您当前的位置:首页 > 发表论文>论文发表

数学专业论文开题报告

2023-12-10 22:42 来源:学术参考网 作者:未知

数学专业论文开题报告

数学硕士论文开题报告

导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!

一、数学文化的内涵

数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。

受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。

19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(R.Wilder),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。

他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。

二、数学文化研究的意义

区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。

数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。

数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。

数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。

如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。

数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。

三、数学的文化特征

1.数学的抽象性

在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫(A.D.Aleksandrov)说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”

数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。

2.数学的确定性

数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。

然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”

3.数学的继承性

科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。

从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。

四、提纲

目录

第1章 概述

1.1文化的内涵

1.2文明的内涵

1.3数学文化的内涵

1.4数学文化研究的意义与现状

第2章 数学的文化特征

2.1数学的文化特征

2.1.1数学的抽象性

2.1.2数学的确定性

2.1.3数学的继承性

2.1.4数学的简洁性

2.1.5数学的统一性

2.2数学的功能特征

2.2.1数学的渗透性

2.2.2数学的传播性

2.2.3数学的工具性

2.2.4数学的预见性

2.3数学的艺术特征

2.3.1数学的艺术性

2.3.2数学与音乐

2.3.3数学与美术

2.3.4数学与文学

第3章 数学与人类文明

3.1数学是人类逻辑能力的来源

3.2数学唤醒人类理性精神

3.3数学促进人类思想解放

3.4数学改善人类生活

3.5数学完善人类品格

3.6数学提高人类文化素质

第4章 数学与社会文明

4.1数学促进社会进步

4.2数学推动知识发展

第5章 我国数学文化与数学教育的研究进展

5.1数学文化与数学教育研究综述

5.2数学文化与数学教育活动进展

第6章 对数学教育的若干思考

6.1数学素养是国民文化素质的重要构成.

6.2数学教育现状

6.3数学文化教育亟需解决的问题与建议

结束语

参考文献

致谢

五、亟需解决的问题与建议

1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。

2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学

六、进度安排

20XX年11月01日-11月07日 论文选题。

20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。

20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。

20XX年12月10日-12月19日 确定并上交开题报告。

20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。

20XX年02月16日-02月20日 完成论文修改工作。

20XX年02月21日-03月20日 定稿、打印、装订。

20XX年03月21日-04月10日 论文答辩。

七、参考文献

[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.

[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.

[3]范森林.中国政治思想的起源[M/OL].

[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.

[5]郑毓信.数学哲学的内容和意义[J/OL].

[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.

[7]顾沛.数学文化[M],北京:高等教育出版社,2008.

[8]南开大学数学文化课程简介.

[9]吉林大学本科生数学文化课程教学大纲--数学文化.

[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.

[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.

[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).

[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.

[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.

[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.

[16]数学地质四川省高校重点实验室.

[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.

初中数学论文开题报告

初中数学论文开题报告范文

论文题目: 提高农村初中数学学困生成绩策略的研究开题报告

一、 课题提出的背景及意义:

新课标指出:“人人学有价值的数学”,“人人都能获得必要的数学”,“不同的人在数学上得到不同的发展”,“数学是人们生活、劳动和学习必不可少的工具”,这些都阐明了数学作为基础学科的重要性。而数学后进生就其个人成长来说,由于学科的基础与工具性,及将直接影响到对他们的后继教育、身心健康、全面发展与成才问题;对教育来说,关系到学科教学的平衡性与课程改革的重大战略和基础教育水平的根本大计;对国家来说,关系到劳动者的素质和综合国力的提升。可见,数学学困生的转化问题,成为当前教育常抓不懈的大课题。基础课程改革已经多年了,尽管《课程标准》和教材更新了,教师的教学观念、教学行为也有不同程度的改变,但数学后进生并没有减少,反而有增加的趋势。我所在的学校,近几年来数学成绩50分以下的人数比例逐年增加,很多教师都抱怨现在的学生是越来越难教了。要想改变这种教育质量低下的现状,学困生的转化是关键性问题。由于学困生的形成原因的复杂性,有其自身的原因,也有外部原因:家庭、学校、社会。在转化学困生方面,有许多工作是教师无能为力的、爱莫能助的,如父母离异、学校教育环境、教师素质、应试教育等等,但教师在转化学困生方面起的作用又是不可忽视的,因此我们应着重从教师教育方面来研究如何转化学困生。

