秦岭
Tsinling Mountains
亦作Ch'in Ling或Qin Ling。
横贯中国中部的东西走向山脉。西起甘肃南部,经陕西南部到河南西部,为黄河支流渭河与长江支流嘉陵江、汉水的分水岭。甘肃境内的秦岭西段山势较低,山峰海拔2,000公尺(6,562呎)左右。丛山之间夹有成县、徽县、两当等盆地。嘉陵江上游以东的东秦岭山脉走向为正东西向,褶皱紧密,山体硕大,谷地窄小,山地平均高度2,000∼3,000公尺(6,562∼9,843呎)左右。主峰太白山海拔3,767公尺(12,359呎),为中国东部超过3,000公尺的少数山峰之一,山顶有古冰川遗迹。秦岭北邻渭河平原,其间有大断裂,为北仰南倾的断块构造。主脊偏居北侧,北坡陡而短,南坡缓而长。水系也不对称。
秦岭拥有如此得天独厚的生物资源,原因究竟在哪里呢?这要从秦岭独特的地理位置和鲜明的特点说起。在中国版图正中央,秦岭是自此向东最高的一座山脉,也是惟一呈东西走向的山脉。在地理学家眼里,秦岭是南方和北方的分界线、是长江黄河的分水岭;在动物学家眼里,秦岭将动物区系划分为古北界和东洋界,两类截然不同的动物在这里交会、融合;在气候学家眼里,秦岭是北亚热带和暖温带的过渡地带;在文学家眼里,秦岭和黄河并称为中华民族的父亲山、母亲河,秦岭还被尊为华夏文明的龙脉……
秦岭北部是渭河,黄河最大的一级支流;南部是汉江,长江最大的一级支流。中国大地上最大也是最重要的两条河流上最大的一级支流,夹裹着这样一座奇特的山脉。更确切地说,是这座博大精深的山脉养育出两条具有非凡意义的河流。
因为有秦岭的气候屏障和水源滋养,才会有八百里秦川的风调雨顺,才会有周、秦、汉、唐的绝代风华。中华民族最引以为骄傲的古代文明,确得益于这样一座朴实无华的由巨大花岗岩体构成的山脉。才会有十三朝帝都长安的繁华。美丽的汉中、安康、商洛就坐落在秦岭山中。
秦岭——淮河南北比较表
地区项目 秦岭——淮河以北 秦岭——淮河以南
纬度位置 32°N~34°N以北 32°N~34°N以南
主要地形 以平原为主 以丘陵为主
气候
一月平均气温 0℃以下 0℃以上
温度带 暖温带 亚热带
年降水量 400mm~800mm之间, 800mm以上,雨季长,降水多,
雨季短,降水少,集中于夏季。 降水季节变化较小。
干湿状况 半湿润地区 湿润地区
河流
流量 流量较小,季节变化大 流量丰富,季节变化小
含沙量 含沙量多 含沙量少
汛期 汛期短 汛期长
结冰期 冬季结冰 冬季不结冰
农业
耕地类型 以旱地为主 以水田为主
粮食作物 以小麦为主 以水稻为主
油料作物 以花生为主 以油菜为主
糖料作物 以甜菜为主 以甘蔗为主
耕作制度 二年三熟至一年两熟 一年二熟至一年三熟
秦岭淮河一线——我国的南北方分界线
我们应该明确秦岭淮河一线的走向,以及它作为我们南北分界线的重要条件是什么。知道这条分界线是哪些地理事物的分界线。
首先呢,它之所以成为我国的一条重要地理分界线,肯定是由于这条线两边的景观有差异的原因吧。景观有差异的因素很多,比如气温和降水,还有地形地势等因素。一般的来说,不同区域的差异往往是来自于气候造成的因素更多一些,比如南方降水多,北方降水少,东部临海地区降水多,内陆西部地区降水少等。不多说了,我们可以通过以上介绍来推断,这条线必定是气候的分界线了。由此,我们可以再通过气候的差别来了解秦岭和淮河分界线两边的气温、降水、干湿状况等方面的差异,以及此气候差异下的河流水文特点、农业状况、土壤植被等差异。
通过相关的地理图册可以知道,秦岭淮河一线是东西走向的,并且是一月份0度等温线和800毫米年等降水量线的通过地,再加上冬天的时候,秦岭能够阻挡寒潮南下,夏天又能阻挡潮湿的海风进入西北地区,导致这条线的南北地区在气候、河流、植被、土壤、农业等方面存在差异,所以也就理所当然成为我国东部地区重要的分界线了。
秦岭和淮河分界线所起到的重要分界作用有:
1、亚热带和暖温带的分界作用。
原因:我国一月份0度等温线穿过秦岭淮河一带,一月0度等温线以北的一月平均气温在0度以下,为暖温带。一月0度等温线以南一月的平均气温在0度以上,为亚热带。
2、 湿润地区和半湿润地区的分界线。
根据降水量的不同区分。
3、 河流情况有明显差异的分界线
根据两边河流是否有结冰期、汛期、流量大小、含沙量以及航运等差异得出。
4、 不同土壤和植被的分界线
根据两边植物的不同,如北方以针叶林、落叶阔叶林等为主,南方以常绿阔叶林为主。以及北方黑土为主,南方红土为主等特点得出。
5、 农业生产有差异的分界线
北方农业以旱地为主,一般是一年一熟或两熟,小麦玉米为主;南方水田为主,一年两熟或三熟,以水稻小麦为主等等差异。
