猎户座星云是夜空中观测和拍摄最多的物体之一。在1350光年之外,它是离地球最近的活跃恒星形成区域。
这个弥漫星云也被称为M42,多年来天文学家一直在对它进行深入研究。从中,天文学家学到了很多关于恒星形成,行星系统形成,以及天文学和天体物理学中的其他基础课题。而现在有了一个新的发现,这与已有的理论背道而驰:新形成的大质量恒星的恒星风可能会阻止其他恒星在它们附近形成。它们在恒星形成和星系演化中的作用也比以前想象的要大得多。
猎户座星云很容易看到。如果你能看到猎户座,那你就可以不费吹灰之力就能看到星云了。根据你住的地方,你可以使用双筒望远镜或小型望远镜来观察它。通过望远镜看去,它看起来像一朵灰色的、稀薄的云。
但更强大的仪器揭示了星云内部的所有复杂性。这是恒星苗圃的一个很好的例子,在这个地方,年轻的恒星诞生在一个叫做分子云的气体云中。围绕在这些年轻恒星周围的是年轻的原行星盘,在 那里 像我们这样的行星可能正在形成。
当这些年轻的恒星诞生,并爆发融合,它们会释放出恒星风。这项新的研究表明,这种恒星风所起的作用比以前想象的要大。
这项研究发表在“自然”杂志上,由荷兰莱顿大学博士生科妮莉亚·帕布斯特(Cornelia Pabst)领导,她是这篇论文的主要作者。在这篇论文中,作者描述了新形成的恒星如何在一个称为“恒星反馈”的过程中抑制其他恒星的形成。
目前的想法是超新星可以主导恒星的形成过程。巨大的超新星爆炸通过分子云发出强大的冲击波,这就产生了密集的气体,这些气体随后就形成了恒星。虽然这仍然是事实,但看起来来自新恒星的恒星反馈也可能会影响这一过程。
这项研究是基于美国宇航局的平流层红外天文台(Stratospheric Observatory for Infrared Astronomy ,SOFIA,) 的工作。SOFIA是一架定做的波音747的飞行观测站。SOFIA上有一台名为“GREAT”的德国仪器,也就是德国太赫兹频率天文接收器。
猎户座星云中令人惊叹的、形状各异的气体云使它变得美丽,但也使我们很难看到它的内部。这张猎户座星云的照片是由哈勃望远镜拍摄的。
猎户座星云是一个天文上非常美丽的天体,但它的美丽让人很难看清。那些看起来如此短暂和美丽的气体云团对光线起到了奇怪的作用。天文学家可以更清晰地观察猎户座星云内部,并详细观察新形成的恒星Theta1 Orionis C(θ1 Ori C)。
他们发现,来自θ1 Ori C的恒星风在自身周围形成了一个气泡,基本上把所有的气体都吹走了,阻止了任何新恒星的形成。
帕布斯特解释说:“恒星风是在中心恒星周围吹起巨大气泡的罪魁祸首。它扰乱了诞生的云层,阻止了新星的诞生。”
因为SOFIA是从高空进行科学研究的,它的飞行高度超过了地球大气中99%的水蒸气。这一点,再加上“GREAT”仪器的灵敏度,使它能够更清楚的凝视着θ1 Ori C。论文背后的团队将大量数据与来自赫歇尔和斯皮策空间天文台的数据结合起来,以获得他们的结果。
他们能够确定产生气泡的气体的速度,并追踪其生长和起源。论文中的资深科学家,莱顿天文台的天文学家亚历山大·提伦斯(Alexander Tielens)解释说:“天文学家使用‘GREAT’仪器,就像警察使用雷达枪一样。雷达从你的车上弹出来,信号告诉警察你是否超速。”
这项研究的图表有助于解释这些发现。θ1 Ori C是猎户四边形星团(Trapezium Cluster)的成员。黑色箭头代表从恒星喷出的快速恒星风。黄色代表的是等离子体泡,它是被恒星风吹起的气体,形成了红色的面纱气泡。请注意,气泡并不是在所有方向上都在均匀地膨胀。蓝色的OMC-1区域是猎户座分子核一侧的稠密气体,密度太大,不能被年轻恒星的恒星风所塑造。
由于气泡与周围气体的相互作用,该过程称为“恒星反馈”。如上图所示,恒星风(黑色箭头)向所有方向离开恒星。但是当它击中图像右侧密集的OMC-1区域时,就会有其他年轻恒星的回击,在图中标记为BN/KL。这将创建红灰色箭头的垂直列,表示θ1 Ori C‘s和BN/KL气泡的组合气泡。
当这些恒星风相互反馈时,它们形成了星际介质(ISM)和附近的任何分子云。这就形成了鼓励或阻止更多恒星形成的局部区域。
