

  宇宙是有限的还是无限的?一个争论不休的古老问题。今天,根据天文观察资料和理论分析,多数天文学家都认定宇宙是无限的。

  日前,根据美国国家航空航天局(NASA)2001年发射升空的WMAP宇宙微波背景辐射探测器获得的资料,美国数学家杰弗里·威克斯推断,宇宙其实是有限的,相对说来其实并不大,大约只有70亿光年宽度,形状为五边形组成的12面体,有如足球。人们之所以感觉宇宙是无限的,是因为宇宙就像一个镜子迷宫,光线传过来又传过去,让人们发生错觉,误以为宇宙在无限伸展

彼得·诺尔的个人经历

1957年取得天文学博士学位。他将巴科斯范式导入ALGOL 60中,并进一步发展它。诺尔1928年生于丹麦首都哥本哈根近郊的弗雷德里克斯伯格(Frederiksberg),1949年在哥本哈根大学取得天文学硕士学位。1950~1951年,他在英国剑桥大学进修期间,用过由威尔克斯主持研制的世界上第一台存储程序式数字计算机EDSAC,学到了不少有关计算机和在计算机上编程的知识。但他的主要兴趣仍在天文学方面。1952—1953年他在芝加哥大学的Yerkes天文台和McDonald天文台当助理研究员期间,由于天文学研究中有大量计算,曾到IBM公司的沃森研究中心进修,这使他获得了更多的计算机知识。1953年回到丹麦以后,他到哥本哈根天文台工作。由于开展天文研究的需要,他受命设计了丹麦的第一台计算机DASK,同时也完成了他天文学研究的博士论文,1957年取得哥本哈根大学天文学博士学位。ALGOL 58报告公布以后,受到广泛关注,但它的不足和缺点也受到批评。1960年1月11日,在IBM(欧洲)的财政支持下,举行了一次重要的会议,对ALGOL 58进行修改。诺尔不但参加了这个会议,成为新的ALGOL(即ALGOL 60)文本的执笔人,而且对巴克斯提出的描述语言语法的方案进行了仔细审阅和修改,使之完善,从而诞生了BNF。1961年,诺尔在由他设计的DASK上实现了ALGOL。这是世界上首批ALGOL实现中的一个。虽然参与了这么多活动,做了这么多工作,也做出了这么大贡献,但诺尔在这段时间里仍主要关心天文学,计算机只是由于研究天文学的需要而介入的,直到约1964年左右,诺尔对计算与数据处理的兴趣才超出对天文学的兴趣而占了上风。1966年,他发明了一个新的单词——datalogy。丹麦的计算机学会的正式名称就叫Danish Society of Datalogy,他是这个学会的第一任主席。1969年,他说服哥本哈根大学建立起了计算机专业,他又是该校的第一位计算机教授。鉴于诺尔在数据处理技术方面为国家所作出的贡献,丹麦政府在1963年授予他C.A.Hagemanns金质奖章,1966年又授予他Rosenhjaer奖。IEEE则因他“对计算机语言开发”(For computer language development)所作出的贡献授予他计算机先驱奖。1986年计算机先驱奖获得者彼得·诺尔(Peter Naur)这个名字对于从事计算机科学技术的人来说是不陌生的,因为大家常用的描写高级语言语法的元语言BNF的全称是“巴克斯—诺尔范式”,这个范式是由巴克斯首创,但经诺尔改进而成的。但大家未见得知道,诺尔原本是天文学家,“阴差阳错”地走进了计算机领域并成为对计算机技术的发展起了重大作用的科学家。

这10大天文学突破,你知道几个?

