红柳河地区下二叠统拉斑玄武岩,主要表现为低Mg和全碱(Na2O+K2O)以及高Fe和Ti的特征,微量元素Rb、K、Sr和Ba等大离子亲石元素富集,轻稀土元素(LREE)相对富集。La/Yb=10.61~16.87,Th/Ta=1.03~1.99,Fe/Ti=5.30~6.39,Ti/P=5.61~7.30,Ti/Zr=38.83~46.30。另外,Zr=(254~328)×10-6,Zr/Y=5~10,Y/Nb=1.52~2.45。所有这些地球化学特征表明它们主要为板内玄武岩,其岩浆主要源于亏损地幔(DM)和富集地幔(EM)组分的混合,其中富集地幔(EM)为主要端元,且部分熔融程度低,受很低的地壳混染作用。
以天山为主的中亚型造山带,石炭纪时主要洋盆都已经闭合,构造格局进入新的阶段(Coleman,1989;Windley et al.,1990;Allen et al.,1992;马瑞士等,1993;郭召杰等,1993;Sengör et al.,1993;Carroll et al.,1995;Dobretsov et al.,1995;Gao et al.,1998;Jahn,2000a)。近年来的研究表明,在古生代晚期,天山造山带伴随大量花岗岩的侵位(Han et al.,1997;韩宝福等,1999;Hu et al.,2000;Jahn et al.,2000a,2000b;Chen和Jahn,2002)和中基性火山岩的喷发(林克湘等,1997;Wartes et al.,2002;袁明生等,2002;赵泽辉等,2003)。该期花岗岩与造山阶段的岩浆活动明显不同,被认为是造山期后陆壳垂向增生的产物(Han et al.,1997;韩宝福等,1999;Jahn et al.,2000a,2000b)。新疆东部——北山地区二叠纪发育张性断陷盆地,盆地中发育厚层的中基性火山岩。对这些火山岩的研究,不仅对认识东天山的构造演化,而且对了解二叠纪时期该区的构造特征及其深部地质信息具有十分重要的意义。本书以红柳河地区下二叠统玄武岩为研究对象(图1-1-8),通过地球化学特征研究,阐述其形成的构造背景和动力学意义。
图1-1-8 红柳河地区构造地质简图
A—克拉美丽缝合带;B—中天山北缘缝合带;C—南天山缝合带;1—元古宇;2—上震旦统;3—上志留统;4—花岗岩;5—闪长岩;6—下二叠统火山岩;7—下二叠统砾岩;8—下二叠统砂岩;9—大理岩;10—超基性岩体;11—断层;12—铁路;13—第四系
一、区域构造背景
新甘交界红柳河地区位于古生代塔里木地块与中天山地块汇聚缝合带上(李锦轶等,1990;肖序常等,1992;马瑞士等,1993;左国朝等,2003)(图1-1-8)。红柳河蛇绿岩是南天山弧后洋盆的残骸,其缝合时间大致为晚泥盆世(郭召杰等,1993)。晚石炭世—早二叠世,新疆大部分地区的主要洋盆已经关闭(Coleman,1989;李锦轶等,1990;Windley et al.,1990;Allen et al.,1992;肖序常等,1992;Allen et al.,1993;马瑞士等,1993;Carroll et al.,1995;Gao et al.,1998;Chen et al.,1999)。从早二叠世—晚二叠世,在区域上表现为不同断陷带或是断陷盆地的形成,并伴随强烈的火山作用,如三塘湖盆地、吐哈盆地以及北山柳园断陷带和红柳河断陷带(Allen et al.,1991;Carroll et al.,1995;Wartes et al.,2002;赵泽辉等,2003)。
二、下二叠统岩石组合特征
红柳河地区二叠系主要为下二叠统红柳河组,角度不整合在早古生代地层之上,缺失上二叠统。下二叠统为一套海陆交互相碎屑岩,其中红柳河组下亚组下部为砾岩、砂岩及灰岩,最底部是一套磨圆度中等至良好的红褐色厚层状底砾岩。灰岩中采得腕足类化石:Camarophoria cf.mutabilis,Spiriferella sp.,Rhynchopora sp.,Waagenoconcha sp.,Dic⁃tyoclostus sp.,Muirwoodia cf.mammata等,相当于下二叠统上部。红柳河组下亚组上部为绿色、灰绿色玄武岩类岩石夹凝灰砂岩、泥质粉砂岩及碧玉岩透镜体,并出现灰白色灰岩和灰绿色凝灰岩互层(图1-1-9),其中有的玄武岩呈大小不一的枕状,枕间为灰岩充填(图1-1-9)。本亚组在各处的出露厚度不一,其最大厚度为2700m。红柳河组中亚组整合覆盖在下亚组之上,以砂岩或砾岩与下亚组上部的火山喷发岩清楚地分开,为一套碎屑沉积岩,最大厚度为1000m。红柳河上亚组整覆在中亚组之上,主要为灰色、灰绿色及褐红色砾岩及厚层状长石砂岩和复矿砂岩,夹极少量的粉砂岩透镜体,厚2520m。于福生等(2000)在红柳河车站西南红柳河下亚组下部砂质灰岩中也发现了晚石炭-早二叠世生物群落化石,并在该下亚组上部的安山岩中的层状生物碎屑灰岩中发现海百合茎等海相生物化石。本书主要选择了该组中玄武岩做了系列的地球化学分析。
图1-1-9 红柳河枕状玄武岩野外图片
三、地球化学特征
本书选择岩石较新鲜的11个玄武岩样品进行了主要元素分析,并挑选5个代表性的样品进行了微量和稀土元素分析。主要元素数据由中科院地质研究所(HL2~6)和北京大学地质学系研究试验中心(HL7~12)使用X荧光光谱方法分析测试(表1-1-5),微量稀土元素数据由中科院地质研究所使用ICP-MS方法分析测试(表1-1-6)。
表1-1-5 红柳河玄武岩的常量元素组成(wB/%)
注:Fe2O3T为全铁。
(一)主要元素特征
SiO2含量为45.14%~49.60%,主要为基性玄武岩。MgO的含量为2.94%~7.80%,显示为Mg偏低的特征。全碱的含量(Na2O+K2O)为2.31%~4.36%,为一种低碱特征,其中K的含量变化较大,为0.21%~1.51%。TiO2的含量为1.70%~2.19%,P2O5的含量范围为0.21%~0.50%,表现为一种高Ti、P的特征。在AFM图(图1-1-10)上,该区玄武岩落在拉斑玄武岩区(Irvine和Baragar,1971)。
图1-1-10 红柳河玄武岩的AFM图解
(据Irvine和Baragar,1971)
表1-1-6 红柳河玄武岩的微量稀土元素丰度(wB/10-6)
注:(La/Yb)N为球粒陨石标准化。
(二)微量元素特征
微量元素特征:Rb、K、Sr和Ba等大离子亲石元素富集(图1-1-11),其中有两个样品的Rb和K异常富集,可能是玄武岩样品中含有富集Rb和K的杏仁体或气孔充填物所致。La/Yb比值为10.61~16.87,Th/Ta比值为1.03~1.99,Fe/Ti比值为5.30~6.39,Ti/P比值为5.61~7.30,Ti/Zr比值为38.83~46.30。另外,Zr=254~328,Zr/Y比值5~10,Y/Nb=1.52~2.45。
图1-1-11 红柳河玄武岩N-MORB标准化的蜘蛛图解
(标准化值据Sun和McDonough,1989)
(三)稀土元素特征
轻稀土元素(LREE)相对于重稀土元素(HREE)富集(图1-1-12),REE配分模式图类似于洋岛玄武岩的特征,表明玄武岩岩浆主要源于EM。球粒陨石标准化的(La/Yb)N的范围为7.78~12.16,说明LREE和HREE之间有明显的分馏作用。
四、讨论
(一)岩石成因讨论
红柳河下二叠统玄武岩的TiO2和P2O5含量较高,Y/Nb的比值较低(1.52~2.45),表现为类似大陆拉斑玄武岩的特征(Floyd和Winchester,1975)。另外Zr的含量较高,Zr/Y的比值范围为5~10之间。从Zr和Zr/Y的判别图解上可以看出(图1-1-13),该区玄武岩和典型的板内玄武岩特征一致(Pearce和Norry,1979)。红柳河下二叠统玄武岩的Th/Ta比值为1.03~1.99,La/Yb比值为10.61~16.87。在Th/Ta对La/Yb图(图1-114)中,样品主要分布在亏损地幔(DM)和富集地幔(EM)之间的连线上,反映该玄武岩岩浆主要源于DM和EM两个端元组分的混合成因,其中EM约占为70%~80%的成分,并且部分熔融程度较低,受壳源混染的程度也很低(Condie,2001)。Fe/Ti比值为5.30~6.39,Ti/P比值为5.61~7.30,Ti/Zr比值为38.83~46.30。从Fe/Ti、Ti/P和Ti/Zr对Zr的图(图1-1-15)中可以看出,玄武岩岩浆表现为富集的特征,且部分熔融程度低,可能主要源于EM(La Flèche et al.,1998;Caprarelli和Leitch,2001)。其中Fe/Ti比值主要反映地幔源的部分熔融程度,Ti/P和Ti/Zr主要指示地幔源的富集程度(La Flèche et al.,1998)。
图1-1-12 红柳河玄武岩球粒陨石标准化的REE模式图
(标准化值据Sun和McDonough,1989)
图1-1-13(Zr/Y)-Zr玄武岩判别图解
(据Pearce和Norry,1979)
A区是火山弧玄武岩;B区是大洋中脊玄武岩;C区为大洋中脊玄武岩和火山弧玄武岩;D区为板内玄武岩
(二)构造背景
从岩石组合特征来看,从早二叠世早期沉积的以砾岩为主的海相碎屑岩和碳酸盐岩,随后以玄武岩为主的火山岩喷发,晚期上亚组的灰色砾岩和红褐色砂岩互层,其间并出现灰白色灰岩和灰绿色凝灰岩互层,其中有的玄武岩呈大小不一的枕状,枕间为灰岩充填。总的来说,下二叠统发生在造山期后的山间坳陷中,属磨拉石建造。其特点是与下伏地层具有明显的不整合,属于海陆交互相沉积,厚度巨大,以碎屑岩为主,并伴有基性火山喷发岩,灰岩从下到上由多到少以至消失。以上特征说明红柳河地区早二叠世早期是一种伸展拉张的构造背景,随着不断的拉张断陷,伴随源于幔源的基性岩浆的喷发,随后被灰色砾岩和红褐色砂岩填充。从沉积地层的特征来看,在整个拉张断陷过程中,红柳河地区已经拉张为深度较浅的并伴有基性岩浆的喷发的海盆,但未出现典型的洋壳。