二、 国内外关于该课题的研究现状及趋势

对于学困生的成长研究已成为国内外教育专家、理论工作者和实践工作者共同关注的问题。在我国,《中国人民教师》杂志,曾专门阐述学困生的几大困惑,并提供老师及时、有效的辅导案例,同时指出“(1)辅导要与激发兴趣有机结合起来;(2)辅导要新旧结合;(3)辅导要重点突出;(4)辅导中要争取家长配合。”许多优秀的教师结合着自己的教学经验,也提出了新观点,新思想。如:袁妙月(河南省洛阳孟津第一县直中学)发表了新课程标准下初中数学分层教学探究的观点,认为在教学中不能再采用“一刀切”的教学方法,应该面向不同的学生。黄鸿基(福建省晋江市安海镇杏坛学校)谈论了在辅导过程中消除后进生心理上的失败定势,从心理上让学困生不再怕学习,给了很好的指导。李瑞菊老师(上海市闵行区浦江第一中学)从学困生的现状及成因、改善师生关系使学困生进步、教学中多关注学困生,并做好学法指导以及对学困生开展形式多样的辅差工作等方面对数学学困生辅导工作进行了全面的分析。

20世纪70年代,荷兰瓦赫宁根大学发展社会学家Norman.Long创立的角色理论认为,学困生的形成是整个动力系统乃至人格角色偏差造成的,本身无法通过自我调整来改变,这就需要教育者的特定帮助以改变他们的社会角色;前苏联教育学者巴班斯基的同心圆理论认为,影响学生学业成绩的原因有两个:学习的可能性和教学的、发展的、教育的社会条件,前者与后者是内因和外因的关系,这种关系可以用若干同心圆组成的圆表示。20世纪80年代,日本教育学者北尾伦彦的研究表明,造成学习困难的因素可分三个层级,一次性因素是直接相关因素(包括教学内容、教法、学生学习态度与学习习惯等因素),二次性因素、三次性因素是间接相关因素(包括学生的非智力因素及环境因素)。对于学习困难学生,日本教育界往往通过学习困难学生“治疗日”来进行教育帮助,这种方法是大阪的一所中学提出来的,这些材料为我们调查分析作了很好的铺垫。

三、课题研究的理论依据:

1、学生的学习尤其需要情感、意志、求知欲、动机等情意因素的积极参与。其中,动机在情意系统中居于核心地位,它是个体学习动力的主要来源,又是把各种动力因素联系在一起的纽带,直接影响学生的学习行为。就数学学习而言,大部分学习困难的学生都以认知障碍作为起点的,这与数学的特性与某些学生的思维发展水平不适应有关。由于数学语言具有高度的抽象性和概括性,学生学习数学时不能真正理解数学语言和意义,从而引起很多困难。以致在听课、阅读时造成误读、错误,进而成为认知上的障碍。

2、《江苏省中小学数学课程标准》中强调“改革教学过程,促进学生学习方式的改善”,对于学习困难的学生,教师要通过对教学内容的“操作化”组织,将“做”、“想”、“讲”有机结合,帮助“学困生”内化学习内容,帮助学生发现个人的学习成就和意义,指导学生检查和反思学习过程,激励学生更有效的开展学习。

3、美国心理学家布卢姆在掌握学习理论中指出,“许多学生在学习中未取得优异成绩,主要问题不是学生的智慧能力欠缺,而是由于未得到适当的教学条件和合理的帮助造成的”,“如果提供适当的学习条件,大多数学生在学习能力、学习速度、进一步学习动机等多方面变得十分相似”。