秦岭国家植物园位于西安市周至县,距市中心76Km。总规划面积458Km2,其中中心区262Km2,规模为世界第一。秦岭国家植物园总投资概算为13.8亿元,一期工程投资5.3亿元。主要功能是科学研究、科学教育普及、生物多样性保护和生态旅游。
编辑本段【湖北美术学院副教授】
1953年生于青海,1982年毕业于上海师范学院艺术系,1986年进修结业于中央美术学院国画系。1991年至今为湖北美术学院中国画系教师。现为湖北美术学院副教授,中国画系副主任,硕士研究生导师,湖北美协中国画艺术会委员。国际造型艺术家协会会员。
1984年作品《故土情》参加“全国青年书画联展”。1984年作品《三姐妹》获青海省文艺作品优秀奖。1991年作品《龙羊之秋》获青海省建党70周年美展二等奖。1991年作品《故土沧桑》在“鲁艺杯”全国大奖赛中获优秀奖。1997年作品《秋染陇山》参加“全国第三届当代山水画展”。1997年作品《鄂西之春》参加在美国举办的“中国湖北名人绘画作品展”。1998年作品《秋水有声》参加“‘中国画研究院’98中国山水画展”。1998年作品《秋染积石峡》参加“湖北省第九届美术作品展获优秀奖。”2001年作品《江河源系列》参加中国百家扇面精品展。2001年作品《河湟岸上千古土》参加全国第四届当代山水画展并获“新世纪中国山水画200家”称号。2001年作品《昆仑月夜》参加中国美协主办的“江山行”画展。
作品参加“全国第一、三、四届当代中国山水画展” 、“中国百家扇面精品展”、“今日中国”美术大展、“全国第二届当代中国山水画 .油画风景展” 、 “首届中国写意画展”。 作品获“中亨杯”全国书画大展优秀奖、“鲁艺杯”全国大奖赛优秀奖。获“新世纪中国山水画200家”称号作品入选法国巴黎“五月沙龙艺术展”。
2004年一月至三月赴法国巴黎研修考察,同年十一月应以色列巴以伦大学邀请进行学术交流及考察。
作品发表于《美术观察》.《国画家》、《美术界》,《江苏画刊》、《荣宝斋》等并出版有“秦岭国画作品优选”画集。
编辑本段【中央美术学院壁画系副教授】
(1931.1—)北京通县人。擅长壁画、油画。1948年入北平国立艺专,1958年毕业于中央美术学院油画系,后留校任教。中央美术学院壁画系副教授。作品有《北平解放》、《大开发的前夜》、《花果山》等。��
编辑本段【中国管理科学院科技传播研究所教授】
本名袁清林。林陕西府谷人。中共党员。1967年毕业于北京工业学院化工系。历任解放军某部副班长、文书,团部报道员,中国科学院化学研究所班长、工程组长、技术员,中国科学院环境科学委员会工程师、院环境科学情报网领导小组副组长,中国科协中国科普创作研究所助理研究员,中国科协中国农村致富技术函授大学副校长、校务委员会委员、副教授及教材编委会副主编,中国农村科技杂志社社长、主编,副研究员,中国老科技工作者协会副秘书长,中国管理科学院科技传播研究所教授。著有长篇小说《冰山之角》、《人比黄花瘦》,散文集《大地在呼唤》,科普作品《中国环境保护史话》、《人类童年的牧歌》、《来自环境夏令营的报告》、《科普学引论》、书法作品《行草毛泽东诗词一百首》等。合作主编的“绿色家园丛书”获12届中国图书奖。
编辑本段【锦州市美术家协会会员】
秦领,1974年生,辽宁义县人。中学美术讲师。现任辽宁省雕塑协会理事,辽宁省美术家协会会员,辽宁省青年美术家协会会员,锦州市美术家协会会员。义县美术家协会副主席兼秘书长。 国家教育部颁发 “优秀指导教师”。2007年入编《义县志》1985-2005最高艺术成就。
青年油画家秦领1994年毕业于沈阳师范学院艺术分院美术专业。2001年毕业于鲁迅美术学院。
1995年创建“秦领美术工作室”。创作大中型油画/壁画/雕塑,正规辅导初、高中学生美术高考。
2000年受到国家教育部艺术教育委员会“优秀指导教师”称号的表彰。
2007年入编《义县志》文化艺术卷。(1985 — 2005年最高艺术成就)
油画作品《生活在并不象我想象的日子里》获全国教师绘画比赛二等奖。
油画《我的幸福生活充满了每一天吗?》、《左右为难的啤酒主义者》入选辽宁省美展。
雕塑《并不真实的世界》获省一等奖。
被收藏作品:巨幅山水画《险峰飞瀑》、中国画《生当作人杰》、油画《苍山如海》。
编辑本段【长春市自由蓝天协会会长】
秦岭,1986年生,吉林省长春市人。现任自由蓝天协会会长,立自由蓝天协会志于中国的软件发展行业。
编辑本段ws-9 秦岭发动机
2007年12月28日,凝聚着中国几代航空人心血与汗水的“秦岭”发动机通过生产定型,标志着我国航空发动机研制跨入一个新的阶段。
“秦岭”发动机由中国一航西安航空发动机(集团)公司主承制。它的生产定型是对研制企业生产过程、工艺流程、质量管理、基础管理及生产能力的一次大检阅,是我国航空发动机生产史上一次重大突破,必将为提高企业的核心竞争力,促进企业持续稳定发展创造更加有利的条件。“秦岭”发动机为中国“飞豹”战机装备了一颗强健的“中国心”,并成为国内批量装备部队的较大推力涡扇发动机,对于提高我军装备水平、促进航空发动机产业发展具有重大的推动作用。