图1-1-14 红柳河玄武岩Th/Ta对La/Yb图解
(据Condie,2001)
图1-1-15 红柳河玄武岩Ti/Zr、Ti/P和Fe/Ti比值对Zr含量的图解
(据La Flèche et al.,1998)
据前所述,天山、准噶尔和阿尔泰等地区多处发育有指示后碰撞幔源岩浆活动的花岗岩的侵位,其时代介于330~250Ma之间,普遍具有正εNd(t)的特征(Hopson et al.,1989;赵振华等,1996;周泰禧等,1996;Han et al.,1997;韩宝福等,1999;Hu et al.,2000;Jahn et al.,2000a;Jahn et al.,2000b;Chen和Jahn,2002),反映了该区域可能从晚石炭世造山的挤压环境转化为造山后伸展拉张的构造背景。
五、结论
以上特征表明,红柳河下二叠统拉斑玄武岩喷发于深度较浅的海盆之中,是一种板内裂谷玄武岩,其岩浆主要源于亏损地幔和富集地幔成分的混合,其中富集地幔为主要端元,且部分熔融程度低,受很低的地壳混染作用。
参考文献
郭召杰,马瑞士,郭令智等.1993.新疆东部三条蛇绿混杂岩带的比较研究.地质论评,39(3):236~247
韩宝福,何国琦,王式洸.1999.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质.中国科学(D辑),29(1):16~21
李锦轶,肖序常,朱宝清等.1990.新疆东准噶尔克拉麦里地区晚古生代板块构造的基本特征.地质评论,36(4):305~316
李伍平,王涛,李金宝等.2001.东天山红柳河地区海西期花岗岩的岩石学地球化学及其构造环境.地质论评,47(4):268~376
林克湘,闫春德,龚文平.1997.新疆三塘湖盆地早二叠世火山岩地球化学特征与构造环境分析.矿物岩石地球化学通报,16(1):39~42
马瑞士,王赐银,叶尚夫.1993.东天山构造格架及地壳演化.南京:南京大学出版社,225
肖序常,汤耀庆,冯益民,等.1992.新疆北部及其邻区大地构造.北京:地质出版社,169
于福生,王涛,李伍平等.2000.甘新交界红柳河地区海西期构造演化特征.西安工程学院学报,2000,22(1):18~22
袁明生,张映红,韩宝福等.2002.三塘湖盆地火山岩地球化学特征及晚古生代大地构造环境.石油勘探与开发,29(6):32~34
赵泽辉,郭召杰,张臣等.2003.新疆东部三塘湖盆地构造演化及其石油地质意义.北京大学学报(自然科学版),39(2):219~228
赵振华,王中刚,邹天人等.1996.新疆乌伦古富碱花岗岩成因讨论.地球化学,25:205~220
周泰禧,陈江峰,李学明.1996.新疆阿拉套山花岗岩类高εNd值的成因探讨.地质科学,31:69~71
左国朝,刘义科,刘春燕.2003.甘新蒙北山地区构造格局及演化.甘肃地质学报,12(1):1~15
Allen M B,Windley B F,Zhang Chi,et al..1993.Evolution of the Turfan basin,Chinese central Asia.Tectonics,12(4):889~896
Allen M B,Windley B F,Zhang Chi.1992.Paleozoic collisional tectonics and magmatism of the Chinese Tian Shan,central Asia.Tectonophysics,220:89~115
Capparelli G and Leitch E C.2001.Geochemical evidence from Lower Permian volcanic rocks of northeast New South Wales for asthenospheric upwelling following slab breakoff.Australian Journal of Earth Sciences,48:151~166
Carroll A R,Graham S A,Hendrix M S,et al..1995.Late Paleozoic tectonic amalgamation of northwestern China:Sedimentary record of the northern Tarim,northwestern Turpan,and southern Junggar Basins.GSA Bulletin,107(5):571~594
Chen B and Jahn B M.2002.Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications.Geol.Mg.,129:1~13
Chen Chuming,Lu Huafu,Jia Dong,et al..1999.Closing history of the southern Tianshan oceanic basin,western China:an oblique collisional orogeny.Tectonophysics,302:23~40
Coleman R G.1989.Continental growth of Northwest China.Tectonics,8(3):621~635
Condie K C.2001.Mantle Plumes and Their Record in Earth History.Cambridge:Cambridge University Press,306
Dobrestsov N L,Berzin N A,Buslov M M.1995.Opening and tectonic evolution of the Paleo-Asian.International Geology Review,37:335~360
Floyd P A and Winchester J A.1975.Magma-type and tectonic setting discrimination using immobile elements.Earth Planet.Sci.Lett.,27:211~218
Gao Jun,Li Maosong,Xiao Xuchang et al..1998.Paleozoic tectonic evolution of the Tianshan Orogen,northwestern China.Tectonophysics,287:213~231
Guo Zhaojie,Ma Ruishi,Guo Lingzhi,et al..1993.A comparative study on three ophiolitic mélange belts in eastern Xinjiang.Geological review,39(3):236~247(in Chinese with English abstract)
Han B F,Wang S G,Jahn B M,et al..1997.Depleted-mantle magma source for the Ulungur River A-type granites from north Xinjiang,China:geochemistry and Nd-Sr isotopic evidence,and implication for Phanerozoic crustal growth.Chemical Geology,138:135~159
Han Baofu,He Guoqi,Wang Shiguang.1999.Postcollisional mantle-derived magmatism,underplating and implications for basement of the Junggar Basin.Science in China(Series D),29:16~27
Hopson C,Wen J,Tilton G,et al..1989.Paleozoic plutonism in East Junggar,Bogdashan,and eastern Tianshan,NW China.EOS Trans Am Geophys Union,70:1403~1404
Hu A Q,Jahn B M,Zhang G X,et al..2000.Crustal evolution and Phanerozoic crustal growth in Northern Xinjiang:Nd-Sr isotopic evidence.PartⅠ:Isotopic characterization of basement rocks.Tectonophysics,328:15~51
Irvine T N and Baragar W R A.1971.A guide to the chemical classification of the common volcanis rocks.Canad.J.Earth Sci.,8:523~548