泡沫本身是巨大的。这是一个直径4秒差距的半壳。在这个区域内,不可能形成恒星,因为所有的气体都被挤出了。但是在气泡的边缘,气体更加稠密。在那些密度较大的区域,恒星形成的可能性更大。这类似于来自超新星的冲击波产生密集气体区域的方式,这导致了恒星形成的增加。
来自猎户座星云中心这颗新形成的恒星的强风正在形成气泡(黑色),并阻止新恒星在其附近形成。同时,风将分子气体(彩色)推向边缘,在气泡周围形成一个致密的外壳,在那里可以形成后代的恒星。
θ1 Ori C的气泡在一个更大的气泡里,这个气泡被叫做猎户-波江超级气泡(Orion-Eridanus Superbubble),由重叠的超新星残余物组成。最终,小气泡将爆发并将其气体释放到超级气泡中。在数百万年后,另一颗超新星将爆炸,并将θ1 Ori C泡泡中的物质带入超泡壁。构成超级气泡边缘的气体壁将会变得更加致密,并可能导致更多的恒星形成。因此,虽然看起来超新星在恒星形成中扮演了更直接的角色,但年轻恒星的气泡已经扮演了它的角色。
正如论文的结论所说,“来自O型大质量恒星的恒星风在破坏分子核和恒星形成方面是非常有效的。由于恒星风的能量输入是由星团中质量最大的恒星控制的,而超新星的能量输入是由更多的B型恒星控制的,因此恒星风造成的中断的优势对宇宙学模拟有直接的影响。”
这只是恒星反馈过程的一个例子。正如论文所说,“我们在这里分析了一个特定的案例,即大质量恒星的风与其环境的相互作用。这个的结论是否更普遍适用仍需要进行评估。”
研究银河系演化的天文学家长期以来一直难以理解,是什么导致大质量星系中恒星形成关闭的原因。尽管提出了许多理论来解释此过程,称为“淬灭”,但对于令人满意的模型仍未达成共识。
现在,由加州大学圣克鲁斯分校天文学和天体物理学名誉教授桑德拉·法伯(Sandra Faber)领导的国际团队提出了一种新模型,该模型成功地解释了关于星系结构、超大质量黑洞和恒星形成淬灭的各种观测结果。研究人员在7月1日发表在《天体物理学杂志》上的论文中介绍了他们的发现。
该模型支持有关淬灭的主要思想之一,其归因于黑洞“反馈”,即当物质落入黑洞并促进其生长时,能量从中央超大质量黑洞释放到星系及其周围环境中。这种高能反馈会加热、喷射或破坏银河系的气体供应,从而防止气体从银河系的晕圈中坠落而形成恒星。
“这个想法是在形成恒星的星系中,中央黑洞就像一个寄生虫,最终会生长并杀死宿主。” 法伯解释说,“以前已经说过了,但是我们还没有明确的规则来说明黑洞何时足够大以阻止其宿主星系中恒星的形成,现在我们有了定量的规则,这些规则实际上可以解释我们的观测结果。”
基本思想涉及星系中恒星的质量(恒星质量)、恒星的扩散程度(星系的半径)与中心黑洞质量之间的关系。对于具有给定恒星质量的恒星形成星系,星系中心的恒星密度与星系半径相关,因此半径较大的星系的中心恒星密度较低。假设中心黑洞的质量与中心恒星的密度成比例,则半径较大(在给定的恒星质量下)的恒星形成星系的黑洞质量将较低。
法伯解释说,这意味着较大的星系(对于给定的恒星质量,半径较大的星系)必须进一步演化并建立较高的恒星质量,才能使它们的中心黑洞变大到足以淬灭恒星的形成。因此,小半径星系的质量比大半径星系的质量低。
“这是新的见解,如果半径较大的星系在给定的恒星质量下具有较小的黑洞,并且如果黑洞反馈对于淬灭很重要,则大半径的星系必须进一步发展。”法伯说,“如果将所有这些假设放在一起,那么令人惊讶的是,您可以重现星系结构特性中观察到的大量趋势。”
例如,这可以解释为什么更大质量的淬灭星系具有更高的中心恒星密度、更大的半径和更大的中心黑洞。
基于该模型,研究人员得出结论,当黑洞发出的总能量约为银河系晕轮中气体的引力结合能的四倍时,淬灭就开始了。结合能是指将气体保持在包围星系的暗物质晕圈中的引力。当黑洞发出的总能量是银晕中气体的结合能的二十倍时,淬灭就完成了。
法伯强调,该模型尚未详细解释恒星形成淬灭涉及的物理机制。“这个简单的理论引发的关键物理过程尚未得到了解。”她说,“不过,这样做的好处是,对过程中的每个步骤都有简单的规则会挑战理论家提出能解释每个步骤的物理机制。”
