电力拖动自动控制系统 课程涉及到各种电动机控制系统的模型建立、系统分析和系统设计等的基础理论。下面是我为大家整理的电力拖动自动控制系统论文,供大家参考。
《 浅析电力拖动自动控制系统 》
【摘 要】电力拖动控制系统是一种较为重要的控制系统,其在工业生产中发挥着很大的作用,随着社会的发展以及科技的推动,这一系统开始趋向于自动化的应用形式。电能在人们的生活中发挥着重要的作用,电器的种类越来越多,现代社会对电力的需求量也越来越大,所以,自动化的电力拖动控制系统,可以更好的满足人类社会对电力的需求。本文分析了电力拖动自动控制系统的设计原理,还介绍了电力拖动自动控制系统的安全防护,希望对相关电力人员有所帮助,使相关企业生产可以更加安全、稳定的进行。
【关键词】电力拖动;系统;自动控制;原理;安全防护
电力拖动系统在工业领域应用极其广泛,伴随着我国科技的发展,工业企业的生产效率越来越高,人类社会对电能的需求量也越来越大。很多工业企业引进了先进的机械设备,提高了企业的生产水平,同时也对电力拖动控制系统提出了更高的要求,所以,电力拖动控制系统的自动化也是企业未来发展的必然趋势。电力拖动自动控制系统是对传统系统的改进与优化,这种系统在运行的过程中,更加安全稳定,而且满足了企业对自动化机械设备生产运行的要求。为了使电力拖动自动控制系统发挥更大的效用,相关人员要研究出更加完善的安全防护 措施 ,这也可以为企业增产以及效益提升做出更大的贡献。
1.电力拖动自动控制系统的设计原理
电力拖动控制系统在工业企业生产中发挥着重要的作用,工作人员在系统运行的过程中,可以更好的掌握电动机的运行状况,还可以通过信息反馈,了解企业生产运行机制的运转情况,比较常见的反馈信息是电流信息。电力拖动控制系统中包含着很多的构件,其中电气设备是生产运行机制中比较重要的系统,其也是企业实现机械自动控制的关键因素。在利用计算机设备,可以在系统运行的过程中,可以直观的从 显示器 中,了解设备的运行状况,通过计算机等设备的信息反馈,可以有效的实现电力拖动的自动化控制。
实现电力拖动控制系统的自动化运行,需要借助先进的计算机技术,相关工作人员通过计算机信息的反馈,以及企业生产需求的变化,可以有效的制定出不同的控制方案,还可以实现机械运行的自动化生产。在这一过程中,计算机的编程起着至关重要的作用,计算机不但具有强大的计算等功能,还具有操作便捷等特点,所以,工作人员一定要多了解计算机相关知识,这样才能编制出独立的驱动程序,实现多种设备的自动控制。工作人员还要利用计算机操作技术,实现系统的对接测试,这些步骤有利于简化电力拖动自动化控制编程。电力拖动自动控制系统的各项参数可以认为调动,根据不同的要求,技术人员可以更改编程,所以这项工作具有一定的变动性。但是从系统的设计原理来看,电力拖动自动控制系统在调整的过程中,需要遵循一定的设计原则,其主要是利用计算机作为控制中心,而且是通过信号传输完成下达命令以及执行命令这一系列工作。
2.电力拖动系统自动控制的内容选择
2.1电力拖动自动控制系统对电动机的选择
电动机功率的选择应当与生产机械标准要求直接挂钩,要选择与其相匹配,能够拥有一定负载的电动机,这样,才能保证生产机械的正常运行。电动机采用直流还是交流电需要结合企业经济、技术等方面综合考量,通常情况,企业只需要选择操作简单,稳定性强、价格低廉的交流异步电动机。但如果所在企业生产机械功率大、调速范围广,则可以采用调速性能优质的直流电动机。在选择电动机时也要考虑后期维护问题,任何系统在使用一段时间后,都可能因为外界因素的干扰而出现故障,为了降低线路损坏对企业生产效益的影响,设计人员一定保证维护工作的便捷性,便于及时抢修。
2.2电力拖动自动控制系统对电器控制线路的选择
电器控制线路的选择是电力拖动自动控制系统中一项重要的工作,其不但影响着整个控制系统的安装设计,也影响着电器选择的质量,在选择电器控制线路时,需要参考不同部件的特点以及生产的需求,在控制线路时,要利用总体框架,细化生产线路中局部电器的控制,还要考虑不同设备之间的关联,将局部电器控制融入整体线路控制中,构成完整的控制线路。
在设计的过程中,还要保证线路运行的稳定性以及安全性,这样才能有效的提高企业的生产效率,降低生产过程中安全事故发生的概率。电器控制线路的选择,需要保证元件选择的正确性,所以,设计人员一定要选择性能良好的设备,这样能延长设备使用年限,还能降低外界因素对电器的影响与干扰,使电器的运行线路更加稳定。相对而言,选择安全可靠的继电器,可以降低电器出现故障的概率,也可以降低设备维修的成本。另外,在选择具体的电器控制线路时,设计人员还要注意以下几点内容:
2.2.1触头设计
在选择电器控制线路时,首先要保证线路中的电器触头可以有效的对接在一起。比如,有的线路中,将常闭与常开的电器触头连接在一起,这两种电器处于不同的电源中,很容易因为触头的长期接触而出现短路等问题,而且如果该线路的绝缘防护措施做的不好,则很容易引发线路的安全故障。
2.2.2电器线圈联接
在设计电器的线圈联接时,要注意线路中的电器线圈是否联接正确,如果出现线圈设计失误问题,一定要及时处理,否则也会影响线路的正常运行。在检测电器线圈的联接时,要观察串联的线圈是否存在于交流控制线路中,要保证两个线圈的外加电压不能超过额定电压,另外,非并联的线圈也不能直接联接。
3.电力拖动自动控制系统的安全防护
3.1短路保护
短路故障一般是因为电流短路而造成局部电气设备绝缘体过热损害,电流过大,容易造成强大的电磁脉冲进而产生电动应力,进而损害电力拖动自动控制系统或各种电器设备。