Jahn B M,Wu F Y,Chen B.2000a.Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic.Trans.Royal Soc.Edinburgh:Earth Sci.,91:181~193
Jahn B M,Wu F Y,Chen B.2000b.Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic.Episodes,23:82~92
La Flèche M R,Camiré G,Jenner G A.1998.Geochemistry of post-Acadian,Carboniferous continental intraplate basalts from the Maritimes Basin,Magdalen Islands,Québec,Canada.Chemical Geology,148:115~136
Li Jinyi,Xiao Xuchang,Tang Yaoqing,et al..1990.Main characteristics of late Paleozoic plate tectonics in the southern part of east Junggar,Xinjiang.Geological Review,36(4):305~316(in Chinese with English abstract)
Li Wuping,Wang Tao,Li Jinbao,et al..2001.Petrology,geochemistry of Hercynian granites of Hongliuhe area and its tectonic setting in eastern Tianshan mountains,western China.Geological review,47(4):368~376(in Chinese with English abstract)
Lin Kexiang,Yan Chunde,Gong Wenping.1997.The geochemical characteristics and analysis of tectonic settings of early Permian volcanic rocks in Santanghu basin,Xinjiang.Bulletin of Mineralogy,Petrology and Geochemistry,16(1):39~42(in Chinese with English abstract)
Ma Ruishi,Wang Ciyin,Ye Shangfu.1993.Tectonic framework and crustal evolution of eastern Tianshan mountains.Nanjing:Publishing House of Nanjing University,225(in Chinese)
Pearce J A and Norry M J.1979.Petrogenetic implications of Ti,Zr,Y and variations in volcanic rocks.Contrib.Mineral.Petral.,69:33~47
Sengör A M C,Natalin B A,Burtman V S.1993.Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia.Nature,364:299~307
Sun S S and McDonough W F.1989.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.In:Saunders A D and Norry M J(eds),Magmatism in ocean basins.Geol.Soc.London Spec.Pub.,42:313~345
Wartes M A,Carroll A R,Greene T J.2002.Permian sedimentary record of the Turpan-Hami basin and adjacent regions,northwest China:Constraints on postamalgamation tectonic evolutin.GSA Bulletin,114(2):131~152
Windley B F,Allen M B,Zhang C,et al..1990.Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range,central Asia.Geology,18:128~131
Xiao Xuchang,Tang Yaoqing,Feng Yimin,et al..1992.Tectionic evolution of northern XinJiang and its adjacent regions.Beijing:Geological Publishing House,169(in Chinese)
Yu Fusheng,Wang Tao,Li Wuping,et al..2000.The feature of tectonic evolution within Hercynian period in Hongliuhe area located in the boundary between Gansu and Xinjiang.Journal of Xian Engineering University,22(1):18~22(in Chinese with English abstract)
Yuan Mingsheng,Zhang Yinghong,Han Baofu,et al..2002.The geochemical features of volcanic rocks and architectonic environment.Petroleum Exploration and Development,22(1):18~22(in Chinese with English abstract)
Zhao Zehui,Guo Zhaojie,Zhang Chen,et al..2003.Tectnic evolution of the Santanghu basin,east Xinjiang and its implication for the hydrocarbon accumulation.Acta Scientiarum Naturalium Unversitatis,39(2):219~228(in Chinese with English abstract)
Zhao Zhenhua,Wang Zhongguang,Zou Tianren,et al..1996.Study on petrogenesis of alkali-rich intrusive rocks of Ulungur,Xinjiang.Geochimica,25:205~220(in Chinese with English abstract)
Zhou Taixi,Chen Jiangfeng,Li Xueming.1996.Origin of highεNd(t)granites from Alatao mountain,Xinjiang.Scientia Geological Sinica,31:71~69(in Chinese with English abstract)
Zuo Guochao,Liu Yike,liu Chunyan.2003.Framework and evolution of the tectonic structure in Beishan area across Gansu province,Xinjiang autonomous region and Innermongolia automomousregion.Acta Geologica Gansu,12(1):1~15(in Chinese with English abstract)
(赵泽辉,郭召杰,张志诚,史宏宇,田杰)
李月周瑶琪
(中国石油大学(华东)地球化学与岩石圈动力学开放实验室 山东东营 257061)
作者简介:李月,女,1979年12月生,河北沧州人,2002年毕业于中国石油大学石油地质专业,获学士学位,在读博士研究生,研究方向:地质资源与地质工程,电子信箱:。
摘要 在利用MEMS技术对花岗岩样的压裂过程进行监测的基础上,应用对破裂的监测原理,探讨了MEMS技术在预测瓦斯爆炸方面的应用。实验中,用压机对岩样进行持续施压,观测到4批微破裂。主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝。基于上述原理,把该项技术用于预测由于入为采矿所产生的矿震以及天然地震所造成的矿山爆炸也将产生较好的效果。
关键词 MEMS技术 压裂 微破裂 煤矿灾害
Application of MEMS in Forecast of Gas Disaster of Coalmine
Li Yue,Zhou Yaoqi
(Geochemistry & Lithosphere Dynamic Open Laboratory,China Universityof Petroleum,Dongying 257061)