天文学家习惯于以图表的方式思考,这些图表绘制了星系不同性质之间的关系,并显示了它们随着时间的变化。这些图揭示了恒星形成和淬灭星系之间结构上的巨大差异以及它们之间的尖锐边界。由于恒星的形成会在色谱的蓝色端发出大量光,因此天文学家将其称为“蓝色”恒星形成星系,“红色”静态星系和“绿色山谷”。星系处于哪个阶段由其恒星形成速率揭示。
该研究的结论之一是,随着星系从一个阶段发展到另一个阶段,黑洞的生长速率必须发生变化。观测证据表明,当星系开始淬灭时,大多数黑洞生长都发生在绿色山谷中。
“正当恒星形成减慢时,黑洞似乎已经释放了。”法伯说,“这是一个启示,因为它解释了为什么恒星形成星系中的黑洞质量遵循一个缩放定律,而淬灭星系中的黑洞遵循另一个缩放定律。如果在绿谷中黑洞质量快速增长,这是有道理的。”
法伯和她的合作者多年来一直在讨论这些问题。自2010年以来,法伯共同领导了一项重要的哈勃太空望远镜星系调查计划(CANDELS),该调查产生了本研究中使用的数据。在分析CANDELS数据时,她与由UCSC物理学名誉教授乔尔·普里马克(Joel Primack)领导的团队紧密合作,该团队开发了关于形成星系的暗物质光环演化的Bolshoi宇宙论模拟。这些光晕提供了支撑,在该支撑上,该理论建立了淬灭之前星系演化的早期恒星形成阶段。
本文的中心思想来自对CANDELS数据的分析,大约在四年前首次出现在法伯眼前。 “这些数据突如其来,我意识到,如果我们把所有这些东西放在一起——如果星系的半径与质量的轨迹很简单,以及黑洞能量是否需要克服晕轮束缚能的话——它可以解释星系结构图中所有这些倾斜的边界,”她说。
当时,法伯经常去中国旅行,在那里她参与了研究合作和其他活动。她曾是上海师范大学的客座教授,在那里遇到了第一作者zhuchen。Chen于2017年作为客座研究员来到加州大学圣克鲁斯分校,并开始与法伯合作以发展有关银河系猝灭的想法。
法伯说:“她在数学上非常好,比我更好,并且她完成了本文的所有计算。”
费伯还称赞她与UCSC天文学和天体物理学名誉教授的长期合作者大卫·古(David Koo)首先将注意力集中在星系的中心密度上,这是中心黑洞生长的关键。
这个新模型解释的难题之一是我们的银河星系与其非常相似的邻居仙女座星系之间的显着差异。“银河系和仙女座的恒星质量几乎相同,但仙女座的黑洞几乎是银河系的50倍。” 法伯说,“在绿色山谷中黑洞大量增加的想法在很大程度上解释了这一谜团。银河系刚刚进入绿色山谷,其黑洞仍然很小,而仙女座刚刚退出,所以它的黑洞 比银河系大得多,而且也比银河系更具淬灭性。”
浅论天文
天文学历史
天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。
古时候,人们通过用肉眼观察太阳、月亮、星星来确定时间和方向,制定历法,指导农业生产,这是天体测量学最早的开端。早期天文学的内容就其本质来说就是天体测量学。从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。
十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。
二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。
天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。
人类很早以前就想到太空畅游一番了。1903年人类在地球上开设了第一家月亮公园。花50美分就能登上一个雪茄状、带翼的车,然后车身剧烈摇晃,最后登上一个月亮模型。
同一年,莱特兄弟在空中哒哒作响地飞行了59秒,同时一位名为康斯坦丁·焦乌科夫斯基、自学成才的俄罗斯人发表了题为《利用反作用仪器进行太空探索》的文章。他在文内演算,一枚导弹要克服地球引力就必须以1.8万英里的时速飞行。他还建议建造一枚液体驱动的多级火箭。