中国的航空发动机工业一直是中国航空工业的软肋,当我们还在努力地吃透涡喷发动机技术的时候,世界航空发动机已经进入了涡扇时代。国家经过反复权衡,中国航空界决定上马涡扇发动机。这是一段艰难的历程,涡扇发动机的难度.复杂性远远超过涡喷发动机。工程费时费力,进展缓慢,从20世纪60年代一直拖到80年代。虽然也研制成功涡扇5、涡扇6等型号发动机,但因种种原因,终于未投入批生产。
发展航空工业,极为重要的一条,就是优先发展航空发动机工业。航空发动机是飞机的“心脏”,它的技术性能和结构关系飞机的战术技术性能、可靠性和经济性。各种类型的航空发动机都要在高温、高压、高转速、高负荷的苛刻条件下长时间地反复工作,同时还要求它重量轻、体积小、使用安全可靠.经济性好。
同时提出的多种性能要求和极端的工作条件,迫使各种型号的航空发动机必须设计精巧,加工精密,使用高性能的材料和成品附件。发动机综合了多学科和多种专业技术成果,技术难度大,研制周期长,耗资多。它当之无愧地代表了一个国家的工业和科技最高水平。环顾世界,也只有美、俄罗斯、英、法等少数工业发达国家。才能独立地研制和发展先进的航空发动机。
中国航空发动机的老师是前苏联。从技术角度讲,苏联的发动机在一些方面不如美国。它们通常体积较大,制造较粗糙,使用寿命较短,耗油率较高。中国仿制的航空发动机一些性能指标还低于前苏联。
20世纪60年代初,我国航空发动机对外引进中断,自行研制接续不上,造成现役的发动机性能日益落后。更由于“文化大革命”的破坏,不断发生等级事故,成千上万台发动机返厂排故,空、海军和援外飞机频频告急。1971年12月,周恩来总理彻夜召开航空产品质量座谈会,一语破的。他指出:空军的关键在飞机,飞机的关键在发动机,“心脏不好”,问题不解决,何以打仗,何以援外!并当场同意从英国罗一罗公司进口一批民用斯贝发动机。
从中国航空工业创建以来,西方先进的军用航空技术一直对我严密封锁。60年代,航空工业谋划测绘仿制民用斯贝,再改型为军用型,由于封锁禁运,未得进行。1972年,英国同意向我国单独出售民用斯贝发动机。1973年7月17日,英方又约见我驻英大使,表示以授权罗一罗公司,谈判向我出售军用斯贝发动机。8月2日,叶剑英副主席在听取有关汇报时,明确指出,英国同意向我卖军用斯贝技术,是好事情。我们主要是把技术买到手,同时要利用斯贝,突破英、美在军用技术方面对我们的封锁。在此前后,周总理、叶副主席、李先念副总理等多次听取汇报,多次做出批示、直接过问、决策引进斯贝发动机。1974 年“批林批孔'’运动中,江清一伙制造了“风庆轮事件”,“蜗牛事件”。引进斯贝一时也成了轰动的“政治问题”,被批判为“卖国主义”、“爬行哲学”。王洪文更是跳出来横加干涉,对不同意引进斯贝的信件批示“应当重视”。当时三机部的主要领导也向中央提出了《关于不买斯贝发动机的报告》。沧海横流,方显英雄本色。5月11日,叶副主席毅然批示:“我的意见,不可不买,不可多买”,“目的是引进国外技术,促进自己发展。”李先念副总理批示“我看对”,“两条腿走路比一条腿好”(指引进和自行研制)。1975年6月,他们又分别批示:“我同意引进新技术,加速我国飞机工业发展。”“这一件事情是我和剑英同志提议的……因英国的飞机发动机的制造和质量还是有可取之处的。”正是他们顶住“四人帮”的干扰和施压,以打破封锁,坚持引进先进技术。提高我国航空发动机发展起点的胆略和远见卓识,才使引进斯贝得以进行。
斯贝是英国著名发动机厂家罗尔斯一罗伊斯在20世纪60年代研制并生产的系列涡轮风扇发动机。其民用型斯贝MK511用于“三叉戟”客机,我国曾批量购买,质量好。从民用型发展的斯贝MK202军用型涡扇发动机,曾被用于换装英国购自美国的F-4“鬼怪”式战斗机。因其技术先进可靠,美国又引进英国斯贝技术,改型后用于A—7攻击机。斯贝MK202军用型发动机加力比大,耗油率较低,使用寿命长,压气机的喘振裕度大,各种工作状态下部件的效率高,工作可靠,装有抽气系统控制襟翼,可改善飞机的起飞着陆性能。
但它毕竟是60年代末的产品,也是第一代带加力燃烧室的涡扇发动机。存在这结构复杂,推重比较低,高空性能差等缺点。
1975年8月,中英双方进行实质性谈判,1975年12月13日,签订了中国引进英国斯贝发动机专利合同,合同金额5亿英镑。斯贝发动机,中国型号定名涡扇9,定点西安发动机厂试制生产。在试制生产中,国家给予了高度重视,王震副总理就曾3次到厂检查督促。航空部副部长莫文祥带队蹲点,陕西许多厂、所、大专院校多方协作。除使用进口原材料外,国家专门安排了金属材料、非金属材料、成品附件和大型锻件的国产国制化工作。对于有关技术改造和国产化等,国家;拨给了专项资金。做出了相应的部署。