Abstract:Based on the monitoring to the fracturing process of the granitic sample by MEMS,applying the monitoring principle,we discussed the application of MEMS in forecasting the gas blowing up.In this experiment,continually forcing to the sample,we observed four series of micro-fracture.The anterior three series of microfracture before the main fracture were because of the crack in the sample centralizing and connecting,which was regarded as the portent of the earthquake.The main-fracture produced the crack in macro.Based on the beforementioned principle,it was concluded that the forecast of mine blast resulted from the mining and crude earthquake had the good effect by this technology.
Keywords:MEMS;fracturing;micro-fracture;coal mine disaster
序言
MEMS(Micro-Electro-Mechanical Systems)通常称为微机电系统技术,其含义是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,包括接口、通信和电源等于一体的微型器件或系统。[1]
矿难在近几年的重大伤亡事故中占据相当大的比重,瓦斯爆炸以及入工诱发地震更是给入们带来了极大的威胁。本文主要是在实验的基础上探讨MEMS技术在预测煤矿灾害中的应用。
1 实验
实验主要是利用MEMS技术敏感的特点,通过对花岗岩破裂过程的监测,观察微破裂发生时传感器的瞬间反应。
1.1 样品和观测系统简介
样品采自山东莱州,属于燕山期花岗岩。加工成50×15×7.5 cm3的实验样品。花岗岩具有均匀的颗粒结构,主要由石英、长石和黑云母以及少量重矿物组成。长石最大斑晶可达5mm左右,一般颗粒粒径为0.5~3mm。黑云母则通常沿石英长石颗粒边缘呈线状分布(见图1)。
图1 花岗岩显微结构(正交偏光×50)
传感器采用东营感微科技开发公司生产的4个ME MS-1221 L 型单分量加速度传感器。其灵敏度为2 V/G,分辨率为10-4G,频带范围0~1000Hz。数据采集和分析系统为东营感微科技开发公司开发的通用数据监测和分析软件RBH-General。
压裂实验使用中国石油大学机电学院矿机实验室WE-300型压机(图2)。观测系统如图2(b)以及图3所示。
图2 实验用压机及观测系统
a为WE-300型实验用压机,b为岩样观测系统传感器放置和受压支撑位置
图3 观测系统平视图
其中编号1、2、3、4为4个传感器,传感器1、4靠近岩石块边缘。4个传感器在一条水平线上。1号传感器与2号传感器中心间隔10cm,3号与4号之间也是同样间隔。传感器的半径为2.5cm
1.2 实验过程与数据讨论
1.2.1 实验过程
首先将岩样平放在压机上,并使得岩样两端距支撑线的距离相等,同时记下两侧距离值,以便清楚岩样受压的力臂;然后将4个传感器依次放在岩样上面(图3),并记下各自的位置,同时将传感器和数据采集分析系统相连,以便对不同部位的微破裂所发出的信号进行记录。
时间记录从0秒开始,数据采样频率为4000Hz。压力的施加过程是循序渐进的,压力从0 kN 开始逐渐增大,观察数据的变化,开始记录的是噪声的频谱,当压力增加到致使岩样内部结构发生变化时,频谱即刻发生变化,频谱的变化过程将在下面进行讨论,其中红色代表传感器1的频谱,黑色代表传感器2的频谱,蓝色代表传感器3的频谱,黄色代表传感器4的频谱。在近360秒的压裂过程中,真正的岩样破裂是在最后一分钟内完成的,即分别在302.290~303.826 s;305.599~307.135 s;316.793~318.329 s和357.923~360.258s,岩样共发生了四批微破裂。除了最后一批微破裂持续时间达到2s以上,之前的三批微破裂持续时间均少于1.5 s。每批微破裂均由一组密集的微破裂组成,单次微破裂持续时间一般不超过50毫秒。
1.2.2 压裂过程数据记录与简析
下面依时间顺序分别选取10个有代表性的时间段所记录的频谱特征进行讨论,由于技术原因,目前所用传感器的精度还不足以区分破裂发生时接收信号的准确时间,我们将在以后的工作中逐步解决这个问题。
(1)0.291~31.826s受压开始后的噪声谱(图4):刚开始施压不久,虽然各传感器接收的噪声有所差异,但是总体来说噪声主要频率集中于50~300Hz 低频区和400~750Hz的高频区,4号传感器由于处于距离油泵较远的位置,因此振幅相对于其他三个来说略低,并且频率分布于20~200Hz和600~750Hz 两个更低和更高的区域,不同传感器所记录的噪声差异主要与它们不同的位置有关。
(2)31.990~33.526s噪声谱(图5):相对于0.291~31.826s受压开始后的噪声谱来说噪声的振幅增大了近一倍,但是频率仍然以集中于低频区为特征,高频幅度相对低频区有所压制,这说明岩样内部结构受压力影响有所变化,噪声振幅的突然增大有可能是因为油泵不均匀施压的结果。
图4 0.291~31.826s受压开始后的噪声谱
图5 31.990~33.526s噪声谱
(3)300.665~302.201 s噪声谱(图6):临近微破裂发生前,噪声水平进一步降低,尤其是2号、1号和4号传感器位置降低明显。3号位置噪声水平相对较大。
图6 300.665~302.201s噪声谱
(4)302.290~303.826s微破裂发生时的频谱(图7):这是岩样发生首批微破裂时的频谱特征。从中可以明显的看出振幅异常,不同的传感器得到的数据有所差别:1、2号传感器的频率范围大约集中在700~800Hz,3、4号传感器,尤其是3号受到噪声的影响比较大,对微破裂的反应不是很明显。3号传感器的频率范围大约在500~600Hz之间,4号的频率范围大约在650~750Hz之间。首批微破裂只是改变了岩样内部的细微结构,宏观上没有发生什么变化。
图7 302.290~303.826s微破裂发生时的频谱
(5)305.599~307.135s微破裂发生时的频谱(图8):相对于302.290~303.826s微破裂时的频谱明显具有向低频方向移动的特征,频率范围大约集中在650~750Hz之间。
图8 305.599~307.135s微破裂发生时的频谱
(6)307.612~309.147s噪声谱(图9):微破裂之后继续加压岩样暂时不会再次发生破裂,和开始时的噪声谱特征基本相同,但高频噪声相对高于低频噪声,表示岩样内部结构已发生变化。
图9 307.612~309.147s噪声谱
(7)316.793~318.329s微破裂发生时的频谱(图10):第三批微破裂相对于前两批破裂强度大,振幅增强,随着压力的增大,在前面破裂产生的基础上,当岩样内部裂缝再次发育、贯通,岩样就会发生破裂。各个不同的传感器在频谱特征上差别较大,频率范围各不相同,其中1号传感器记录到微破裂的频率范围大约在350~500Hz之间,2号传感器记录到的频率范围大约在450~550Hz之间,3号传感器记录到的频率范围大约在400~500Hz之间,4号传感器记录到的频率范围大约在650~750Hz之间。
图10 316.793~318.329s微破裂发生时的频谱
(8)326.534~328.070s噪声谱(图11):第三批微破裂发生之后,由于岩样已经产生了裂缝,继续加压在很短的时间内对岩样将不会产生大的影响,因此表现出来的仍然是压机噪声的频谱特征。
图11 326.534~328.070s噪声谱
(9)358.723~360.258s主破裂发生时的频谱(图12):继续加压之后,岩样在前面微破裂的基础上发生更强的破裂,即主破裂。从我们所采集到的数据来看,这次破裂幅度比前面破裂要大得多,并且峰值具有明显向低频区移动的趋势。各传感器的频率范围也具有明显的差异:1号传感器的频率范围在300~500Hz之间,2号传感器的频率范围在200~300Hz之间,3号传感器的频率范围在350~550Hz之间,4号传感器的频率范围在500~700Hz之间。因为最终的破裂面位于2号和3号传感器之间,并且最后的破裂向2号传感器方向伸展,所以2号和3号传感器记录的微破裂振幅相对较低,并且频率也偏低,尤其是2号传感器。而相对远离破裂面的1号和4号传感器位置记录的微地震幅度和频率都相对要高许多。这可能与岩样较小,离破裂面越远传感器的位移越大有关。
图12 358.723~360.258s主破裂发生时的频谱
(10)361.335~362.871 s主破裂发生后的噪声谱(图13):主破裂发生之后施加的压力对岩样已经不能产生任何作用,由于岩样已经完全破裂,并且这时我们在岩样的外观上已经可以清楚的看到一条裂缝,继续加压,这条裂缝就起到了卸压的作用,因此继续施加压力,我们采集到的只是压机所发出的噪声的频谱。但相对刚开始施压时的噪声谱而言,由于岩样已发生破裂,油泵噪声通过岩样传递给传感器,裂缝对噪声的传递产生了影响,导致高频噪声大大减弱,而低频噪声则相对增强。