50年代,有一个公认的基本思想是,哪个国家第一个成功地建立永久性宇宙空间站,它迟早就能控制整个地球。冯·布劳恩向美国人描述了洲际导弹、潜艇导弹、太空镜和可能的登月旅行。他曾设想建立一个经常载人的、并能发射核导弹的宇宙空间站。他说:“如果考虑到空间站在地球上所有有人居住的地区上空飞行,那么人们就能认识到,这种核战争技术会使卫星制造者在战争中处于绝对优势地位。
1961年,加加林成为进入太空的第一人。俄国人用他说明,在天上飞来飞去的并不是天使,也不是上帝。美国约翰·肯尼迪竞选的口号是“新边疆”。他解释说:“我们又一次生活在一个充满发现的时代。宇宙空间是我们无法估量的新边疆。”对肯尼迪来说,苏联人首先进入宇宙空间是“多年来美国经历的最惨痛的失败”。唯一的出路是以攻为守。1958年美国成立了国家航空航天局,并于同年发射了第一颗卫星“探险者”号。1962年约翰·格伦成为进入地球轨道的第一位美国人。
许多科学家本来就对危险的载人太空飞行表示怀疑,他们更愿意用飞行器来探测太阳系。
而美国人当时实现了突破:三名宇航员乘“阿波罗号”飞船绕月球飞行。在这种背景下,计划在1969年1月实现的两艘载人飞船的首次对接具有特殊的意义。
20世纪的80年代,苏联的第三代空间站“和平”号轨道站使其航天活动达到高峰,都让美国人感到眼热。“和平”号被誉为“人造天宫”,1986年2月20日发射上天,是迄今人类在近地空间能够长期运行的唯一载人空间轨道站。它与其相对接的“量子1号”、“量子2号”、“晶体”舱、“光谱”舱、“自然”舱等舱室形成一个重达140吨、工作容积400立方米的庞大空间轨道联合体。在这一“太空小工厂”相继考察的俄罗斯和外国宇航员有106名,进行的科考项目多达2.2万个,重点项目600个。
在“和平”号进行的最吸引人的实验是延长人在太空的逗留时间。延长人在空间的逗留时间是人类飞出自己的摇篮地球、迈向火星等天体最为关键的一步,要解决这一难题需克服失重、宇宙辐射及人在太空所产生的心理障碍等。俄宇航员在这方面取得重大进展,其中宇航员波利亚科夫在“和平”号上创造了单次连续飞行438天的纪录,这不能不被视为20世纪航天史上的一项重要成果。在轨道站上进行了诸如培养鹌鹑、蝾螈和种植小麦等大量的生命科学实验。
如果将和平号空间站看作人类的第三代空间站,国际空间站则属于第四代空间站了。国际空间站工程耗资600多亿美元,是人类迄今为止规模最大的载人航天工程。它从最初的构想和最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面折射出历史的一段进程。
国际空间站计划的实施分3个阶段进行。第一阶段是从1994年开始的准备阶段,现已完成。这期间,美俄主要进行了一系列联合载人航天活动。美国航天飞机与俄罗斯“和平”号轨道站8次对接与共同飞行,训练了美国宇航员在空间站上生活和工作的能力;第二阶段从1998年11月开始:俄罗斯使用“质子-K”火箭把空间站主舱——功能货物舱送入了轨道。它还担负着一些军事实验任务,因此该舱只允许美国宇航员使用。实验舱的发射和对接的完成,将标志着第二阶段的结束,那时空间站已初具规模,可供3名宇航员长期居住;第三阶段则是要把美国的居住舱、欧洲航天局和日本制造的实验舱和加拿大的移动服务系统等送上太空。当这些舱室与空间站对接后,则标志着国际空间站装配最终完成,这时站上的宇航员可增至7人。
美、俄等15国联手建造国际空间站,预示着一个各国共同探索和和平开发宇宙空间的时代即将到来。不过,几十年来载人航天活动的成果还远未满足他们对太空的渴求。“路漫漫其休远兮,吾将上下而求索”,人类一直都心怀征服太空的欲望和和平利用太空资源的决心。1998年11月,人类第一个进入地球轨道的美国宇航员、77岁的老格伦带着他未泯的雄心再次踏上了太空征程,这似乎在告诉人类:照此下去,征服太空不是梦。
[编辑本段]天文学概况
天文和气象不同,它的研究对象是地球大气层外各类天体的性质和天体上发生的各种现象——天象,而气象研究的对象是地球大气层内发生的各种现象——气象。
天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。