西安航空发动机厂于1976年展开试制工作,全体职工全力以赴。先后完成了42万份技术资料的翻译复制。3万余项工艺装备的设计和制造,攻克了钛合金热成型技术等76项技术关键。
经过3年多的努力,1979年7月25日第一台使用英国毛料制造的零组件,罗尔斯一罗伊斯购件和附件的涡扇9完成装配。1979年下半年,分两批装出了4台发动机。同年11月1 3日,由中英双方共同在中国完成了150小时持久试车考核。1980年2月至5月,中国制造的两台涡扇9发动机和两套部件又在英国完成了高空模拟试车,零下40摄氏度条件下起动试车,以及5大部件的循环疲劳强度试验,结果都符合技术要求。1980年5月30日,中英双方代表签署了中国涡扇9发动机考核成功的文件。
按计划,当时应该接着进行国产毛料试制,但由于当时国民经济调整,使涡扇9国产化进度拖后,1983年才取得初步进展。压缩机叶片的铸造技术到1988年才得以突破。 国产涡扇9最大加力推力9305千克,最大军用推力5557千克,中间状态推力4692千克,最大连续推力4692千克,最大军用耗油率0.684千克/时,最大加力耗油率2。0千克/千克/时,推重比5.85,空气流量92.5千克/秒,涵道比0.62,总增压比20,涡轮前温度1167摄氏度,直径1093.32毫米,最大长度5205毫米(喷口全张开)。从数据来看,涡扇9的推力固然无法与AL-31等先进发动机相比。但以当时的技术水平已经相当不错了。尤其耗油率则远远优于当时国内的涡喷发动机,使得“飞豹”的航程得到了保证。但要真正实现全面的国产化还有相当长的路要走。由于斯贝发动机最终被选作“飞豹”的发动机,为配合“飞豹”的生产很快就将引进的40多台发动机耗尽,其中至少有2台发动机由于存放过久,保养不利而被废弃。同时由于无法实现完全的国产化,使得“飞豹”的生产也限于停顿之中。为保证歼“飞豹”的生产,我国被迫从英国引进了一批早已封存多年的斯贝涡扇发动机并试图与英国恢复合作制造。
在2003年7月17日,国产化涡扇9终于通过国产化工程技术鉴定,获准投入批量生产。实现全国产的涡扇9被命名为“秦岭”。于是乎,涡扇9发动机经过近30年奋斗。终于实现了国产化。 涡扇9发动机的制造成功,使中国有了一台推力适中的涡轮风扇发动机,填补了空白,并有效提高了自行研制的水平和能力。由于斯贝机结构复杂、叶片多、精密件多、薄壁焊接件多,复杂形状的管件多、难加工的材料多。涡扇9制造过程中引进了电解加工、电子束焊、实验室控制、检测和测量、精铸、精锻等70年代水平的新工艺、新技术。涡扇9零件和工艺装备的加工,精度普遍比国内原产机种高一级以上。通过试制,发动机厂掌握了金属喷涂、真空热处理、管子轨迹焊、真空钎焊、数控弯管、大型机匣电解加工等13项具有当时世界先进水平的先进技术。还有软阴阳模成型、蠕动磨削等46项达到国内最先进水平的工艺技术。同时,国内冶金、材料、化工、机械等工业的技术水平也相应得到了提高,从而较大幅度缩短了整个发动机制造技术与世界先进水平的差距。而且斯贝的引进还为航空工业迎接新时期的改革开放,引进国外先进技术,开展技术合作与交流,提高发动机及配套产品技术水平开了个好头。
还应提到,通过试制、改造和提升成功培育壮大了一个现代化航空发动机厂。西安发动机厂旧貌换新颜,添置了700多台国内外先进设备,自己制造了23台套。其中各型数控设备26台,在当时率先形成了从编程、调整、加工到检验的成套力量,精锻、精铸生产线的设备和工艺在国内也是一流的。
1981年起,陕西省国防科工委先后在军工系统和其他部门、行业的100多个单位。组织学习推广斯贝技术中的机械加工、热处理、无损探伤等42项新工艺、新技术。后来,国务院又指示在全国有组织、有计划、有步骤地推广和移植斯贝技术。前后召开了4次大型推广会议,组织了161场技术报告会。编印斯贝技术资料专辑12期,并为150个单位培养了2000余名推广应用斯贝技术的业务骨干。“斯贝技术”和“斯贝人”,促进许多单位解决了技术难题,促进了生产和科研,斯贝成了一所高技术学校。
反思历史,斯贝引进之后教训也是深刻的。斯贝引进之前,按规划由沈阳黎明航空发动机公司负责仿制,不料,反对引进最力的正是该厂职工,因为该厂当时正自行研制涡扇6型发动机。他们担心引进斯贝将冲击原有工作,于是到处陈情喊冤。航空主管部门在压力之下,被迫改派西安飞机工业公司承接任务,造成沈飞和西飞两公司各司其事,技术难以消化,最后谁也没搞成像样的发动机。