图13 361.335~362.871s主破裂发生后的噪声谱
1.2.3 微破裂频谱变化特征
分析压机对岩样进行加压的实验过程,通过频谱的变化特征可以看出:四批微破裂产生时频谱的频率范围以及振幅有所差异(见表1)。
表1 四批微破裂发生时不同传感器接收的频率范围及频谱峰值
四批破裂发生时,频率范围并不仅仅集中在表1所列的范围之内,另外还有相对集中的区域,但是由于其他区域的频率或者峰值较低,或者范围很窄,因此没有一一列举,表中只列举了主要的频率范围。由表中数据可以看出,对于一个传感器来说,随着压力的增大,四次破裂发生时的频率范围依次减小,即频率随着破裂的增大逐渐降低;对于同一次微破裂来说,前两批微破裂产生时距离压力作用点近的两个传感器得到的数据相对于较远的传感器来说要小,而主破裂发生时只有4号传感器的频率范围明显大于其他3个,说明距离裂缝越近,频率值越低。从这个现象我们可以总结以下规律:随着压力的增大,频率值降低;裂缝越大,频率值越小。而且,由于岩样本身体积比较小,在放置的时候由于位置不足够精确,因此一点儿的差距都会导致岩样在受压过程中发生轻微倾斜,这种轻微倾斜将导致处于对称位置的1、4号检波器和2、3号检波器的数据存在较大差异。从每次破裂频谱的峰值来看,前两次破裂发生时靠近压力作用点的传感器发出的频谱的峰值要大,而后两次破裂发生时情况正好相反。这有可能是由于最先两次破裂发生时微破裂的规模很小,只是内部结构发生了微小变化,而后两次发生时微破裂的规模相对增大,第四批微破裂甚至使岩样在宏观上发生了破裂的缘故。
1.3 实验结果讨论
近年来,地震学者认识到,地震是一次具有裂隙的地球材料的破裂行为,并在一般的固体材料,其中包括岩石微裂隙形成过程的研究中,去探索这种破裂的孕育及发生。现今关于地震孕育的一切基本假想,都把地球裂隙破裂的演化看成是寻找和解决地震前兆并解决地震预报的关键[2-10]。主破裂的发生是由于岩样在前面破裂以及不断施压的条件下,使得内部裂缝不断聚集增多,最后达到相互贯通的结果,岩样在宏观上产生了一条与压力方向近似平行的裂缝。下面分别从四批微破裂中挑选主要的一次微破裂的数据记录进行详细讨论:
(1)第一批微破裂中主要破裂产生的微地震记录(图14):图中分别反映了4个传感器发出的信号。第一批微破裂是当花岗岩样的耐压强度首先达到极限,内部累积了足够的裂隙并且在主压应力方向首先贯通,从而发生了破裂。
图14 第一批微破裂中主要破裂产生的微地震记录
(2)第二批微破裂中主破裂发生时产生的微地震记录(图15):第二批微破裂是在第一批微破裂的基础上发育的,破裂的频率主要集中在低频区。并且红色和黄色的频谱的频率要高于黑色和蓝色频谱的频率,从而可以看出靠近裂缝放置的传感器频率较低。即越靠近震源频率越低。
图15 第二批微破裂中主破裂发生时产生的微地震记录
(3)第三批微破裂中主破裂产生的微地震记录(图16):第三批微破裂是由于继续施加压力岩样内部裂缝继续发育,强度相比较第二批而言要强得多,频率范围也具有向低频区转移的趋势,这可以看作是地震发生前比较重要的一次微破裂。
图16 第三批微破裂中主破裂产生的微地震记录
(4)第四批微破裂中主破裂产生的微地震记录(图17):第四批微破裂是岩样受压的主破裂,也是最终发生的破裂,这次破裂是由于随着压力的不断增大(最终压力达到10.4 kN),岩样内部裂隙不断发育,并高度集中贯通,从而导致岩样宏观上的裂缝产生,集中的应力完全释放。如果将此应用于地震预测,这时的裂缝产生就可以定义为地震的发生。并且距离震源近的传感器得到的频谱的频率较低。
图17 第四批微破裂中主破裂产生的微地震记录
岩体内大多存在着节理、劈理等裂隙,有的还存在着断裂等较大型的薄弱结构。在压力增大到一定程度之后,这些裂隙就会集中发生产生破裂。花岗岩的破裂模式可以归纳为雪崩式不稳定裂隙形成模式,该模式也叫苏联科学院大地物理研究所模式。这个模式的基础是两个现象:裂隙应力场的相互作用和裂隙形成作用的局部集中。在缓慢变化载荷的长期作用下,任何材料,包括岩石,在破坏前都必将产生这两种现象。关于长期强度的学说是基于下列事实:在“亚临界”(小于材料的瞬时强度)应力的缓慢作用下,裂隙的数目和大小逐渐发展。当裂隙密度达到一个临界密度状态值后,材料就过渡到快速宏观破裂阶段。如果裂隙在介质中的分布从统计角度看是均匀的,那么在缓慢增强的载荷作用下,或在活跃介质的影响下,裂隙的数目和大小将逐渐增大,而其中排列的较有利的一些裂隙将互相贯通,形成较大的裂隙。如果把格里菲斯理论及由此引申出来的一些理论用于地震震源,认为在雪崩式裂隙形成过程中逐渐产生一些少量的长裂隙,这些长裂隙串通汇合就导致了岩石的宏观破裂(地震)[11]。
2 在煤矿瓦斯灾害预测中的应用
煤炭开采诱发地震(采矿业称为冲击地压)是采矿诱发的动力地质灾害之一。矿震是在采矿活动和区域应力场作用影响下,使采区及周围应力处于不稳定状态,采区局部积累的一定能量以冲击或重力方式释放而产生的岩体振动。据不完全统计,20世纪80年代以来东北地区的辽宁北票、吉林辽源、黑龙江鹤岗、双鸭山汉鸟西、七台河等煤矿的矿山地震水平逐渐增强,部分矿震造成的损失相当严重。引起各级地震、煤炭系统和研究人员的关注。矿震的发生除入为开采因素外,矿山所处构造环境和区域构造应力场状况与其有密切关系[12]。
煤炭开采使得井下应力分布随开采深度加大变化加剧,在区域构造活动的共同影响下,构造应力使新、老构造作不同程度的继承性和新生性活动。一些井下断裂构造从稳定状态逐渐活动或蠕动,被牵动产生局部活化,是矿震发生的内在动力环境[13]。
地震是由于地下岩体受到应力作用产生形变,在岩体中引起破裂、相对位移、滑动、产生断层并辐射地震波。矿震发生地点是矿区的地下岩体振动,地震记录许多地方与天然地震记录相似。矿震的震源深度浅,在较大范围内可近似为表面震源的随机波动。
在区域构造作用力下,煤层气会沿一些特定方向产出和聚集。当生成的煤层气在矿井局部地区溢出并积聚时,倘若矿井局部温度达到煤层气燃点,就可能引起爆炸。煤矿瓦斯爆炸与地震活动在时间上具有同步性[14-15]。因此准确预测地震活动的发生对预防煤矿瓦斯爆炸具有重要的作用。
基于上述实验得出的结论,以及地震活动与煤矿瓦斯爆炸的关系,可以将MEMS1221 L型单分量加速度传感器用来预测由于入为采矿及天然地震引发的矿震及裂缝。从而减少由于煤矿瓦斯爆炸带来的灾害。
我们将传感器分别放置在煤矿的不同位置,并同时将传感器连接到计算机观测分析系统上来记录不同时刻传感器发出的信号,根据我们上述实验的过程,在不断的采矿过程中,机器对矿体会产生较大的作用力,当矿体内部岩石结构发生变化时,传感器就会发生明显的变化,我们看到记录的频谱信号就会发生突变。产生两三次这样的突变之后,矿体就极有可能有坍塌的可能,因此,在第一次突变时,我们就应该加强防范,采取相应的措施来阻止破裂的发生。
同样,当地下发生地震时我们也可以根据这个原理进行预防,绝大多数地震学家认为,在地震发生前有一个应力在震源区集中的过程,称作孕震过程或地震准备过程。当这一过程发展到一定阶段时,孕震区内的岩石可能会出现微破裂或塑性化等现象,从而导致地震波的频谱发生变化。此外,孕震区内小震震源动力学参数的变化也可能引起地震波频谱的某些变化。这些就是根据地震波频谱异常来进行预报研究的物理依据。在主破裂发生之前往往发生一系列的振幅较小、频率偏低的地震波,这些地震波的产生我们可以将它们视为前驱地震波。本次实验中主破裂发生之前的三次微破裂产生的地震波就可以看作是前驱地震波。这些地震波的发生是主地震波的能量的积蓄,当能量积累到一定程度势必发生地震。
3 结论
(1)花岗岩在单轴压力的作用下产生相对集中的四批脆性破裂,并且这四批破裂的强度具有随着压力的增大逐渐增强的趋势;微破裂发生时,频率具有向低频区偏移的趋势,并且裂缝越大频率越低;
(2)主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝,这时可以看作地震的发生;
(3)压裂实验的近源观测记录表明,MEMS技术应用于监测裂缝具有很高的灵敏度,因此将该技术应用于煤矿灾害的预测将会取得好的效果,从而减少由于入为采矿及天然地震引发的矿难。
致谢:感谢东营感微科技开发公司提供的技术支持,以及中国石油大学(华东)机电学院实验室提供的压机设备。在论文的完成过程中,得到了师兄弟的帮助,在此一并表示感谢。
参考文献
[1]Claerbout,J.F..1968.Synthesis of a layered medium from its acoustic transmission response:Geophysics,33,264~269
[2]Daneshvar,M.R.,Clay,C.S.,and Savage,M.K..1995.Passive seismic imaging using micro earthquakes,Geophysics,60,1178~1186
[3]M.Reza Daneshvar,Passive seismic imaging using microearthquakes,Geophysics,60(4)
[4]Deyan Draganov.2004.Passive seismic imaging in the presence of white noise sources,The leading edge,September
[5]张山,刘清林,赵群等.2002.微地震监测技术在油田开发中的应用,石油物探,41(2),226~231