宇宙中的天体由近及远可分为几个层次:(1)太阳系天体:包括太阳、行星(包括地球)、行星的卫星(包括月球)、小行星、彗星、流星体及行星际介质等。(2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。(3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。
天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。天文学按照研究的内容还可分为天体测量学、天体力学和天体物理学三门分支学科。
天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。天文学家也将密切关注灾难性天文事件——如彗星与地球可能发生的相撞,及时作出预防,并作出相应的对策。
[编辑本段]太阳系
(注:在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八大行星。文中所有涉及“九大行星”的都已改为“八大行星”。)
太阳系(solar system)是由太阳、8颗大行星、66颗卫星以及无数的小行星、彗星及陨星组成的。
行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)和海王星(neptune)。
离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(大于3.0克/立方厘米)、体积小、自转慢、卫星少、主要由石质和铁质构成、内部成分主要为硅酸盐(silicate)并且具有固体外壳。
离太阳较远的木星、土星、天王星及海王星称为类木行星(jovian planets)。宇宙飞船也都对它们进行了探测,但未曾着陆。它们都有很厚的大气圈、主要由氢、氦、冰、甲烷、氨等构成、质量和半径均远大于地球,但密度却较低,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。
在火星与木星之间有100000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。
星,距离(AU),半径(地球),质量(地球),轨道倾角(度),轨道偏心率,倾斜度,密度(g/cm3)
太 阳,0 ,109 ,332,800 ,--- ,--- ,--- ,1.410
水 星 ,0.39 ,0.38 ,0.05 ,7 ,0.2056 ,0.1° ,5.43
金 星 ,0.72 ,0.95 ,0.89 ,3.394 ,0.0068 ,177.4° ,5.25
地 球 ,1.0 ,1.00 ,1.00, 0.000 ,0.0167 ,23.45° ,5.52
火 星 ,1.5, 0.53, 0.11 ,1.850 ,0.0934, 25.19° ,3.95
木 星 ,5.2 ,11.0 ,318 ,1.308 ,0.0483 ,3.12° ,1.33
土 星 ,9.5, 9.5 ,95 ,2.488 ,0.0560 ,26.73° ,0.69
天王星 ,19.2, 4.0 ,17 ,0.774 ,0.0461 ,97.86° ,1.29
海王星 ,30.1 ,3.9 ,17 ,1.774 ,0.0097 ,29.56° ,1.64
行星离太阳的距离具有规律性,即从离太阳由近到远计算,行星到太阳的距离(用a表示)a=0.4+0.3*2n-2(天文单位)其中n表示由近到远第n个行星(详见上表) 地球、火星、木星、土星、天王星、海王星的自转周期为12小时到一天左右,但水星、金星自转周期很长,分别为58.65天和243天,多数行星的自转方向和公转方向相同,但金星则相反。 除了水星和金星,其它行星都有卫星绕转,构成卫星系。
在太阳系中,现已发现1600多颗彗星,大致一半彗星是朝同一方向绕太阳公转,另一半逆向公转的。彗星绕太阳运行中呈现奇特的形状变化。 太阳系中还有数量众多的大小流星体,有些流星体是成群的,这些流星群是彗星瓦解的产物。大流星体降落到地面成为陨石。 太阳系是银河系的极微小部分,太阳只是银河系中上千亿个恒星中的一个,它离银河系中心约8.5千秒差距,即不到3万光年。太阳带着整个太阳系绕银河系中心转动。可见,太阳系不在宇宙中心,也不在银河系中心。 太阳是50亿年前由星际云瓦解后的一团小云塌缩而成的,它的寿命约为100亿年。