3.2过流保护
如果使用电动机不当,很容易使得电动机超负荷运作,这样会引起电动机局部过电流,一般的过电流能量是正常启动电动机电流的数倍,因此容易损害电动机及系统元器件。
3.3热保护
任何元器件在经过长时间工作时都会出现过热现象,如果电动机绕组或长时间超载运行,那么势必会造成自身温度高于允许值,进而导致电动机出现故障,为避免过热损害,可以采用多个电动机相替换的 方法 进行热保护。
4.结语
综上所述,本文对电力拖动自动控制系统的设计原理、设计时电动机以及电器线路的选择进行了介绍,这些内容可以有效的保证电力拖动控制系统的稳定运行。另外,笔者还对电力拖动自动控制系统的安全防护提出了几点建议,希望对相关设计人员有所帮助,从而提高该系统的安全性以及稳定性,使其在工业生产应用的过程中,发挥更大的效用。
【参考文献】
[1]王春凤,杨耕.电力电子与运动控制实验平台安全性建设[J].实验技术与管理,2011(07).
[2]陈伯时.电力拖动自动控制系统―运动控制系统[M].北京:机械工业出版社,2003.
[3]黄华.浅析电力系统中的电器控制线路设计[J].科技信息,2010(35).
《 试论电力拖动自动控制系统 》
摘要:随着社会的高速发展,更多电器的出现导致电力的需求不断攀升,因而人们对电力拖动控制系统自动化程度提出了更高更新的要求。鉴于此,拟通过对电力拖动控制系统的设计原理、设计方案的确定、设计应遵循的规章以及安全防护等内容进行分析,为使用者与企业提供借鉴与参考。
关键词:电力拖动 自动控制 运行
中图分类号:TM76 文献标识码:A 文章 编号:1007-3973(2012)010-028-02
1 引言
随着科技日新月异的发展,机械自动化程度与生产水平达到了前所未有的高度,在当前的工业生产领域中,电力拖动自动控制系统得到了广泛的应用。电力拖动自动控制系统的优势在于:一方面可以保障自身 系统安全 稳定运行;另一方面可以满足企业机械生产要求。电力拖动系统可以很好的对电动机、各类继电器等原件进行保护,进而减少系统运行过程中故障发生概率。因此,研究电力拖动自动控制系统,提升其自动化程度,增强其安全性,完善其功能,对于企业而言是至关重要的。
2 电力拖动系统自动控制原理及其设计
2.1 电力拖动系统自动控制原理
操作人员在电力拖动控制系统运行过程中可以得到电动机各信息的反馈,例如电流反馈等。在电力拖动控制系统中,电气设备是实现机械自动控制的核心器件。计算机系统在此过程中的主要作用是显示信息显示、运行连锁、安全保护等信息,同时其也是电力拖动系统自动控制实现的唯一途径。
在计算机系统中,操作人员可以利用计算机根据实际生产需求实行不同的自动控制方案。电力拖动自动控制主要是利用计算机完成逻辑计算、功能模块化、编程等工作,然后为操作人员提供独立于机械设备的仪器驱动程序,方便使用者可以较快的将程序与自己的系统进行对接测试,方便编程。虽然电力拖动自动控制系统的各项参数及要求的设定“因人而异”。但从系统的本质来讲,系统构成的基本原理还是殊途同归的,即以计算机为系统的集中控制中心,信号输入给计算机下达指令,信号输出执行指令。电力拖动自动控制系统计算机接收信号与输出信号的系统反应如图1所示。
2.2 电力拖动自动控制系统方案的确定
在电力拖动自动控制设计方面,是否确定好方案与控制方式将会决定整个设计能否成功。如果宏观方案是正确切实可行的,那么生产设备各项指标达到要求的可能性才能得到保障。在设计时,即便出现某个控制环节设计的错误,也可以通过不断改进与测试达到要求,但如果宏观方案一开始就制定有问题,那么设计工作必须等到方案明确后重新开始。
学术领域认为,所谓电力拖动自动控制方案,其主要是依据不同的生产工艺要求,例如根据运动要求、加工效率、零部件加工精度等条件来决定电动机运行、类型、数量、传动方式等控制要求。最后将这些调研好的工艺要求与控制要求相结合,作为电气控制原理图设计电器原件选择的重要参考凭证。譬如说,在设计效率要求较高的加工机床时,拖动方式可以随机变化,如可以使用直流拖动,也可以使用集中拖动等。确定好拖动方案后,拖动电动机的数量以及各项参数也随之明了,控制方式的选择就是控制要求的选择。
2.3 电力拖动系统自动控制电动机的选择
在确定好电力拖动系统设计方案后,需要根据实际需求对电动机的数量、规格及各项参数如额定转速、功率等进行选择与确定。笔者通过 总结 ,归纳出电动机在选择方面应当遵循以下几点:
(1)电动机功率的选择应当与生产机械标准要求直接挂钩,要选择与其相匹配,能够拥有一定负载的电动机,这样,才能保证生产机械的正常运行。此外,在明确电动机功率时,还需对以下三大要素进行综合考虑:1)允许过载能力;2)启动能力;3)电动机发热。确决定电动机功率选择的核心条件是电动机容量,通常,电动机容量容易受外界环境影响,所以电动机额定功率的确定要进行多次校验确认。
(2)电动机采用直流还是交流电需要结合企业经济、技术等方面综合考量,笔者认为,通常情况,企业只需要选择操作简单,稳定性强、维护遍历、价格低廉的交流异步电动机即可。但如果所在企业生产机械功率大、调速范围广,则可以采用调速性能优质的直流电动机。
(3)电动机额定转速需要结合以下方面来选择,主要是看所在企业机械匹配的技术经济程度,如企业所需电动机需拥有较高的使用寿命,并较少使用,那么就需要结合企业经济、技术等多方面因素来选择;如果企业使用电动机频繁,那么该电动机额定转速就需要以电动机的动能储存量来选择。