[6]Andy Jupe等著,田增福译.1999.微地震监测:对油藏的听与看,石油物探译丛,5,17~20
[7]刘建中,王春耘等.2004.用微地震法监测油田生产动态,石油勘探与开发,31(2),71~73
[8]Andy Jupe等著,李彦兰译.1999.微地震监控储层,天然气勘探与开发,44~48
[9]Jupe A.,Cowles J.,Jones R..1998.Microseismic monitoring:listen and see the reservoir,World Oil,219(12):171~174
[10]董世泰,高红霞.2004.微地震监测技术及其在油田开发中的应用,石油仪器,18(5),5~8
[11]冯德益,陈化然,丁伟国.1994.大震前地震波频谱异常特征的研究,地震研究,17(4),319~329
[12]张凤鸣,余中元,许晓艳等.2005.鹤岗煤矿开采诱发地震研究,自然灾害学报,14(1),139~143
[13]郑文涛,汪涌,王璐.2004.煤矿瓦斯灾害中地震活动因素探讨,中国地质灾害预防治学报,15(4),54~59
[14]杨建成.1996.王家山煤矿地裂缝的形成及其灾害,甘肃地质学报,5(2),91~95
[15]张刚艳,张华兴,岳国柱.2003.煤层开采裂缝的观测与分析,岩土力学,24(增刊),414~417
1.礼县金山金矿田F1断层与成矿的关系甘肃地质学报论文 2. 李坝金矿床F1断层与成矿的关系甘肃科技论文
岩浆岩体侵入期、次的确定是研究侵入体与岩浆作用的重要内容之一,它取决于对接触关系的研究。
岩浆岩体的接触关系分为侵入接触(intrusive contact)、过渡接触(transitional con-tact)及断层接触(fault contact)等。侵入接触关系有明显与非明显之分。明显的侵入接触关系研究颇多,通常根据岩体的穿插(或切割)关系、接触变质现象、冷却边的存在、原生流动构造的产状以及捕虏体的分布等加以确定;非明显侵入接触关系研究甚少,尤其当相接触的两种岩性特征相近时,往往由于不能揭露侵入接触关系的存在,而把实质上的复式岩体误认为单式岩体,从而影响了对岩浆成岩成矿作用本质的认识。
鉴于岩浆岩体侵入期、次的确定不仅对岩浆作用过程、演化规律和岩体形成机理,而且对研究岩浆矿床成因,评价岩体含矿性以及指导地质普查找矿工作均具重要的理论与实际意义,本文将作者近年来在研究非明显侵入接触关系中发现的“隐秘侵入接触”(crypto-intrusion contact)及其研究方法论述如下,尚有不妥,请读者惠于指正。
1隐秘侵入接触
据载,一个侵入体凝固的时间,往往需要十几万年(В,Н,Котляр,1966)[1]。几十万年(张德全,1978;В.И.Смирнов,1976[2]),甚至几百万年(Н.В.Петровская1982)[3]。在如此漫长的凝固时间里,当同构造期岩浆活动犹如地震与火山喷发那样频繁的情况下,所形成的岩体理当是岩浆多期、次活动的结果,这是一个带有普遍性的规律。因为事实一再表明,在侵入体广泛发育的地区,侵入体,尤其较大者,通常是多期、次岩浆活动的产物[4]。例如,北京房山岩体是一个一期二次岩浆侵入形成的复式岩体;尤有甚者,在一个侵入体内,其侵入期、次竟达5~6个之多,如燕山西段南口花岗岩杂岩体,系由6个侵入期构成的;再者,江西西华山花岗岩杂岩体是由三期六次侵入作用形成的等等,诸如此类不胜枚举。特别重要的是。一些内生金属矿产,如基性-超基性岩体内的硫化铜镍矿床、铬铁矿床与钒钛磁铁矿床等,往往与某一特定期、次岩体或侵入相有关。所以,岩浆岩体侵入期、次的正确鉴别,除了可以回溯构造-岩浆活动史外,尚直接关系到地质普查找矿问题,至关重要。
然而,迄今为止,岩浆岩体侵入的期与次,尚无统一、严谨的定义,更无明确的区分标志和一致的划分原则。作者研究认为,若在一较大区域中,一次构造运动形成的岩带内,相同或不同成分的岩浆,先后于不同的时期,在不同的或类似的机理条件下,侵入于异地或同地而形成的侵入体的组合,称为多期侵入体或杂岩体;各侵入期之间具明显的穿插关系,或在较晚期侵入体中有冷却边,或在晚期侵入体内有早期岩体的捕虏体等。若在一个岩区内,同一期岩浆活动中不同次岩浆脉动活动叠加于同一空间(岩浆房)内形成的侵入体,当称之为多次侵入体或复式岩体。这时,岩浆每活动一回为一个次,次之间的时间间隔较短,故常常是后次岩浆侵入前次正在凝固或尚未完全凝固的岩体中,构成热接触,因而不存在冷接触中出现的那些固有的、明显的侵入接触标志。在大多数场合下,这种热侵入接触的穿插关系不清楚,形成所谓的隐秘侵入接触[5]。
后次岩浆侵入前次正在凝固或尚未完全凝固的岩体中,由于二者在组分与温度等方面的差异性,它们将出现岩浆混合或不混合两种情况,据此,可把隐秘侵入接触相应的分为混溶隐秘侵入接触与不混溶隐秘侵入接触两个类型。
所谓不混溶隐秘侵入接触,作者定义为“两种(或两种以上)组分与温度不同的岩浆,伴随同一期构造运动,在同一侵入期内,受区域应力驱动,先后侵入于同一空间,在液态分溶状态下凝固成岩而形成的隐蔽的侵入接触关系”。这种侵入接触关系,尽管难以用肉眼直接观察鉴别(因常常看不出岩相变化,找不到直接接触关系),可是相接触的两种岩相在本质上是不同的。换言之,相接触的两次岩体在形成机理,化学成分,矿物成分,乃至矿物的一系列标型特征———成分、有序度、晶胞常数、热力学参数以及有关同位素比值与元素占位机率方面等均有差别,因此经过详细工作是可以鉴别的。
如果先后侵入于同一空间的岩浆之间发生了岩浆混合作用,即在两种成分不同的岩浆接触带上产生了部分混熔,形成了岩浆混染岩带,使两个岩体通过该混染岩带呈现过渡的侵入接触关系,作者称其为混溶隐秘侵入接触。这种混熔隐秘侵入接触关系既不同于不混熔隐秘侵入接触,也不同于由同化-混染作用、交代作用以及花岗岩化作用等形成的过渡接触关系。它除了具有不混熔隐秘侵入接触那些特点外,在混染岩带中的造岩矿物之间广泛发育着不平衡现象:
(1)同种矿物成分变化较大,尤其同一类质同象系列矿物。如在有岩浆混合作用的赤柏松含镍岩体中斜长石的An为58~77;墨西哥PicodeOrizaa混合火山岩中的斜长石An变化在25~75之间(Cantagrel,1983),而且斜长石与辉石晶体均具复杂的反环带构造;苏联哈萨克斯坦的石英斑岩与玄武岩浆混合形成的辉石岩(Н.Я.Ященко,Н.В.Моторина,1981)及亚美尼亚由两种岩浆混合形成的方钠正长斑岩(В.С.Соболев,1980)中的辉石的含铁性与含镁性均有较大变化[6]。这些变化是岩浆混合的有力证据。因为,同一固溶体系列的两种矿物不能由同一岩浆同时结晶生成。
(2)鲍温(N.L.Bowen。1922)反应系列下部的矿物被上部的矿物包裹,结晶顺序紊乱。据I.L.Gibson(1963)报导,斯凯(Скай)岛含铁质闪长岩熔浆与酸性熔浆混合所形成的花岗辉长混染岩中,斜长石与石英被辉石包裹[4]。
(3)岩浆早期结晶的斑晶中有不同成分的熔浆包体。岩浆混合时结晶的晶体中的包体成分具过渡性特点。
(4)岩体中存在岩浆反应形成的矿物以及后期岩浆与早期岩浆结晶的矿物间形成反应边和反环带构造等。如红旗岭、赤柏松等含镍基-超基性岩体中广泛发育有橄榄石的反应边等。
(5)不相容矿物(如石英与橄榄石)的共生。
现以著名的甘肃白家嘴子含镍超基性岩体为例,把隐秘侵入接触的存在及特征综述如下,以作例证。
白家嘴子岩体是一个由中细粒、中粗粒与中粒三次侵入的超基性岩相构成的复式岩体。据甘肃地矿局第六地质队的研究[7],中粒与中粗粒侵入相之间为截然分明的侵入接触关系。中粗粒与中粒之间的接触关系有两种情况;其一,在二矿区一号矿体西部,二者间界线截然分明,且在中粗粒岩石一侧,岩石发生了强烈蚀变,中粒岩石的形态受中粒岩石原生节理的控制(一矿区);其二,在二矿区东部中粗粒与中粒岩石间呈特殊的过渡关系。二者间不是以矿物量或粒度,而是以两种岩石量比的变化从一种岩石逐渐过渡为另一种岩(即从以中粒的绿黑色海绵陨铁状纯橄榄岩为主,逐渐过渡为以中粗粒的不含或含极少硫化物的灰绿色二辉橄榄岩-橄榄二辉岩为主),量少的在量多的岩石中呈团块状。由于两种岩石成分不同,使过渡岩石表面呈现花花斑斑的牛皮癣状,矿物分布不均匀,粒度等结构变化较大,两种粒度的岩石中的矿物相接触形成随团块边缘而弯曲的清晰界线。上述事实表明,在形成中粗粒岩石的岩浆尚未完全凝固时,形成中粒岩石的岩浆又侵入上来并与之混合。二者在中粗粒岩石已凝固部位(二矿区一号矿体西部)侵入界线清楚,而在二者发生混合部位(二矿区东部)呈过渡的隐秘侵入接触关系。
应当指出,在岩浆岩石学领域内,不少人片面地注意了结晶分异与熔离等岩浆的分离问题。而对在成岩成矿过程中与其同等重要的岩浆混合作用这一课题却未引起应有的重视,国内外对岩浆的混合问题均处于探索阶段,一系列有关问题有待我们去探索、发现和研究解决。
2研究方法
随着时间、空间条件的演变。不同次侵入的岩浆在化学成分,温度梯度及具体成岩机理诸方面必然存在着差异。这些差异在岩浆成岩过程中主要以隐秘方式记录在岩石结构构造、化学成分,尤其矿物成分及原子、甚至电子层构造等方面,形成不同层次的成因信息。为了确定侵入体间的隐秘侵入接触关系,必须在野外观察研究基础上,运用各种当代测试手段,揭示隐藏在各层次信息源中的隐秘成因信息。为此,兹将常用的研究方法简介如下。
2.1地质观察研究方法
该方法主要有两项任务:一是在接触关系不清晰的情况下,以肉眼洞察接触带两侧不同次岩体间的差别。重点是粒度的变化、矿物成分的差异、捕虏体的分布、矿化种类与强度的区别,岩石颜色及结构构造的不同等方面。然后,初步确定所研究岩相是结晶分异相变产物抑或侵入关系,如系后者,则进一步分析是隐秘侵入接触还是过渡接触。第二项任务即是在野外观察基础上,系统采集各种测试样品,进行微观观察与测试,以揭示隐秘成因信息。