[编辑本段]宇宙航天
宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。
大爆炸理论
(big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实:
(1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明了这一点。
(2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。
(3)在各种不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。
(4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。
太阳黑子的数量通常在一个可预测的11年周期中起伏,但是有一个不寻常的70年时期,太阳黑子极其罕见,300年来一直让科学家们感到困惑。根据宾夕法尼亚州立大学的一个研究小组,现在附近的一颗类似太阳的恒星似乎已经暂停了它自己的周期,并进入了一个类似的罕见恒星黑子的时期。 继续观察这颗恒星可以帮助解释我们自己的太阳在这个“蒙德极小期”(Maunder minimum)期间发生了什么,并使人们深入了解太阳的恒星磁力活动 ,它可以干扰卫星和全球通信,甚至可能影响地球的气候。
这颗恒星--以及其他58颗类似太阳的恒星的50年的恒星黑子活动目录--在《天文学杂志》在线发表的一篇新论文中得到了描述。
由于恒星“发电机”(产生磁场的过程)导致该区域的温度暂时降低,因此恒星黑子在恒星表面显示为一个黑点。自从伽利略和其他天文学家在16世纪首次观察到星斑以来,天文学家一直在记录我们太阳上的黑子频率变化,因此有一个关于其11年周期的良好记录。例外的是“蒙德极小期”,它从16世纪中期持续到17世纪初,从那时起就一直让天文学家感到困惑。
“我们并不真正知道是什么导致了蒙德极小期,我们一直在寻找其他类似太阳的恒星,看看它们是否能提供一些启示,”该论文的第一作者Anna Baum说。“我们已经确定了一颗恒星,我们认为它已经进入了类似于蒙德极小期的状态。在这个极小期期间,并希望在它走出这个极小期时,继续观察这颗恒星将是非常令人兴奋的,这可能对300年前的太阳活动有极大的参考价值。”
研究小组从多个来源获取数据,将59颗恒星的50至60年的恒星黑子数据拼接在一起。这包括来自威尔逊山天文台香港项目的数据--该项目旨在研究恒星表面活动,从1966年到1996年--以及来自凯克天文台的行星搜索,其中包括此类数据,作为他们从1996年到2020年持续搜索系外行星的一部分。研究人员汇编了一个数据库,其中包括出现在这两个来源中的恒星,以及其他可能有助于解释恒星黑子活动的现成信息。该小组还做出了相当大的努力来规范来自不同望远镜的测量,以便能够直接进行比较,并在其他方面对数据进行清理。
研究小组通过观察至少两个完整的周期,确定或确认其中29颗恒星有恒星黑子周期,这些周期往往持续十年以上。一些恒星似乎根本就没有周期,这可能是因为它们的旋转速度太慢而没有“发电机”,或者是因为它们的生命接近尾声。其中有几颗恒星需要进一步研究,以确认它们是否有一个周期。
宾夕法尼亚州立大学天文学和天体物理学教授、论文作者Jason Wright说:“这种连续的、超过50年的时间序列使我们能够看到一些我们以前从10年的快照中从未注意到的东西。令人激动的是,Anna发现了一颗有希望的恒星,它在几十年里一直在循环,但似乎已经停止了。”
根据研究人员的说法,这颗恒星--被称为HD 166620--估计有一个大约17年的周期,但现在已经进入了一个低活动期,并且自2003年以来没有显示出恒星黑子的迹象。