(4)必须在供电电网电压基础上选择电动机额定电压各参数,必须保证两者一致。电动机机构形式要根据企业的作业环境进行选择。
总而言之,电动机数量、规格以及各项参数的选择应当根据企业的经济、技术、作业环境、使用需求等多方面综合考虑来选择,要保证所选择的电动机既能满足企业生产机械的实际需求,又能够保证其运行的可靠性与实惠。
2.4 电力拖动设计中电器控制线路的设计
拖动方案与电动机的选择之后,其次是电器控制线路的设计。电器控制线路是整个电器选择与安装图设计的主要依据,通常,电器控制线路的设计方法是,根据所有部件不同的需求,根据控制线路的总体框架来细化局部线路,最后根据生产机械的实际需求与相互关联,将局部线路统筹规划到线路总体框架中,形成一个完整的控制线路。
设计前期调研:控制线路设计之初,设计者需要对企业生产工艺与机械实际需求进行调研。对于一般企业而言,控制线路仅需要满足下属三种功能即可:即制动、起动与反向。生产机械工艺较大的企业通常还需要平滑调速、安全预警功能等。另外,操作者能否对控制线路做出及时反应,能否进行操作等问题也都需要设计人员在设计前调研明白。
设计过程的掌控:控制线路能否稳定安全运行取决于控制线路工作是否安全与稳定,因此在选择设计元件时,应当采用性能良好、使用期限长、抗干扰能力强、安全可靠、稳定的继电器,同时在规划具体线路时,笔者认为,设计人员还需要注意以下几点内容: (1)触头的设计,要保证所有电器触头必须全部正确对接。例如同一电器,如果将常闭与常开的辅助头放在一起,那么当将它们接在不同相的电源上时,很可能由于限位开关上的常开/闭触头产生电位差使得电路短路,如果线路没有良好的绝缘性,那么势必会造成电路短路事故。
(2)设计电器线圈联接时,要保证所有电器线圈正确联接。串联的两个电器线圈一般不能出现在交流控制电路中,即便串联的两个线圈的额定电压和等同于外加电压,也不允许非并联线圈连接。要实现接触器与接触器,接触器与线圈的同步,应当将所有线圈并联在电路中,使所有线圈承受相同的额定电压。
(3)设计后的控制机构,其后期维护与操作必须简单明了,在操作人员采用某种控制方式控制时,可以根据实际需求迅速、快捷的切换到其他控制方式,例如,在进行自动控制时,可以根据需求直接切换到手动控制,所有电控设备都需保证其后期运行的稳定性与维护的便利性,同时还需为其配置隔离电器,以便在仪器出现故障时进行抢修。
2.5 电力拖动自动控制系统设计应遵循的原则
笔者通过总结,归纳出当前电力拖动自动控制系统在设计时应当遵循的原则:
(1)经济简单化原则。企业在选择电力拖动自动控制系统时,都想要低廉的价格换来可靠的电力拖动控制系统。因此在设计过程中,设计人员应当尽最大努力将系统不必要的电器与触头数量进行减少,线路设计应当最优化。
(2)稳定、安全、可靠性原则。在经济简单化原则基础上选择稳定性、可靠性、安全性较强的元件。
3 电力拖动自动控制系统的安全防护
任何系统的出现都需要制定想匹配的安全防护措施,电力拖动自动控制系统亦是如此,一般情况下,电力拖动自动控制系统的安全防护分为两种:一种是计算机系统保护;另一种是电器保护。电器保护是最基本,也是必要的保护,其通常有过流保护、短路保护、欠压保护以及热保护。而计算机系统保护则是不可或缺的保护,它属于高级保护,主要是对确保系统运行、维稳等进行保护。笔者在下文将从以下几点对电力拖动自动控制系统的安全防护进行分析:
(1)短路保护:短路故障一般是因为电流短路而造成局部电气设备绝缘体过热损害,电流过大,容易造成强大的电磁脉冲进而产生电动应力,进而损害电力拖动自动控制系统或各种电器设备。
(2)过流保护:如果使用电动机不当,很容易使得电动机超负荷运作,这样会引起电动机局部过电流,一般的过电流能量是正常启动电动机电流的数倍,因此容易损害电动机及系统元器件。
(3)欠压保护:系统运行过程中,如果电源电压不能满足电动机正常运作的需求,容易造成系统因欠压而减缓电动机速率甚至同志运作,当负载矩不变时,可以适当的增加电源来提压。另外,欠压还会造成电气释放问题,进而影响系统所有器件的正常工作,情况严重时还会出现系统故障。所以,笔者认为,当电压达到电动机电压临界值时,可以采取切断电源措施来进行保护。
(4)热保护:任何元器件在经过长时间工作时都会出现过热现象,如果电动机绕组或长时间超载运行,那么势必会造成自身温度高于允许值,进而导致电动机出现故障,为避免过热损害,可以采用多个电动机相替换的方法进行热保护。
(5)安全链:安全链的保护主要涉及五个方面。1)欠压保护的控制;2)过流保护的控制;3)水压保护;4)油压保护;5)轴瓦温度保护。安全链是将上述五种保护串联在一起的保护,无论其中哪个环节出现问题,计算机都会直接将自动控制系统关闭。
(6)运行连锁和启动连锁的保护:当计算机接收到信号后,电力拖动自动控制的实现主要是通过计算机所配置的程序完成,该过程主要是预防系统运行时信号条件的消失或电动机缺乏条件启动的保护。
4 结论
本文通过对电力拖动自动控制系统各方面的研究,提出了加强、完善系统设计与安全防护的意见,以期为设计者与使用者提供帮助。
参考文献:
[1] 王春凤,李旭春,杨耕.电力电子与运动控制实验平台安全性建设[J].实验技术与管理,2011(07).
[2] 陈伯时.电力拖动自动控制系统——运动控制系统[M].北京:机械工业出版社,2003.
[3] 黄华.浅析电力系统中的电器控制线路设计[J].科技信息,2010(35).
[4] 罗毅,李莺.浅析电力拖动系统稳定运行的充要条件[J].太原师范学院学报(自然科学版),2006(02).