在观察研究长白山区的一些基性-超基性岩侵入体的岩相接触关系时,常常在两个侵入岩相之间发现有宽或窄、或规则或不规则的岩浆混合过渡带。其主要特点是岩相特点不稳定,造岩矿物成分及其粒度不均匀且变化大,矿化相对较富,具不混溶分凝造成的斑杂构造。进一步深入研究证实该过渡带是由辉长岩与橄榄岩两种岩浆混合形成的岩浆混染岩带,并非结晶分异成的过渡接触关系。
2.2矿物-岩石学研究法
图 1 吉林 H 基性-超基性含镍岩体不同岩相的矿物含量、粒度及橄榄石与斜长石牌号变化图
2. 2 矿物-岩石学研究法
矿物-岩石学研究法包括多方面的内容,这里主要是研究矿物共生组合,测定矿物的粒度、含量、光学常数,以及矿子 ( minal)An,Ab,Or,Fo,Fa,En,Di,Wo 等,观察矿物间的不平衡现象,确定造岩矿物的结晶顺序,以及用 X 光衍射、红外吸收光谱与穆兹堡尔谱等手段测定矿物的有序度,晶胞常数和某些元素的价态及在矿物晶体中的占位几率等。这些数据都是矿物、岩石的成因信息,比如度量矿物晶体中阳离子有序-无序分布特征的有序度,因为它是矿物所在地质体的温度 ( T) 、压力 ( P) 、结晶时间 ( t) 等热力学参数的复合函数[8],故可用来反映矿物形成时的地质温度、压力、岩浆结晶速率及冷凝时间长短等热力学因素,这对判别岩浆岩体的侵入期、次是很有效的。只要测定的样品是包括相接触的几个岩相的系统采样,那么,测得的上述数据将出现两种情况: 一是数据及其图示呈不连续的突变,一是呈连续的渐变。如果能排除岩浆分液熔离、同化混染和交代作用的存在,那么,前者多半为岩浆不同期、次侵入的特点,后者则是岩浆连续结晶分异相变的特点。作者[5]对一个前人曾结论为从上到下由辉长岩、辉石橄榄岩与橄榄辉石岩 3 个就地结晶分异岩相构成的含镍基性-超基性单式岩体,通过野外观察,根据辉石橄榄岩中有辉长岩的捕虏体、辉长岩遭受强烈蚀变等,确定辉长岩相是单独一次侵入的; 而在辉石橄榄岩与橄榄辉石岩相之间找不到接触关系,根据二岩相的上下位置与正常结晶分异序列相反和二者间有时具不清楚的界面的现象,同时对矿物含量、粒度,橄榄石与斜长石的牌号 ( Fo 与 An 的克分子%) 进行了测定,结果 ( 图 1) 表明,该岩体是由3 个侵入岩相构成的复式岩体,其中辉石橄榄岩与橄榄辉石岩相间为隐秘侵入接触关系[9]。这一结论已在1984 年被工程揭露所证实。
图2 吉林 H 含镍基-超基性岩体不同次岩相成分变异图
2.3岩石化学研究法
归纳起来,用于岩体接触关系研究的岩石化学方法有岩石化学指数及其图示、元素或氧化物的变异图、经典的岩石化学计算法与岩石化学成因信息法等4类。
(1)变异图法:即运用各种元素或氧化物含量(重量%)对适当变数的作图法。该方法除了探索岩石成因联系外,实践表明对研究岩浆侵入期、次亦颇奏效。通常是各种氧化物重量百分含量对距离(如沿纵,横剖面或钻孔等)作图,或是一种氧化物作为其他氧化物的相对坐标(如SiO2重量%作为独立变数等)作图。例如,A.Harker变异图即其一例。近年来也有用某岩石化学指数(如固结指数SI等)作独立变数的,用SI作独立变数坐标更能反映基性或超基性岩浆化学成分的变化。此外,AFM三角变异图亦常为人们所引用。无论何种变异图,变异曲线如为圆滑的,即连续渐变趋势的是岩浆结晶分异相变特征[4],若为急剧突变(图2)多半是不同期次侵入的显示,尤其当一个岩体的图点位于SiO2<49%的右侧,另一个岩体的投点位于SiO2>49%的右侧时,更能说明不同次的特点。
为了便于读者应用,现把常用的变异图的独立变数与从属变数列于表1,以供参考。
表1
续表
(2)岩石化学指数法:目前,用于岩石化学研究的指数有三四十个之多,可以根据研究对象灵活选用。作为研究侵入体间的接触关系的常用的岩石化学指数有:①氧化指数(OX'),属于同一岩浆分异系列的岩石,OX'的平均值向更酸性分异方向逐渐增加,如OX'值变化不连续,或为突变,则为不同次侵入岩浆的特点。②分异指数(DI)的应用效果也较好。不同次侵入的岩石分异指数不同。③固结指数(SI)可用以确定岩石是否结晶分异的。SI<40时,一般为结晶分异岩石特征。此外,诸如基性度指数(j),酸度系数(α)等均可选作研究岩体之间的接触关系。
(3)经典的岩石化学计算与图示法如A.H.Забарицкцй法[20]、王恒升、白文吉法(1975)[11]等。鉴于这些方法的原理、计算步骤等早已为人们所熟知,恕不赘述。但应指出,不论用哪种方法,如算得的数值在图示上的点连线是不连续的而有间断,或投影点的分布显示有局限于几个孤立区内的趋势,这一般是侵入接触关系的指示,如数值连续或投影点连线呈光滑的曲线,则通常是结晶相变的特点;例如赤柏松含镍-超基性岩体的3个主体岩相,经野外观察辉绿辉长岩变质程度较深,橄榄苏长辉长岩与斜长二辉橄榄岩间有混合过渡带,为隐秘侵入接触关系。它们在查氏图上(图3)分别分布在3个互不联系的孤立区内。
图3 吉林C基-超基性复式岩体查氏图解
(4)岩石化学成因信息法[12,13]用岩石化学成因信息法研究隐秘侵入接触关系,也可收到较好的效果。一般常量标型组分参数函数图像有4种情况:一是投影点连续呈光滑的单对曲线(图4(a)),它表示同一成因系列岩浆一次侵入结晶分异的演化特点;另一种是呈双对连续光滑曲线(图4(b)),表示所研究的岩体属两个成因系列或两期岩浆侵入产物,且每期都有连续结晶演化特点;第三种是在同一斜率上间断的单对曲线(图4(c)),只要所采样品有充分代表性,则这种间断表明岩体是同期不同次侵入的岩浆形成的复式岩体;最后一种是阶梯式间断或存在两对不连续的曲线(图4(d)),这种图像意味着岩体系由两期或两个成因系列的岩浆活动形成的[12],[13]。
2.4地球化学法
研究两种岩相接触关系的地球化学方法,旨在查明相接触的两种岩体的地球化学特点,以便通过比较而达到鉴别的目的。
图4 常量标型组分参数函数曲线图像[12]
如上所述,若取得的一系列地球化学数值或其图示为连续渐变趋势,则多半是岩浆连续结晶分异特点,相反,若为间断或突变,则多为不同期次的侵入关系。一般行之有效的常用方法有:
(1)痕量元素丰度法:如众所知,痕量元素在岩浆早期或晚期产物中的丰度取决其分配系数(λ)。
傅德彬地质学论文选集
研究表明,λ值受ΔH,TΔS的影响,而且是T,P的函数。因此,痕量元素在不同岩石中丰度的变化,即可反映其形成的物理、化学环境。此即为利用岩石中的痕量元素的丰度比较、判别岩石接触关系的理论基础。
(2)稀土元素(REE)配分型式法:犹如痕量元素及同位素一样,岩浆的不同演化途径、不同的分馏作用,酿成岩体中REE丰度的不同;不同岩体的岩石中HREE和LREE的含量(经陨石标准化石)及其配分型式不同,以此可以区分两种或数种岩体(相)间的接触关系的性质。
(3)对偶元素与同位素比值法:即用K/Rb,Ca/Sr,87Sr/86Sr,34S/32S,18O/16O等的比值来区分和鉴别岩体间的接触关系。往往同一比值在两种岩体中相同或相近,它们应是同期、次的产物,否则相反。
(4)同位素年代学法:所研究的两个(或数个)岩体的同位素年龄相同或相近,一般它们是同期次岩浆活动产物;如相差甚远,则为不同期次形成的。诚然,应用多种同位素年代学法并结合野外地质情况进行合理解释,这是行之有效的方法之一。但是,考虑到岩体凝固时间延续很长,加以测定尚有误差,故单凭年龄数据做出是否为隐秘侵入接触的结论,难以令人信服,尚需结合其他方法综合研究确定。
2.5热力学方法
这一方法主要是在有关测试数据的基础上,通过热力学计算,用所获得的岩体热变质温度,岩浆侵入时的温度,岩浆冷凝时间以及岩体中矿物结晶的温度、压力等热力学数据,配合其他方法来区分岩体接触关系,鉴别隐秘侵入接触。
鉴于这只是一个辅助方法,当前仅限于估算,精度不高,用来研究隐秘侵入接触的有效程度尚有很大争论,加之具体计算方法(如地质温度计、压力计等)广见于近年出版的大量中外地质文献[14~16],故笔者不拟于此详述。
应当指出,在上述方法中,地质观察研究法是基础,矿物-岩石学方法、岩石化学与地球化学方法是主要的,而热力学方法只是一种辅助方法。在实际工作中,应以多种方法配合使用为宜,因为面对错综复杂的具体研究对象,事先很难说出究竟哪种方法是最有效的,更何况每一种方法本身都有其一定的有效适用范围。此外,所述方法既然能研究隐秘侵入接触,想必对一般明显的侵入接触关系更为适用。
最后,作者向在研究“隐秘侵入接触”过程中给予很多具体指导和启迪的王恒升导师与苏良赫教授表示由衷的感谢。
参考文献
[1]Полферов Д В. Γеология, геохимия и генезис месторождений медноникелевых сульфидных руд. Ленинград《НЕДРА》.
[2] Смирнов В И. Γеология полезных ископаемых издание третья пореработанное и дополненное. москва《НЕДРА》. 1976
[3] Н. В. Петровская. Природа,No. 11.
[4] 武汉地质学院 . 岩浆岩石学 ( 上、下册) . 北京: 地质出版社 . 1980
[5] 傅德彬 . 论 H 含镍基性-超基性岩侵入体的 “隐秘侵入接触”及其矿浆成矿问题 . 中国地质科学院年报 . 北京: 地质出版社 . 1981
[6] Соболев В С. Записки всесоюзного минералогического общества. вып 6.