科学的进步有两种方式:

第一种是知识和数据的日积月累。在天文学领域有很多这样的例子,比如精确地测量恒星的距离、质量、光度、温度和光谱就是一个漫长而艰苦的积累过程。

第二种是”突破“,我们对宇宙的认知在相对较短的时间内发生了戏剧性的变化,这些都是重大的范式转移。例如,在15世纪的时候,我们认为地球便是宇宙的中心。但到了17世纪,太阳成了宇宙的中心(尽管这个想法也没能维持多久)。

1

银河系是宇宙中唯一的星系吗?至少在100年前,这个答案是肯定的。但到了1923年, 哈勃 (Edwin Hubble)使用胡克望远镜发现了M31(仙女座星系)中的一颗 造父变星 ,一切都改变了。基于另一名天文学家 勒维特 (Henrietta Leavitt)的工作,哈勃得出了一个惊人的结论:M31距离我们90万光年,远在银河系之外!自此之后,我们才意识到原来银河系并非独一无二,宇宙中包含了大量的星系,这是天文学突破和范式转移的一个绝妙例子。今天的天文观测告诉我们,宇宙中的星系数量并不是几万、几十亿或几千亿,而是高达两万亿个!从一到万亿,这是多么巨大的变化啊!

2

爱因斯坦 曾一度认为,宇宙是静止的。但事实真的如此吗?

1929年,哈勃运用胡克望远镜共测量了46个星系的距离和速度。他将这些数据绘制成图像,结果显示:星系的退行速度与距离成正比,且斜率为500km/s/Mpc(这个值被称为哈勃常数)。换句话说, 哈勃发现了宇宙正在膨胀,而且距离地球越远的星系,远离我们的速度也就越快 !这是多么惊人的发现啊,而且一个膨胀的宇宙也暗示着在遥远的过去,宇宙有一个开端。

哈勃常数非常重要,它可以被用来计算宇宙的年龄。最初的估计偏离得有些离谱——宇宙的年龄比地球还要小!但随着技术的进步,宇宙学家得到了越来越精确的数值。现在,哈勃常数被确定在70km/s/Mpc左右,宇宙的年龄为138亿年。(事实上,在过去几年中,宇宙学家发现不同的测量方法得到的哈勃常数并不一致!详见:《宇宙学危机:无法统一的哈勃常数!》)

到了1998年,天文学家发现宇宙不仅在膨胀,而且是在加速膨胀,导致加速膨胀的幕后推手被称为” 暗能量 “,但没有人知道暗能量的真面目。

3

上个世纪初,我们对恒星的认识依然是非常匮乏的。当时,天文学家意识到恒星都很老,它们的年龄甚至超过了10亿年,在它们生命周期的大部分时间内都是非常明亮的。但天文学家并不知道,恒星为何能够产生如此巨大的能量。到了1905年,爱因斯坦的狭义相对论和 质能等价 理论(E = mc²)触发了一场革命。

爱丁顿 (Arthur Eddington)爵士是最早认识到恒星是全部由气体组成的人之一,他还意识到,恒星的稳定性是 向内的引力 与 向外的气体和辐射产生的压力 相抗衡的结果。爱丁顿据此推导出了恒星的 质量-光度关系 ,这对于理解恒星演化至关重要。

1926年,爱丁顿指出,太阳中心的气体密度是水的密度的100多倍,这个区域的温度超过10⁷开尔文。恒星内部的温度是如此之高,核反应的速率将达到不可忽略的程度。然而,到底是哪种形式的质量被摧毁并转化成能量呢?

在1920年, 阿斯顿 (Francis Aston)正在使用自己发明的质谱仪测量一些原子和同位素的质量。他发现,四个氢原子比一个氦原子要重。而其他科学家的发现表明氢和氦是组成恒星的主要成分。

将这些因素结合起来解决了恒星的能量生成问题,接下来必须有人确切地证明这个过程是如何进行的。这个人就是贝特(Hans Bethe)。1939年,贝特提出了 碳氮氧 (CNO)循环,之后他又提出了 质子-质子循环 。这些过程都极其缓慢,因而恒星会在主序阶段停留漫长的时间,缓慢且温和地将氢转化为氦。在此期间,它们的光度变化非常微弱。