有关电力拖动自动控制系统论文推荐:
1. 自动化专业自荐信范文
2. 浅谈电力优质服务论文
3. 自动化专业求职方向
4. 浅谈电力安全管理论文
5. 有关电气工程及其自动化硕士论文
6. 有关电力锅炉技术论文
机电毕业论文-实现变频调速器多电机控制
[摘要]本文介绍了一种plc与变频调速器构成的多分支通讯网络,阐明了该网络控制调速系统与一般模拟量控制调速系统相比的优越性,给出了系统框图及plc程序。
[关键词]plc变频调速器多电机控制网络通讯协议
一、引言
以变频调速器为调速控制器
的同步控制系统、比例控制系统和同速系统等已广泛应用于冶金、机械、纺织、化工等行业。以比例控制系统为例,一般的系统构成如图1所示。
工作时操作人员通过控制机(可为plc或工业pc)设定比例运行参数,然后控制机通过d/a转换模件发出控制变频调速器的速度指令使各个变频调速器带动电机按一定的速度比例运转。此方案对电机数目不多,电机分布比较集中的应用系统较合适。但对于大规模生产自动线,一方面电机数目较多,另一方面电机分布距离较远。采用此控制方案时由于速度指令信号在长距离传输中的衰减和外界的干扰,使整个系统的工作稳定性和可靠性降低;同时大量d/a转换模件使系统成本增加。为此我们提出了plc与变频调速器构成多分支通讯控制网络。该系统成本较低、信号传输距离远、抗干扰能力强,尤其适合远距离,多电机控制。
二、系统硬件构成
系统硬件结构如图2所示,主要由下列组件构成;
1、fx0n—24mr为plc基本单元,执行系统及用户软件,是系统的核心。
2、fx0n—485adp为fx0n系统plc的通讯适配器,该模块的主要作用是在计算机—plc通讯系统中作为子站接受计算机发给plc的信息或在多plc构成n:n网络时作为网络适配器,一般只作为规定协议的收信单元使用。本文作者在分析其结构的基础上,将其作为通讯主站使用,完成变频调速器控制信号的发送。
3、fr—cu03为fr—a044系列比例调速器的计算机连接单元,符合rs—422/rs—485通讯规范,用于实现计算机与多台变频调速器的连网。通过该单元能够在网络上实现变频调速器的运行控制(如启动、停止、运行频率设定)、参数设定和状态监控等功能,是变频器的网络接口。
4、fr—a044变频调查器,实现电机调速。
在1:n(本文中为1:3)多分支通讯网络中,每个变频器为一个子站,每个子站均有一个站号,事先由参数设定单元设定。工作过程中,plc通过fx0n—485adp发有关命令信息后,各个子站均收到该信息,然后每个子站判断该信息的站号地址是否与本站站号一致。若一致则处理该信息并返回应答信息;若不一致则放弃该信息的处理,这样就保证了在网络上同时只有一个子站与主站交换信息。
三、软件设计
1、通讯协议
fr—cu03规定计算机与变频器的通讯过程如图3所示,
该过程最多分5个阶段。?、计算机发出通讯请求;?、变频器处理等待;?、变频器作出应答;?、计算机处理等待;?、计算机作出应答。根据不同的通讯要求完成相应的过程,如写变频器启停控制命令时完成?~?三个过程;监视变频器运行频率时完成?~?五个过程。不论是写数据还是读数据,均有计算机发出请求,变频器只是被动接受请求并作出应答。每个阶段的数据格式均有差别。图4分别为写变频器控制命令和变频器运行频率的数据格式。
2、plc编程
要实现对变频器的控制,必须对plc进行编程,通过程序实现plc与变频器信息交换的控制。plc程序应完成fx0n—485adp通讯适配器的初始化、控制命令字的组合、代码转换及变频器应答信息的处理等工作。plc梯形图程序(部分程序)如图5所示。
程序中通讯发送缓冲区为d127~d149;接受缓冲区为d150~d160。电机1启动、停止分别由x0的上升、下降沿控制;电机2启动、停止分别由x1的上升、下降沿控制;电机3启动、停止分别由x2的上升、下降沿控制。程序由系统起始脉冲m8002初始化fx0n—485adp的通讯协议;然后进行启动、停止信号的处理。以电机1启动为例,x0的上升沿m50吸合,变频器1的站号送入d130,运行命令字送入d135,enq、写运行命令的控制字和等待时间等由编程器事先写入d131、d132、d133;接着求校验和并送入d136、d137;最后置m8122允许rs指令发送控制信息到。变频器受到信号后立刻返回应答信息,此信息fx0n—485adp收到后置m8132,plc根据情况作出相应处理后结束程序。
四、变频器制动的思路和新方法
在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能
对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。
在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。
1、能耗制动
利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。
其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。
一般在通用变频器中,小功率变频器(22kw以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kw以上)就需外置刹车单元、刹车电阻了。
2、回馈制动