斯贝引进之后,配装的飞机又长期争论不休、举棋不定、延误了时机,致使当时属于先进的发动机空白了少年头,不再是第一流水平。而且按合同够入的40多台发动机,长期停放在仓库里,不只白白积压了大量资金。还耗资维护;国家花费10多亿元引进的设备、形成的技术力量,也因斯贝长期“嫁不出去”而未充分发挥作用。
从技术本身来说,当年中国从英国引进军用发动机,虽属不易,但终究未取得原始设计的计算资料。按合约,英国向中方转让生产斯贝的许可权和技术资料,提供全部的装配和零件图纸,工艺规程,以及各种技术规范和说明书与工装图纸,并派遣专家提供技术援助。但这一切,不包括英方发展该发动机过程中的设计经验,英方也不派遣任何一位发动机的设计专家到我国接受咨询。英方称之。可以卖产品,可以卖技术,就是不卖“脑袋”,原创设计之重要,可见一斑。而此原则,不会随中欧交往逐年密切而改变。斯贝国产化尽展缓慢;在消化、吸收的基础上,借鉴,创新虽做了一些工作。但不尽如人意。
事隔十余年后,斯贝的提供使用和国产化有了重大转折,这是久已企盼的。它成为了“飞豹”的动力。推动着祖国航空事业有向前迈进了一步。虽然时至今日,涡扇9终于完成国人制造,可这一过程却长达30年。在“飞豹”的服役过程中必然还要面临更换发动机的问题,继续的改进也需要发动机的支持。虽然涡扇9还有一定的改进潜力,可毕竟是以第一代涡扇发动机为蓝本设计的,所以更换发动机也就成了“飞豹”所必须面临的问题。
秦岭—巴山地区区域地质构造历史和特征
秦岭造山带变质地层研究获得丰硕成果
关于秦岭地质的研究
赵志丹
(中国科学院地球化学研究所,贵阳 550002)
高山 骆庭川 张本仁
(中国地质大学地球化学研究所,武汉 430074)
谢鸿森 郭捷 许祖鸣
(中国科学院地球化学研究所,贵阳 550002)
摘要 人们在世界上许多地区的中、下地壳发现了低速层,并从不同角度来解释它的成因。作者对采自秦岭和华北地区的138个样品进行了高温(达1500℃)和高压(达3GPa)条件下纵波速度的测定结果,探讨了岩石纵波速度的一般特征,并且发现了岩石纵波低速现象。通过对实验产物的矿物组成和结构等的综合研究表明,含水矿物(角闪石或黑云母)的脱水、相变和部分熔融导致岩石出现纵波低速现象。实验结果表明含水矿物脱水熔融可能是引起研究区或世界其他地区出现地壳低速层的重要机制。
关键词 地壳低速 层岩石纵波速度 脱水和相变 部分熔融 秦岭造山带 华北克拉通
1 引言
本世纪50年代以来,以地球物理为主的地壳深部探测和对地球深部物质的实验研究使我们对岩石圈,特别是大陆岩石圈不断加深了解。其中地壳低速层就是深部地球物理的重要发现之一,它分布在世界的许多地区,如阿尔卑斯、北美、西藏、华北和秦岭造山带等地区,而且其中的许多地区是具有高热流的构造或地震活动带[2,12,13,14,19]。
人们用多种方式来解释地壳低速层的成因。有人认为它是由流体、大规模的推覆体或韧性剪切带等引起的软层[8,9]。其他学者则从实验室中地壳矿物和岩石的成分及其物理化学性质出发,认为石墨、含盐流体、或者矿物脱水相变及岩石部分熔融导致了低速层的出现[2,4,8,9]。从已有的研究看,迄今尚无一种理想的模式完满解释地壳低速层的成因。本文测定了采自秦岭造山带及其邻区和华北克拉通的138个岩石样品高温高压下的纵波速度,探讨了实验结果并应用实验数据解释研究区内地壳低速层的成因。
2 样品和地质背景
研究区包括秦岭造山带及其邻区和华北克拉通(五台山和内蒙古)。系统采集样品的地质单元主要是前寒武纪基底和不同时代的侵入体,其变质程度包括榴辉岩相、麻粒岩相、角闪岩相和绿片岩相岩石,它们可以作为地壳主要岩类的代表(表1)。选取新鲜、肉眼见不到裂隙和无次生变化的岩石进行实验。每个实验样品还配套进行显微观察、密度测定和岩石化学分析。对实验产物还进行了镜下鉴定和电子探针分析。
表1 采集实验样品的地质单元
3 实验方法
实验是在中国科学院地球化学研究所地球深部物质实验室完成的。YJ-3000t六面顶静态超高压装置可以在给定的时间内(几分钟至100小时)在腔体内产生高达6.0GPa同时1600℃的温度和压力。实验样品为长33mm、直径12mm的圆柱体,叶蜡石粉压块作为传压介质。圆柱状的样品由3层不锈钢箔加热器包卷置于叶蜡石粉压块中。样品室的温度由已标定的功率—温度工作曲线得出。高温高压条件下样品的波速由弹性波发射和接收装置所获得的数值信号计算得出。实验和计算方法详见谢鸿森等[17]和Xu等[18]。
为模拟研究区地壳和上地幔的实际温度和压力条件,依据各构造单元的不同地温分布曲线给出的压力(P)和温度(T)的对应关系[7],在p、T同步增加的条件下,测出每个样品在一系列p(达3.0GPa)、T(达1500℃)值下的纵波波速Vp值。不锈钢箔加热器在温度上升达到其熔点后会熔断,因此每个样品的加温加压过程即以加热器熔断为终结,每个样品实验终结时的压力和温度各不相同,最高的分别可达3GPa和1500℃,普遍都超过了1000℃和1GPa。取地压增加梯度为0.03GPa/km,将压力p(GPa)换算成深度h(km),获得的大量数据表示于Vp—h图中。