恒星能量来源的机制最终引导天文学家从总体上解决了恒星演化问题,这个过程整整花了35年时间。

4

在恒星能量机制被搞清楚之前,天文学家意识到绝大多数恒星本质上只有两种类型,即所谓的” 矮星 “和” 巨星 “。

1911年, 赫茨普龙 (Ejnar Hertzsprung)绘制了恒星的视星等与光谱类型的关系,这些恒星来自昴星团与毕宿星团等疏散星团。1914年, 罗素 ( Henry Norris Russell)充分利用最新的视差数据,绘制了恒星的绝对星等与光谱类型的关系。赫茨普龙和罗素绘制的图表如今被称为赫茨普龙-罗素图,简称 赫罗图 。

赫茨普龙和罗素都发现存在两种主要的恒星类型:一种是更为常见的矮星,这些太阳大小的恒星占据了图表中的“主序带”,被称为主序星,主序星的光度大约与温度的6.7次方成正比;另一种是不那么常见的巨星,它们的绝对星等约为0。

随着时间的推移,更多的恒星类被添加进图表当中。一种是地球大小的黯淡的 白矮星 ,它们的绝对星等在10到14之间,光谱类型大约是B型和A型。另一种是更为罕见的 超巨星 ,它们是质量最大且最明亮的恒星,绝对星等在-5到-8之间。

5

在1900年的时候,人们普遍认为恒星与地球具有相同的组成。从1925年以来,天文学家开始意识到恒星主要由氢和氦组成,这显然是一个重大的范式转移。

佩恩 (Cecelia Payne)是这场科学变革的先锋。1925年,在她那篇著名的博士论文《恒星大气》中,佩恩运用了物理学家萨哈(Meghnad Saha)在1920年推导出的方程,将光谱线强度转换为原子数,并最终提出恒星主要由氢和氦这两种元素组成。

这个领域的第二个重大突破是认识到恒星主要有两种组成类型:富金属的第一星族和贫金属的第二星族。这是 巴德 (Walter Baade)在1943年发现的。

第三个突破是解释恒星为什么具有独特的化学组成,以及这种化学组成如何随时间变化。有两项成果推动了这个突破:第一项成果解释了宇宙大爆炸后氢氦混合物的初始比例为75% : 25%;第二项成果来自于伯比奇夫妇(Margaret Burbidge 和Geoffrey Burbidge)、 福勒 (William Fowler)和 霍伊尔 (Fred Hoyle)四人的工作,他们解释了将氢转化为氦的核合成过程,并扩展到了碳、氧、硅、硫、氩、钙直到铁等重元素的生成;随后这四位科学家还证明,超新星爆发时的快中子捕获过程创造了比铁重的元素,从而将恒星的组成进一步扩展到金、铂和铀等元素。

6

宇宙中有什么?太阳、行星、彗星、恒星、银河系……在上个世纪初,我们所知道就只有这些很普通的天体。但有没有可能存在一些更加极端的天体?有的。

当恒星耗尽自身的燃料时,就会出现奇异的天体。低质量的恒星会演化为地球大小的白矮星,白矮星依靠内部的 电子简并压 与 引力 相抗衡。1930年, 钱德拉塞卡 (Subrahmanyan Chandrasekhar)计算出了白矮星的质量不会超过1.4个太阳质量。一旦恒星的质量超过这个值,恒星就会进一步坍缩成为 中子星 。1933年,巴德和兹威基(Fritz Zwicky)预言许多中子星是超新星爆发的产物。到了1967年,伯奈尔(Jocelyn Bell-Burnell)通过射电望远镜探测到了第一颗脉冲星的信号(脉冲星是快速旋转的中子星)。最后,那些质量超过3个太阳质量的恒星将进一步坍缩形成最极端的天体—— 黑洞 。

还有一种奇异的存在是类星体。1963年,施密特(Maarten Schmidt)探测到了一个强烈的射电源——类星体3C 273,它的红移高达0.158,看起来就像是一个视星等为13的明亮恒星以16.6%的光速远离地球。最后天文学家发现,类星体实际上是星系中央的活动星系核,包含了一个超大质量黑洞,在黑洞的周围是一个 吸积盘 ,并且会释放出 相对论性喷流 。