实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。
回馈制动的优点是能四象限运行,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。
3、新型制动方式(电容反馈制动)
3.1主回路原理
整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块igbt、充电、反馈电抗器l及大电解电容c(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块igbt组成。保护回路,由igbt、功率电阻组成。
(1)电动机发电运行状态
cpu对输入的交流电压和直流回路电压νd的实时监控,决定向vt1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380vac—530vdc)高到一定值时,cpu关断vt3,通过对vt1的脉冲导通实现对电解电容c的充电过程。此时的电抗器l与电解电容c分压,从而确保电解电容c工作在安全范围内。当电解电容c上的电压快到危险值(比如说370v),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制vt3的关断与开通,从而实现电阻r消耗多余的能量,一般这种情况是不会出现的。
(2)电动机电动运行状态
当cpu发现系统不再充电时,则对vt3进行脉冲导通,使得在电抗器l上行成了一个瞬时左正右负的电压,再加上电解电容c上的电压就能实现从电容到直流回路的能量反馈过程。cpu通过对电解电容c上的电压和直流回路的电压的检测,控制vt3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。
3.2系统难点
(1)电抗器的选取
(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。
(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。
所以笔者建议充电、反馈回路各采用一个电抗器。
(2)控制上的难点
(a)、变频器的直流回路中,电压νd一般都高于500vdc,而电解电容c的耐压才400vdc,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容c的瞬时充电电压为νc=νd-νl,为了确保电解电容工作在安全范围内(≤400v),就得有效的控制电抗器上的电压降νl,而电压降νl又取决于电感量和电流的瞬时变化率。
(b)、在反馈过程中,还得防止电解电容c所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。
3.3主要应用场合及应用实例
正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。
随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。
五、结语
1、实际使用表明,该方案能够实现plc通过网络对变频调速器的运行控制、参数设定和运行状态监控。
2、该系统最多可控制变频调速器32台,最大距离500m。
3、控制多台变频器,成本明显低于d/a控制方式。
4、随着变频器的增加,通讯延迟加大,系统响应速度低于d/a控制方式。
参考文献
1、韩安荣.通用变频器及其应用(第2版)[m].北京:机械工业出版社,
2、刘文兵(1981—)男从事过变频器的应用工作,现在台州富凌机电制造有限公司,从事变频器的设计与制造。
鸣谢
在论文完成之际,我真心地感谢在设计之中给予我帮助的荀延龙老师和各位同事,使我如期完成毕业论文,并使我终生受益。
在论文的完成过程中,系里的各位老师对我帮助很大。在此深表谢意!其他的同学也给予我许多关心和帮助,真诚地感谢他们。
步进电机作为执行元件, 是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。我为大家整理的电机控制技术论文,希望你们喜欢。
电机控制技术论文篇一
步进电机控制系统
摘要:步进电机作为执行元件, 是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展, 步进电机的需求量与日俱增, 在各个国民经济领域都有应用。
关键词:步进电机;执行元件;计算机;发展
1步进电机原理及特征
1.1步进电机的目前发展情况
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。当步进驱动器接收到一个脉冲信号, 它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”), 它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量, 从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度, 从而达到调速的目的。在非超载的情况下, 电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数, 而不受负载变化的影响, 即给电机加一个脉冲信号, 电机则转过一个步距角。这一线性关系的存在, 加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域使用步进电机进行控制变得非常简单。步进电机可以作为一种控制用的特种电机, 利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