4 岩石高温高压实验纵波速一般特征
图1给出了6个样品的Vp—h关系。各类岩石样品的Vp值随深度h增加表现出3段特征,在第一段0~10km深度范围内,Vp值快速增加,表明0.3GPa的压力已使岩石内部裂隙基本闭合。在第二段10~30km深度,Vp值仍随深度增加而增大,但增加的幅度减弱,几乎所有样品都在750~920℃和0.63~0.90GPa(相当于21~30km)范围内达到了最大值Vp.max,第2段的纵波波速特征(dVp/dh和Vp,max的大小)可以代表各类岩石样品的本质特性。第3段,即Vp值达到最大值Vp,max之后的变化呈现两种趋势,第1种是基本上随压力增大,Vp值恒定于Vp,max值附近;第2种是从Vp,max值开始逐渐下降,在1100~1200℃和0.99~1.50GPa(约33~50km),有54个样品显示了这类现象,占总数的1/3以上,我们将这种达到Vp,max值之后又下降的现象称为纵波低速现象。这种现象对解释地壳低速层的成因提供了重要的实验依据。
图1 部分实验样品的Vp—h图
1—大河群基性麻粒岩;2—秦岭群斜长角闪岩;3一秦岭群大理岩;4—甘沟石英闪长岩;5—宽坪群云母石英片岩;6—伏牛山花岗岩
5 出现纵波低速现象样品的特征
具有纵波低速现象的54个样品的特征总结在表2中,其中5个样品的Vp—h关系见图2。对实验产物进行了镜下观察和电子探针分析,以求发现导致纵波低速现象的原因。
表2 实验岩石纵波低速现象统计表
续表
① 岩石样品所达到的纵波最大值Vp,max及其对应的压力和温度;②岩石样品所达到的纵波最小值Vp,min及其对应的压力和温度;③岩石Vp值下降幅度,ΔVp=Vp,max—Vp,min;④岩石Vp值下降百分率,ΔVp=(△Vp/Vp,max)×100%。
54个出现纵波低速现象的样品,主要是斜长角闪岩、石英闪长岩、麻粒岩、辉长岩、大理岩、云母斜长片岩等。除大理岩等极少数样品外,绝大多数样品含有角闪石或黑云母。若从实验的138个样品来看,含有角闪石的各种岩类都出现了纵波低速现象。
图2 出现纵波低速现象的样品的Vp—h图
图例中的样号同表2中序号一致
绝大多数样品在750~920℃、0.63~0.90GPa(约21~30km)范围内达到最大值Vp,max,之后在1100~1200℃、0.99~1.50GPa(约33~50km)范围内降至最小值Vp,min。设下降幅度△Vp=Vp,max—Vp,min,则有7个样品的△Vp值超过1.0km/s(表2),它们是2个斜长角闪岩、2个变基性火山岩、1个辉长岩、1个麻粒岩和1个大理岩。从降低程度来看,Vp,min值比Vp,max值最多降低达到21%(样品号5和37)。三种主要类型岩石的特征描述如下:
含角闪石或黑云母的岩类:全部实验样品中,含有角闪石或黑云母的岩石样品都出现了纵波低速现象;我们可以看到在角闪石或黑云母的边部有熔融玻璃(例如18号样品)。熔融玻璃出现在角闪石(或黑云母)和浅色矿物(斜长石或石英)的边界上,并呈无色、棕色或淡黄色。熔融玻璃约占整个样品的5%~10%。电子探针结果发现了有的角闪石已脱水、相变形成了辉石(例如样品39)[20]。
大理岩:实验样品中的大理岩都出现了纵波低速现象。样品均由原来的浅色或无色变成了绿色或深绿色。有的样品出现了小气孔(小于1mm),这可能是其中的碳酸盐类矿物(方解石或白云石)释放出二氧化碳后的残余结构。镜下颗粒之间出现大量的黑色全消光物质,可能是碳酸盐类矿物相变的产物[20]。
花岗岩:图3是部分花岗岩的Vp—h关系,其中未发现纵波降低现象。花岗岩样品中不含角闪石或只含少量黑云母,实验产物中除了发现有大量裂隙外,无明显变化,而且未发现熔体。我们可以认为在花岗岩类样品中,由于无或只有少量的含水矿物,使得产物中没有出现脱水、相变或部分熔融。
以上讨论可以简单总结为,碳酸盐类矿物的去气作用和相变导致大理岩的纵波低速,并遗留了一些气孔;而在存在含水矿物的岩石中,纵波低速则是由脱水、相变和部分熔融引起的。
图3 部分花岗岩样品的Vp—h图
LZ1-3—二朗坪黑云母花岗岩;LZ2-3—满子营黑云母花岗岩;LH-6—老虎沟花岗岩;DL-2—黄陵花岗岩;EL-7—二里坝奥长花岗岩;WJ-1—王家会花岗岩
6 讨论
已有的大量研究结果表明,在室温条件下,岩石的Vp值随外加压力的增大而单调增加或基本恒定在某个值,而在恒压升温实验中,随着温度的增加而降低。因此外加温度无疑是导致岩石波速下降的根本原因[1,4,11]。