[7] 甘肃第六地质队 . 白家嘴子碳化铜镍矿床地质 . 北京: 地质出版社 . 1984
[8] 徐培苍等 . 橄榄石有序-无序的测定及其意义 . 矿物岩石,1981,No3 ~ 4。
[9] 傅德彬 . 论 401 矿区一号岩体硫化铜镍矿的成因问题 . 吉林地质,1982,( 4)
[10] Заварицкий,А. Н. . Введение в Петрохимию изверженных горных пород. Изд. АН СССР. 1950
[11] 王恒升,白文吉 . 基性岩与超基性岩岩石化学计算及图解方法 . 地质学报,1975
[12] 傅德彬,崔立朝 . 侵入岩常量标型组分参数的函数图像及其成因信息 . 地质学报,1984,58 ( 2)
[13] 崔立朝,傅德彬 . 侵入岩常量标型组分参数函数曲线的拟合方法 . 吉林地质 . 1984,( 3) 。
[14] Jaeger,J. C. . Temperatures outside a cooling intrusive sheet. Am. J. Sci. 1959,( 257) : 44
[15] 北京钢铁学院 . 物理化学 . 北京: 中国工业出版社 . 1959
[16] 张儒瑷等 . 矿物温度计和矿物压力计 . 北京: 地质出版社 . 1983
张金昌 ,男,汉族,中共党员,河北唐县人,1959年1月生,教授级高级工程师,中国地质大学(北京)兼职教授,中国地质科学院研究生院硕士生导师。现任中国地质科学院勘探技术研究所所长,党委副书记,兼任中国地质科学院勘探技术研究所学术委员会委员,专业核心期刊《探矿工程(岩土钻掘工程)》编委。教育及工作经历 :1981年毕业于河北地质学院探矿工程专业获学士学位。1984年毕业于中国地质大学(北京)探矿工程专业获硕士学位。1985年1月分配到勘探所钻机三室从事科研工作。1987年7月任工程师专业技术职务。1987年6月---1991年12月在勘探所从事科研工作,任研究室副主任。1992年1月---1994年8月在勘探所从事科研工作。1992年12月被评聘为高级工程师。1994年9月---1995年9月到美国进修学习。1995年10月---2000年3月在勘探所设备工程室从事科研工作。1996年7月--2000年3 月任研究室主任(正处级),并担任党支部书记。2000年4月至2009年1月,任勘探所副所长(副司局级)、党委委员,分管所科研管理工作。2001年12月被评聘为探矿工程专业教授级高级工程师。2001年1月---2005年12月任第七届中国地质学会探矿工程专业委员会副主任委员。2006年1月起任第八届中国地质学会探矿工程专业委员会常务副主任委员。2003年7月起任全国标准化技术委员会委员。2006年5月---2006年7月在国家行政学院参加第七期国土资源厅局长培训班。2006年8月起任科技部国际合作重点及重大项目评审专家。2006年12月被廊坊市委、市政府聘为廊坊市第三届专家咨询服务委员会委员。2009年1月至2010年11月,任勘探所副所长(主持工作)、党委委员。2010年12月至今,任勘探所所长、党委副书记 。 研究方向:从事地质岩心钻探、水文水井和工程施工设备设计、工艺研究以及科研管理工作。 主持或参与完成的科研项目达16项,其中部级课题10项。国家863重点项目:2000m地质岩心钻探关键技术与装备 负责人地质调查科研计划项目:2000m以内地质钻探技术研究和应用示范 负责人深部探测技术与实验研究专项:科学超深井钻探技术方案预研究 负责人 作为主要成员先后参加或主持完成了部、院、所及横向市场科研项目16项,其中获部科技成果三等奖一项、二等奖二项、一等奖一项。参与完成的“水文水井气举钻探新技术”研究成果推广应用到全国30个省、市、区,并广泛应用于国外水井钻进工程中,产生经济效益数十亿元,1993年度获得原地质矿产部科技成果一等奖(排名第六);主持完成的“CG1900型全套管冲抓成孔设备、器具及施工工艺研究”项目,是原地质矿产部“九五”地勘高新技术研究开发项目,已于2001年通过部级鉴定。该项研究成果是我国自行设计制造的第一台大口径全套管冲抓施工设备,成果总体水平达到了国际同类技术先进水平,已广泛应用于国内外桩基施工中。2005年“CG型全套管冲抓成孔设备”入选国家重点新产品。2006年以来,又研制成功四种型号的旋挖搓管机,并出口俄罗斯、乌克兰等国,2011年又成功进入北美市场。2001年5月,担任编委副主任编辑完成的《天然气水合物勘探与开发技术译文集》是我国第一部主要介绍天然气水合物勘探与开发技术的译文集,对我国天然气水合物的勘探开发研究工作起到了积极的推动作用。2008—2009年,在青海省木里海拔4200米的高原冻土区成功实施“祁连山冻土区天然气水合物DK-1—DK-4科学钻探实验孔”,在130-170米之间发现了3个天然气水合物层。在高原冻土地区钻获天然气水合物在世界上尚属首次,标志着我国天然气水合物调查研究和取样钻探技术达到国际先进水平。2006—2007年开始担任863重点项目“2000m地质岩心钻探关键技术与装备”及地质调查计划项目“2000m以内地质钻探技术研究和应用示范”负责人。带领课题组,利用“2000米地质岩心钻探关键技术与装备”在山东乳山金青顶金矿区成功实施一倾角80度终孔深度达2212.8米的生产示范孔,标志着我国第一套具有自主知识产权的2000m深孔全液压动力头地质钻机系统研制成功,其中多项技术已走在世界前列,将大幅度提升我国深部岩心钻探装备设计、制造和配套实力,打破西方少数国家对深部地质岩心钻探装备市场的垄断。这两个项目的成功实施,使我国2000m以内全液压动力头钻机形成了系列化(300米—2000米),解决了长期制约我国地质岩心钻探效率提高的关键工艺技术问题,使我国地质岩心钻探技术和装备水平上了一个大台阶。筹划“十二·五”2000—5000m地质岩心钻探技术与装备相关课题的研究工作。负责的“深部探测技术与实验研究专项”课题12000—15000m“科学超深井钻探技术方案预研究”进展顺利。1、兀型钻架(桅杆)静动载及稳定性研究。2、SPC-150型水文水井钻机。3、SHB140/100气举反循环双壁钻具。4、SPJC-300型水文水井钻机。5、水文水井气举钻探新技术研究。6、SJ-1500型水文水井钻机。7、CG1900型全套管冲抓成孔设备及施工艺研究。8、高压旋喷注浆技术研究与开发。 1 全液压动力头水井钻机国产化若干问题 臧臣坤; 张金昌; 冯起赠 探矿工程 2009-02-252 地质岩心钻探技术及其在资源勘探中的应用 张金昌 探矿工程(岩土钻掘工程) 2009-08-253 2000m地质岩心钻探成套装备研制工作进展 张金昌 探矿工程(岩土钻掘工程) 2009-06-154 CG型全套管搓管成孔设备的研究和应用 宋志彬; 冯起赠; 和国磊; 王年友; 张金昌 探矿工程(岩土钻掘工程) 2009-06-155 再接再厉,创新钻掘技术 甘行平; 傅秉锋; 张金昌; 刘三意 探矿工程(岩土钻掘工程) 2006-02-256 回顾与展望 甘行平;张金昌; 刘三意 探矿工程(岩土钻掘工程) 2007-09-257 钻探技术面临的新形势、新机遇和新任务 张金昌; 冉恒谦; 刘芳霞 探矿工程 2007-09- 258 CG型全套管冲抓成孔设备及施工工艺 宋志彬; 冯起赠; 王年友; 张金昌 探矿工程 2007-09- 259 国产旋挖钻机市场现状分析及发展建议 周红军; 蒋国盛; 张金昌 探矿工程 2008-08-2610 岩溶地区水文水井钻探新技术 张金昌; 宋志彬; 冯起增 西部探矿工程 2005-12-3011 我国水文水井钻机发展综述 张金昌 探矿工程(岩土钻掘工程) 2005-09-3012 防渗加固高压旋喷注浆技术的研究与应用 宋志彬; 张金昌; 冯起增; 杨大根; 孙正基; 王年友 探矿工程(岩土钻 掘工程) 2003-01-2513 探矿工程(岩土钻掘工程)技术与可持续发展 张金昌 探矿工程(岩土钻掘工程) 2004-02-2514 江河堤坝垂直防渗高压喷射灌浆技术 张金昌; 宋志彬; 杨大根; 王年友 探矿工程 2000-09-2515 CG1900型全套管冲抓成孔设备、器具及施工工艺的研究和应用 张金昌; 宋志彬; 王年友; 杨大根 探矿工程(岩土钻掘工程) 2001-11-2516 我国水文水井钻机发展综述 张金昌 第十三届全国探矿工程学术研讨会论文专辑 2005-09-0117 2004年亚、非、拉水文水井钻探技术培训情况介绍 张金昌; 冉恒谦; 孟庆鸿; 张林霞 “十五”重要地质科技成果暨重大找矿成果交流会材料四——“十五”地质行业重要地质科技成果资料汇编 2006-12-0118 钻探技术新进展 张金昌 第十四届全国探矿工程(岩土钻掘工程)学术研讨会论文集 2007-10-0119 全液压动力头水井钻机国产化若干问题 臧臣坤 张金昌 《探矿工程》2009年2期 2009-02-0120 地质岩心钻探技术及其在资源勘探中的应用 张金昌 《探矿工程》2009年8期 2009-08-0121 中国地质钻探技术的发展及应用 张金昌 《矿业装备》2009年10月号 2009-10-0122 2000m地质岩心钻探成套装备研制工作进展 张金昌 《探矿工程》增刊 2009-10-0123 科学超深井钻探技术国内外现状 张金昌《地质学报》2010年6期 2010-06-01 1.1993年度获得原地质矿产部科技成果一等奖。2.2003年被国家教育部评为“优秀留学回国人才”。3.2008年、2010年获国土资源科学技术二等奖各一项。张金昌——中国社会科学院研究员张金昌,甘肃天水人,现为中国社会科学院工业经济研究所研究员,中国社会科学院研究生院教授,北京智泽华软件公司董事长。先后出版《财务分析与决策》、《现代企业经营理财》、《企业经济学》(合著)、《21世纪的企业治理结构和组织变革》(合著)、《国际竞争力评价的理论与方法》、《打造国际竞争力》、《财务分析学教程》等专著。主持“加强我国企业竞争力研究”、“21世纪公司治理结构和企业组织变革展望”、“企业资金链断裂的成因和对策研究”等课题研究,在国内外刊物上发表重要论文100多篇,其中 “中国企业开拓国际市场的战略思考”(香港,《中国评论》杂志,2000年6期)、“中国养老保险部分积累模式的可行性分析”(〈 International social Security Review, Ma. USA VOL. 53,2000 No.4〉、“中国的劳动生产率:是高还是低?”(USA-China Economics Review,2002.vol.2, New york,中国工业经济2002年4期)等论文在国内外产生了一定反响。主持开发了《智能化财务分析系统》(2001)、《中国建设银行财务顾问专家系统》(2008)、《财务危机预警系统》(2006)、《中国农业银行财务风险分析预警系统》(2009)等软件。1986年毕业于西安建筑科技大学管理工程专业,1986-1993年在首都钢铁公司从事企业管理专业工作,期间考入南开大学研究生班并派往法国尼斯大学深造,获得法国DESS-CAAE学位。1993年回国到社科院从事企业管理、财务分析、竞争力方面的研究工作,主要研究领域为企业管理、国际竞争力与社会保障问题。2001年获得管理学博士学位。2008-2009在美国布鲁克大学以研究教授级访问学者名义进行国际合作研究。