1.2步进电机的特点
1.步进电动机工作时每相绕组不是恒定地通电, 而是按一定的规律轮流通电。 2.每输入一个脉冲电信号转子转过的角度称为步距角。 3.步进电机可以按特定指令进行角度控制, 也可以进行速度控制。角度控制时, 每输入一个脉冲, 定子绕组就换接一次, 输出轴就转过一个角度, 其步数与脉冲数一致, 输出轴转动的角位移量与输入脉冲成正比。速度控制时, 步进电机绕组中送入的是连续脉冲, 各相绕组不断地轮流通电, 步进电机连续动转, 它的转速与脉冲频率成正比。改变通电顺序, 即改变定子磁场旋转方向, 就可以控制电机正转或是反转。
1.3步进电机的一些典型运用场合
①步进电机主要用于一些有定位要求的场合。例如:线切割的工作台拖动,植毛机工作台(毛孔定位),包装机(定长度)。基本上涉及到定位的场合都用得到。
②广泛应用于ATM机、喷绘机、刻字机、写真机、喷涂设备、医疗仪器及设备、计算机外设及海量存储设备、精密仪器、工业控制系统、办公自动化、机器人等领域。特别适合要求运行平稳、低噪音、响应快、使用寿命长、高输出扭矩的应用场合。
③步进电机在电脑绣花机等纺织机械设备中有着广泛的应用,这类步进电机的特点是保持转矩不高,频繁启动反应速度快、运转噪音低、运行平稳、控制性能好、整机成本低。
目前用于电脑绣花机的步进电机多数为三相混合式步进电机,并采用细分驱动技术可以大大改善步进电机的运行品质,减少转矩波动,抑制振荡,降低噪音,提高步矩分辨率。
1.4 步进电机的运转原理及结构
步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
1.5 旋转
如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。
这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。
2电路设计分析
2.1 8253及8255驱动步进电机电路
①按图连接线路,利用8255 输出脉冲序列,开关K0~K6 控制步进电机转速,K7控制步进电机转向。8255 CS 接288H~28FH。PA0~PA3 接BA~BD;PC0~PC7 接K0~K7。
②编程:当K0~K6 中某一开关为“1”(向上拨)时步进电机启动,并且电机转动速度大小不同。K7 向上打电机正转,向下打电机反转。
2.2实验重要参数计算
由实际测试得,stepcount步数设定为约59步时。步进电机转动一圈。
由实验要求:先顺时针,每分钟6圈,转十分钟。约得stepcount=59*6*10=3540。
停止三秒:8086机器周期为1/5MHz.3s=1/5MHz*15*exp6即15M个机器周期的指令。
后逆时针,每分钟30圈,转十分钟。约得stepcount=59*30*10=17700。
2.3 实际问题及解决方法
①硬件连接及软件程序不够熟练,经多方面查资料,翻阅书籍,确定设计方案及硬件软件的具体设计内容。
②键盘及LED显示的控制不够理想,经程序的细心解读,最终达到了设计的目的。按10号键显示0。。。0030,按12号键显示1。。。0006,按14号键启动运行,按15号键停止运行。 ③转速控制,开始不够精确。经反复测试,最终确定为59步每圈。并计算出6R/MIN,30R/MIN的设定步数。
3总结体会
首先,利用星研集成环境软件编辑并运行程序,在STAR ES598PCI实验仪上调试实验结果,分析实验程序及硬件电路;然后,在利用原有源程序进行实验时,电机的转速控制不是很明显,这就要求修改控制步速Takesetpcount的数值,及8253的分频数,以使电机转速达到6r/min和30r/min。其次,调节8259控制键盘及显示,最终达到实时显示转速及转动方向,并用键盘控制其启动与停止。由于步进电动机的运转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步,所以希望清晰的看到电机的此特性。我们通过设定步速及转速,此时可以观测到电机的步进及转动一圈的步数。
参考文献
【1】王忠民,等。微型计算机原理(第二版)。西安:西安电子科技大学出版社,2007
【2】江晓安,董秀峰。模拟电子技术(第三版)。西安:西安电子科技大学出版社,2009
【3】李全利。单片机原理及接口技术。北京:高等教育出版社,2010
步进电机控制系统
韩 浩
(西安文理学院物理与机械电子工程系 陕西西安 710000)
摘要:步进电机作为执行元件, 是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展, 步进电机的需求量与日俱增, 在各个国民经济领域都有应用。
关键词:步进电机;执行元件;计算机;发展
1步进电机原理及特征
1.1步进电机的目前发展情况