“当我们第一次看到这个数据时,我们认为这一定是个错误,我们把两颗不同的恒星的数据放在一起,或者目录中有一个错字,或者恒星被错误地识别了,”Jacob Luhn说,他在项目开始时是宾夕法尼亚州立大学的研究生,现在在加州大学欧文分校。“但是我们对所有的东西都进行了双重和三重的检查。观察的时间与我们预期的恒星的坐标是一致的。而且,威尔逊山观测到的天空中并没有那么多明亮的星星。无论我们检查多少次,我们总是得出这样的结论:这颗恒星只是停止了循环。”
研究人员希望在这颗恒星的整个极小期继续研究,并有可能在它走出极小期并再次开始循环时进行研究。这种持续的观察可以提供关于太阳和像它一样的恒星如何产生其磁动力的重要信息。
Baum说:“关于什么是蒙德极小期有很大的争论,”她现在是利哈伊大学的博士生,研究恒星天文学和小行星学。“太阳的磁场是否基本上关闭了?它失去了它的动力装置吗?还是它仍然在循环,但处于一个非常低的水平,没有产生很多太阳黑子?我们无法回到过去测量当时的情况,但是如果我们能够确定这颗恒星的磁结构和磁场强度的特征,我们可能开始得到一些答案。”
对太阳表面活动和磁场的更好理解可能会有几个重要的影响。例如,强烈的恒星活动可以使卫星和全球通信失效,1989年有一次特别强烈的太阳风暴使魁北克省的电网失效。还有人认为,太阳黑子周期可能与地球上的气候有联系。此外,研究人员说,来自这颗恒星的信息可能会影响我们对太阳系以外的行星的搜索。
加州大学伯克利分校的研究科学家、该论文的作者Howard Isaacson说:“恒星黑子和其他形式的恒星表面磁性活动干扰了我们探测其周围行星的能力。提高我们对恒星磁力活动的理解可能有助于我们改进我们的探测工作。”
这项研究中的59颗恒星及其恒星黑子活动的策划数据库已经提供给研究人员进一步调查。
Wright说:“这项研究是跨代天文学的一个很好的例子,我们如何通过在我们之前的天文学家的许多观察和专门研究的基础上继续提高我们对宇宙的理解。当我还是研究生的时候,我研究了来自威尔逊山和凯克天文台的恒星黑子数据,Howard 在他的硕士论文中研究了来自加利福尼亚行星调查的恒星黑子数据,而现在Anna将所有的数据拼接在一起,以便更全面地观察这些年的情况。我们都很高兴继续研究这个和其他恒星。”
恒星核聚变研究的历程:在1920年,亚瑟·爱丁顿,以弗朗西斯·阿斯顿对原子的精确测量为基础,首度建议恒星的能量来自于将氢融合成氦的核融合反应。
在1928年,乔治·伽莫夫推导出现在称为伽莫夫因子-两个核子接近到足够的距离时强作用力可以克服库伦障壁机率的量子力学模式。伽莫夫因子被罗伯特·阿特金森(Robert d'Escourt Atkinson)和弗里茨·豪特曼斯(Fritz Houtermans)使用了十年之后,伽莫夫和爱德华·泰勒推导出核反应进行的过程和速率,并相信恒星内部存在着极高的温度。在1939年,在一篇名为《恒星能量的产生》的论文中,汉斯·贝特分析了氢融合成氦的可能过程,他选择了两种认为可能发生在恒星内产生能源的过程。第一种是质子-质子链反应,是质量像太阳这样的恒星产生能源的主要过程;第二种是碳氮氧循环,被认为是卡尔·弗里德里希·冯·魏茨泽克(Carl Friedrich von Weizsäcker)在1938年曾提出的,是质量更大恒星的主要能源;这些反应产生的能量能持续维持恒星内部的高热。它们没有谈到如何创造更重的元素,但是霍伊尔在1946年提出了相关的理论,他的论点认为相当热的恒星最终可以创造出铁元素。霍伊尔继续在1954年以巨著导出进阶的融合步骤,指出恒星如何合成从碳至铁的元素。很快的,很多重要的细节被加入霍伊尔的理论中。1957年,从一篇庆祝性的论文开始,霍伊尔和伯比奇夫妇、福勒四人提出了元素合成理论(即著名的B2FH理论)。稍候的这些工作收集和精炼了早期研究的成果,并列举出重元素被观测到的丰度分布情景。艾利丝泰尔·卡麦伦(Alastair G. W. Cameron)和唐纳德·卡莱顿(Donald D. Clayton)。卡麦伦(追随霍依尔之后)在核合成方法提出了独立且重大的改进。卡莱顿将计算机引进与时间无关的核系统计算中,它首先计算的与时间无关的S-过程、R-过程、硅燃烧产生铁集团的过程,和发现可以测量年龄的放射性元素计年法。整个领域的研究在1970年代迅速的扩展开来。