除了类星体外,活动星系核包含了大量的子类,包括低电离星系核、塞弗特星系核、耀变体、射电星系等。

7

1964年, 彭齐亚斯 (Arno Penzias)和 威尔逊 (Robert Wilson)试图用喇叭型天线找到从通信卫星上反射回的射电波时,他们接收到了无法解释的一些噪音。当他们排除了一切可能性后(包括清理了鸟粪和移走了鸟巢),最终发现这是一些理论学家苦苦寻找的 宇宙微波背景 (CMB)——这是 大爆炸 遗留下的热辐射。

1949年,霍伊尔做客BBC的时候提到了”大爆炸“一词,用来描述宇宙有一个开端、且一直在膨胀的想法。当然,霍伊尔本身拥护的是另一个理论—— 稳恒态理论 。稳恒态理论曾是大爆炸理论的竞争理论,但当宇宙微波背景被发现后,它也因此失去了立场。

如今,随着望远镜的不断升级,科学家能够以更高的精确度测量宇宙微波背景,并可以从中计算出 宇宙的年龄、组成、膨胀率 等信息。

8

宇宙的大部分似乎都是由我们看不见的物质组成的,那些“发光”的可见物质只占总量的5%。早在1937年,兹威基就发现了一个奇怪的现象:他研究了后发星系团后发现,星系团中所包含的物质总质量是可见物质质量总和的400倍。

到了上世纪70年代, 鲁宾 (Vera Rubin)发现,在距离星系中心越远的地方,星系的旋转速度曲线并不会降低。而此前人们都认为,星系的大部分质量都集中在核心区域,星系中物体的旋转速度应该随着距离的增加而减慢,就像太阳系中那样,边缘物体的旋转速度比中心天体的慢一些。这个矛盾揭示出,星系中存在缺失的质量,这就是包裹着星系并延伸到星系边缘以外的 暗物质晕 。但直到今天,我们仍然不知道暗物质究竟是什么。

9

100年前,我们只知道一个行星系统——我们居住的太阳系。随着时间推移,一些天文学家认为,某些邻近恒星的轨迹的轻微摇摆暗示着,在它们周围应该也有行星的存在。

但直到20世纪末(更精确的说是9935天以前),天文学家才确认了第一颗太阳系以外的行星。自那之后,科学家通过不同的手段,确认发现了超过3700颗的系外行星。这些系外行星按照6种质量(大小)和3种温度被分类为18个类别。

除了研究这些系外行星的性质之外,科学家希望他们能够在这些不同的世界中找到生命可能存在的蛛丝马迹。

10

我们无法“看到”恒星的内部。我们对太阳光球层的视野可以延伸到大约500公里的深度,但相比于太阳大约70万公里的半径,我们仍然有很长的路要走。因此,恒星内部一直是理论天文物理学家才能涉足的领域。

但过去几十年里出现了两个突破。第一个来自对太阳中微子的探测。1930年,泡利(Wolfgang Pauli )首次预言了中微子的存在,但等待了25年的时间才被验证。这是因为中微子几乎不与物质作用,因此非常难以探测到。

在太阳和其他恒星内部的一系列核反应将氢转化为氦,同时产生中微子。每秒钟,有数万亿的中微子在穿过我们的身体,但我们却毫无察觉,这是非常令人震惊的事实。戴维斯(Raymond Davis Jr)是第一个敢于尝试证明太阳中微子存在物理学家,他在霍姆斯特克金矿中建造了一个巨大的中微子探测器。在长达30年的时间里,他成功的捕捉到了2000个太阳中微子,并因此证明了太阳的能量来源于聚变。

第二个突破来自于日震学,这是一门利用太阳表面声波和声震荡来研究太阳内部的物质特性和运动特征的学科,类似于从地球内部地震波的传播行为来推测地球内部结构。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页