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。当步进驱动器接收到一个脉冲信号, 它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”), 它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量, 从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度, 从而达到调速的目的。在非超载的情况下, 电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数, 而不受负载变化的影响, 即给电机加一个脉冲信号, 电机则转过一个步距角。这一线性关系的存在, 加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域使用步进电机进行控制变得非常简单。步进电机可以作为一种控制用的特种电机, 利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
1.2步进电机的特点
1.步进电动机工作时每相绕组不是恒定地通电, 而是按一定的规律轮流通电。 2.每输入一个脉冲电信号转子转过的角度称为步距角。 3.步进电机可以按特定指令进行角度控制, 也可以进行速度控制。角度控制时, 每输入一个脉冲, 定子绕组就换接一次, 输出轴就转过一个角度, 其步数与脉冲数一致, 输出轴转动的角位移量与输入脉冲成正比。速度控制时, 步进电机绕组中送入的是连续脉冲, 各相绕组不断地轮流通电, 步进电机连续动转, 它的转速与脉冲频率成正比。改变通电顺序, 即改变定子磁场旋转方向, 就可以控制电机正转或是反转。
1.3步进电机的一些典型运用场合
①步进电机主要用于一些有定位要求的场合。例如:线切割的工作台拖动,植毛机工作台(毛孔定位),包装机(定长度)。基本上涉及到定位的场合都用得到。
②广泛应用于ATM机、喷绘机、刻字机、写真机、喷涂设备、医疗仪器及设备、计算机外设及海量存储设备、精密仪器、工业控制系统、办公自动化、机器人等领域。特别适合要求运行平稳、低噪音、响应快、使用寿命长、高输出扭矩的应用场合。
③步进电机在电脑绣花机等纺织机械设备中有着广泛的应用,这类步进电机的特点是保持转矩不高,频繁启动反应速度快、运转噪音低、运行平稳、控制性能好、整机成本低。
目前用于电脑绣花机的步进电机多数为三相混合式步进电机,并采用细分驱动技术可以大大改善步进电机的运行品质,减少转矩波动,抑制振荡,降低噪音,提高步矩分辨率。
1.4 步进电机的运转原理及结构
步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
1.5 旋转
如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。
这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 2电路设计分析
2.1 8253及8255驱动步进电机电路
①按图连接线路,利用8255 输出脉冲序列,开关K0~K6 控制步进电机转速,K7控制步进电机转向。8255 CS 接288H~28FH。PA0~PA3 接BA~BD;PC0~PC7 接K0~K7。
②编程:当K0~K6 中某一开关为“1”(向上拨)时步进电机启动,并且电机转动速度大小不同。K7 向上打电机正转,向下打电机反转。
2.2实验重要参数计算
由实际测试得,stepcount步数设定为约59步时。步进电机转动一圈。
由实验要求:先顺时针,每分钟6圈,转十分钟。约得stepcount=59*6*10=3540。
停止三秒:8086机器周期为1/5MHz.3s=1/5MHz*15*exp6即15M个机器周期的指令。
后逆时针,每分钟30圈,转十分钟。约得stepcount=59*30*10=17700。
2.3 实际问题及解决方法
①硬件连接及软件程序不够熟练,经多方面查资料,翻阅书籍,确定设计方案及硬件软件的具体设计内容。
②键盘及LED显示的控制不够理想,经程序的细心解读,最终达到了设计的目的。按10号键显示0。。。0030,按12号键显示1。。。0006,按14号键启动运行,按15号键停止运行。
③转速控制,开始不够精确。经反复测试,最终确定为59步每圈。并计算出6R/MIN,30R/MIN的设定步数。
3总结体会
首先,利用星研集成环境软件编辑并运行程序,在STAR ES598PCI实验仪上调试实验结果,分析实验程序及硬件电路;然后,在利用原有源程序进行实验时,电机的转速控制不是很明显,这就要求修改控制步速Takesetpcount的数值,及8253的分频数,以使电机转速达到6r/min和30r/min。其次,调节8259控制键盘及显示,最终达到实时显示转速及转动方向,并用键盘控制其启动与停止。由于步进电动机的运转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步,所以希望清晰的看到电机的此特性。我们通过设定步速及转速,此时可以观测到电机的步进及转动一圈的步数。
参考文献
【1】王忠民,等。微型计算机原理(第二版)。西安:西安电子科技大学出版社,2007
【2】江晓安,董秀峰。模拟电子技术(第三版)。西安:西安电子科技大学出版社,2009
【3】李全利。单片机原理及接口技术。北京:高等教育出版社,2010
电机控制技术论文篇二
步进电机的加减速控制
[摘 要]本文详细分析了步进电机及其工作原理,并基于MCS-51系列单片机设计步进电机的数字控制系统。在设计中加入了步进电机的细分技术和恒频脉宽调制技术。结合脉冲分配器的使用,开发了简单的细分驱动控制电路。