许多研究者解释了岩石波速随温度增加而降低的原因,Kern[10]在压力小于0.6GPa条件下实验证实矿物的颗粒边缘的裂隙会因热膨胀而张开;Christensen[1]则认为矿物颗粒边缘的孔隙在1GPa以上对波速的影响很小,即在地壳深处条件下,裂隙的作用不再是重要的。其他的实验结果支持矿物脱水和相变是引起岩石波速下降的重要原因,如石英岩或富硅质的岩石在接近石英α—β相转变的温度范围时岩石波速的急剧下降[10]。本文实验结果进一步证明在富含角闪石或黑云母的岩石中,脱水、相变和部分熔融可以导致整个岩石的波速降低。
本文的实验试图模拟地壳深部的温压状态,即在波速测定过程中,温度和压力同时上升,岩石样品在外加压力逐渐增大的过程中,矿物边缘的热膨胀引起裂隙张开已变得十分困难。138个样品的实验产物中都发现了存在不同规模的裂隙,不仅在出现低速现象的54个样品中,而且在没有出现低速现象的样品(如花岗岩)中裂隙似乎更多,因此裂隙似乎不是引起岩石波速下降的决定性因素。实验中出现低速现象的样品均为含有角闪石或黑云母的(大理岩除外),对实验产物电子探针分析结果表明已出现了角闪石—辉石相变。
脱水对熔融的发生起了促进作用。以本次实验的花岗岩为例,外加的温压条件已处于其液相线之上,但镜下鉴定未发现其产生部分熔融,也没有出现纵波低速现象。由此看来,或者外加水,或者岩石含有饱和水(水以OH-形式存在于含水矿物中)对岩石中熔融的发生有十分重要的作用。出现低速现象的样品除大理岩外,都有含水矿物(角闪石或黑云母),脱水早于部分熔融,并成为后者的先决条件。部分熔融的出现又进一步降低了岩石的波速。地壳中、下部产生部分熔融,或规模不等的岩浆房、岩浆层,从物理性质上也可满足低速高导层的条件。如东非裂谷(肯尼亚)、美国黄石公园等地的地震层析成像所探测到的地壳低速体就被认为是部分熔融物质[15]。
实验岩石的脱水作用的发生,以该岩石最大波速所对应的温压条件作为起始条件,对含角闪石的岩石来说,起始温压多集中在700~800℃、0.6~0.7GPa;降至波速最小值可能对应着矿物脱水程度最高和出现相当数量的部分熔融。
上述讨论表明,矿物脱水相变及由之诱发的部分熔融确实是岩石出现低速现象的原因,另据其他研究者的实验结果[5],矿物脱水相变、岩石部分熔融时其电导率明显增加,这样上述过程可以同时导致岩石低速和高导现象。
秦岭地区和华北内蒙古、五台山地区的中、下地壳物质组成和热状态同本文中出现低速现象的实验条件是可以类比的。研究区的中、下地壳以达到角闪岩相的岩石(如斜长角闪岩、变基性火山岩等)为重要的岩石类型,而且大量存在以角闪石为主的含水矿物[6,16]。已有研究成果揭示出,秦岭和华北地区均为高热流区。地温分布曲线显示[7],中、下地壳可以达到本次实验中角闪石脱水的起始温压条件(约700℃、0.6GPa)。至少有两种可能性存在,一种是部分中地壳本身发生了矿物脱水相变和少量部分熔融,形成低速高导层;另一种可能是类似Etheridge等[3]的研究结果,即矿物脱水相变和部分熔融发生于中地壳的底部或者下地壳,所产生的高温高压水或部分熔融物质上升至中地壳并被上覆的盖层圈闭引起了低速高导层。因此以角闪石为主的脱水相变或由之引起的岩石局部熔融是研究区内产生地壳低速层的重要原因之一。
7 结论
对54个实验样品的矿物组成和显微结构的研究表明,矿物脱水相变和由它诱发的部分熔融是岩石出现纵波低速现象的原因。矿物脱水相变或部分熔融是导致秦岭和华北地区,也可能是世界许多地区,存在地壳低速高导层的一个重要原因。
为同时解释低速和高导这两种性质的成因,在下一步工作中需要进行高温高压条件下岩石波速和电导率的综合测量,并进行多次平行实验和多次采集实验产物,以更好地限制实验中相变、熔融等发生的确切过程。
致谢 欧阳建平教授、胡以铿、张宏飞、许继峰副教授和周文戈博士提供部分样品,同刘庆生副教授进行了有益的讨论,邓晋福教授和F.Wenzel教授提供了热情帮助,作者表示感谢。
参考文献
[1]N.I.Christensen.Compressional wave velocities in rocks at high temperatures,critical thermal gradients,and crustal low-velocity zones,J.Geophys.Res.,1979,84(12),6849~6857.
[2]崔作舟,尹周勋,高恩元等.青藏高原速度结构和深部构造.北京:地质出版社,1993,60~72.
[3]M.A.Etheridge,V.J.Wall,S.F.Cox,et al..The role of the fluid phase during regional metamorphism and deformation.J.Metamorph.Geol.,1983.1,205~226.