[关键词]步进电机;单片机;细分控制
中图分类号:F140 文献标识码:A 文章编号:1009-914X(2015)40-0038-01
一、引言
随着科学技术的发展和微电子控制技术的应用,步进电机作为一种可以精确控制的电机,广泛应用在高精密加工机床,微型机器人控制,航天卫星等高科技领域。
二、 步进电机的原理
步进电机是一种控制用的特种电机,它无法像传统电机那样直接通过输入交流或直流电流使其运行,而是需要输入脉冲电流来控制电机的转动,所以步进电机又称为脉冲电机。其功能是将脉冲电信号变换为相应的角位移或直线位移,即给一个脉冲电信号,电机就转动一个角度或前进一步。按励磁方式可以分为反应式、永磁式和混合式三种类型,本设计中选用的是反应式步进电机,其结构如图1所示。
这是一台四相反应式步进电机的典型结构。共有4套定子控制绕组,绕在径向相对的两个磁极上的一套绕组为一相,也就是说定子上两个相对的大齿就是一个相,电机按照A―B―C―D―A……的顺序不断接通和断开控制绕组,转子就会一步一步的连续转动。其转速取决与各控制绕组通电和断电的频率,即输入的脉冲频率。旋转的方向则取决与各控制绕组轮流通电的顺序。
三、步进电机的驱动控制
步进电机不能直接接到直流或交流电源上工作,必须使用专门的步进电机驱动控制器。步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不仅取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。
步进电机的驱动方式有很多种,包括单电压驱动、双电压驱动、斩波驱动、细分驱动、集成电路驱动和双极性驱动。本设计选用的是恒频脉宽调制细分驱动控制方式,这是在斩波恒流驱动的基础上的进一步改进,既可以使细分后的步距角均匀一致,又可以避免复杂的计算。
四、恒频脉宽调制细分电路的设计
1、脉冲分配的实现
在步进电机的单片机控制中,控制信号由单片机产生。它的通电换相顺序严格按照步进电机的工作方式进行。通常我们把通电换相这一过程称为脉冲分配。本设计中选用8713脉冲分配器芯片来进行通电换相控制。
2、系统控制电路设计
步进电机控制系统主电路设计如图2所示。
从上图可以看出,8713脉冲分配器的5、6、7引脚均接高电平,所以这是一个控制四相步进电机按四相八拍运行的控制电路。8751单片机的P1.0和P1.1端口分别与8713脉冲分配器的3引脚和4引脚相连。由8751单片机的P1.0端提供步进脉冲,P1.1端则控制步进电机的转向,输出高电平,步进电机正传;输出低电平,步进电机反转。单片机依然是控制的主体,它通过定时器T0输出20kHz的方波,送D触发器,作为恒频信号。同时,由8713脉冲分配器的脉冲输出端输出的方波脉冲信号作为控制信号,它的方波电压的每一次变化,都使转子转动一步。
当8713脉冲分配器的脉冲输出端输出的方波脉冲信号Ua不变时,恒频信号CLK的上升沿使D触发器输出Ub高电平,使开关管T1、T2导通,绕组中的电流上升,采样电阻上R2上压降增加。当这个压降大于Ua时,比较器输出低电平,使D触发器输出Ub低电平,T1、T2截止,绕组的电流下降。这使得R2上的压降小于Ua,比较器输出高电平,使D触发器输出高电平,T1、T2导通,绕组中的电流重新上升。这样的过程反复进行,使绕组电流的波顶呈锯齿形。因为CLK的频率较高,锯齿形波纹会很小。
当Ua上升突变时,采样电阻上的压降小于Ua,电流有较长的上升时间,电流幅值大幅增长,上升了一个阶段,但由于这里输出的是方波信号而不是阶梯信号,所以只有一个上升阶段,也就是说这个“阶梯信号”只包含了一个阶,并没有把每一步细分成许多步,而是令输出脉冲信号上升和下降的坡度变大,使原本的方波输出变的圆滑,实现了控制信号类似梯形的平滑处理,如图3所示。
同样,当Ua下降突变时,采样电阻上的压降有较长时间大于Ua,比较器输出低电平,CLK的上升沿即使会让D触发器输出1也马上清零。电源始终被切断,使电流幅值大幅下降,降到新的阶段为止。
以上过程重复进行。Ua每一次变化,就会使转子转过一个细分步。
在这个电路中有一个最突出的特点,那就是用8713脉冲分配器所输出的脉冲信号取代了典型恒频脉宽细分电路中D/A转换器所提供的阶梯控制信号。这样的设计极大的简化了电路,并且降低了脉冲分配的控制难度。虽然用方波信号取代了阶梯波信号,使得单一相运行时的细分程度有所降低,但是由于步进电机的四相绕组是同进进行工作的,所以也可以达到了步进电机细分驱动控制的目的。
六、结束语
当前,步进电机的应用正不断深入到日常生活和工业制造的各个方面,并且国内外对步进电机及其控制技术的研究也在不断的进步。这些知识的掌握在今后的工作和生活之中将会起到非常积极的影响。
参考文献
[1] 吴守箴,臧英杰等.电气传动的脉宽调制控制技术[M].北京: 机械工业出版社,2002.
[2] 王晓明.电机的单片机控制[M].北京航空航天大学出版社,2002.
[3] 李建忠主编.单片机原理及应用[M].西安:西安电子科技大学出版社,2008.
[4] 李仁定主编.电机的微机控制[M].北京:机械工业出版社,2004.
[5] 黄勇,廖宇,高林.基于单片机的步进电机运动控制系统设计[J].电子测量技术,2008,31(5):150-154.
看了“电机控制技术论文”的人还看:
1. 计算机控制系统论文
2. 有关计算机控制技术论文
3. plc应用技术论文
4. 计算机控制系统论文
5. 浅谈电机与电力拖动论文