[4]D.M.Fountain.The Ivrea-Verbano and Strona-Ceneri zones,northern Italy:A cross section of the continental crust——new evidence from seismic velocities of rock sample.Tectonophysics,1976,33,145~165.
[5]高平,刘若新,马宝林等.绿泥石片岩和斜长角闪岩在高温高压下的物理性质及其应用.地震地质,1994,16(1),83~88.
[6]S.Gao,B.R.Zhang,T.C.Luo,et al..Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze cratons.Geochim.Cosmochim.Acta,1992,56,3933~3950.
[7]高山,张本仁.秦岭造山带及其邻区岩石的放射性与岩石圈的现代热结构和热状态.地球化学,1993,3,241~245.
[8]R.D.Hyndman,L.L.Vanyan,G.Marquis,et al..The origin of electrically conductive lower continental crust:saline water orgraphite?Phys.Earth Planet.Int.,1993,81,325~344.
[9]姜本鸿,袁登维,吴玉华.壳内低速层与地震活动关系.地质科技情报,1992,11(4),9~21.
[10]H.Kern.The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks.Tectonophysics,1978,44,185~203.
[11]H.Kern and V.Schenk.A model of velocity structure beneath Calabria,southern Italy,based on laboratory data.Earth Planet.Sci.Lett.,1988,87.325~337.
[12]S.Mueller and M.Landisman.Seismic studies of the Earth's crust in continents,I,Evidence for a low velocity zone in the upper part of the lithosphere.Geophys.J.,1966,10,525~538.
[13]D.H.Shurbet and S.E.Cebull.Crustal low-velocity layer and regional extension in Basin and Range Province.Geo-logical Society of America Bulletin,1971,82(11),3241~3243.
[14]孙武城,李松林,罗力雷等.初论华北地区的地壳低速层.地震地质,1987,9(1),17~26.
[15]王学颖,高锐,邓晋福等.国际岩石圈计划(ICP)述评.见:项仁杰、史崇周、冯昭贤主编,地壳和上地幔研究(八十年代进展).北京:地震出版社,1991,14~24.
[16]吴宗絮,邓晋福,赵海玲等.华北大陆地壳—上地幔岩石学结构与演化.岩石矿物学杂志,1994,13(1),106~115.
[17]谢鸿森,张月明,徐惠刚等.高温高压下测量岩石矿物波速的新方法及其意义.中国科学(B辑),1993,23(8),861~864.
[18]J.A.Xu,Y.M.Zhang,W.Hou.H.G.Xu,J.Guo,Z.M.Wang,H.R.Zhao,R.J.Wang,E.Huang and H.S.Xie.Measurements of ultrosonic wave velocities at high temperature and high pressure for window glass,pyrophyllite,and kimberlite up to 1400℃ and 5.5GPa.High Temperatures-high Pressures,1994,26,375~384.
[19]袁学诚.秦岭造山带的深部构造与构造演化.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991,174~184.
[20]赵志丹.东秦岭河南伊川—湖北宜昌地学断面地球化学研究.中国地质大学(武汉)博士学位论文,1995.