4、“低、小、多、快”原则:“低”即“低起点”;“小”即“小步子”;“多”即“多活动”;“快”即“快反馈”。

四、课题研究的内容和方法

(一)主要内容:

1、农村初级中学数学学困生的成因及学困生的心理分析,包括研究导致学困生学习困难的个人、学校、家庭以及社会因素。

2、数学课堂教学如何关注学困生、适应学困生,研究学困生的转化策略。

3、如何开展有效的课外辅导转变学困生。

4、教学日记促进学困生的转化的研究。

(二)研究方法:

借鉴现代教育理论,采取行动研究法,在实践中提升理论,在理论指导下完善实践。采取跟踪调查法、量化分析法等通过制定计划、方案实施、反思总结等阶段完成。

课题研究的目标:通过本课题的研究,探索一套适合农村初中实际情况让学困生喜欢数学、爱学数学的有效途径和方法,尊重和关爱可以唤醒、激励每一个学生。“只有不会教的教师,没有教不好的学生”,只要方法得当,通过教师的不懈努力,就一定能让每个学困生爱学数学,激发他们的学习兴趣,增强他们的求知欲望,使他们由“厌学”到“学有所获”到“乐学”,使他们能主动、积极地学习数学,从而大面积提高了教育教学质量。

五、课题研究的工作步骤

(一)课题研究准备阶段:

1、成立课题组成员,共同学习商讨制定课题实施方案

从2014年3月份开始,经过多次的商讨和修改,小课题《提高农村初中数学学困生成绩策略的研究》作为学校的一项教研课题在校开展,学校领导高度重视,希望能通过该课题的研究,带动学校的信息技术教学发展,提高教师的教科研能力,为教学服务,为提高学校的教学质量而尽力做好。3月份开始,我们开始按照“课题申请”要求成立了课题组,并召开了课题组成员会议,会议上商讨了如何具体分工、借鉴哪些方面的经验成果和教学理念,具体通过哪些步骤进行课题研究。课题组的成员都认真学习关于本课题研究的主要内容,研究并制定了课题方案。

2、有关理论学习

课题具体方案制定后,课题组成员就着手学习整理和课题相关的国内外相关理论和经验,了解国内外相关课题的思想理念、研究成果和研究进展情况,以此作为该课题具体开展的参考和借鉴。

3、课题组实验教师资料准备

实验班、对比班学生基本情况分析;课题研究的教案、论文等原始材料。

4、深入课堂分析

通过以上的学习,在夯实了理论基础的同时深入本校数学课堂,结合课题需要分析在我校课堂教学存在的问题,寻找适合我校课堂教学特点和共同点,明确课题开展的具体方向和实施过程,保证课题研究内容充实,实效性强,使课题研究具有科学性、时代性、指导性、可行性。

5、撰写开题报告

在理论学习的同时,进一步完善了课题的实施方案,撰写了开题报告,在请教过前辈和课题给讨论后,我再次修改了原来的课题实施方案和开题报告。

(二) 课题研究实施阶段

1、课题的确定后,为更深一步进行研究,进行调查是十分重要的。为此,根据几次的学生调查和老师课堂教学情况,了解学生学习数学心理障碍的`主要因素,掌握数据,了解现状,为课题方案的实施和课题的完成打下基础。

2、课题成员对课题的理解撰写有关论文、教学设计、案例、反思等。

3、对学生的课堂气氛进行跟踪了解。在测试中进行了解,及时发现问题,解决问题,看通过课堂训练能使学生达到所定的目标。

六、课题研究的结果:

(一)、初步找到了农村初中数学“学困生”的形成原因,并探索出转化“学困生”的措施方法。

(二)、经过近一年的课题研究,运用以上措施方法对“学困生”实施帮扶、转化,产生的比较好的效果:

1、学生对于数学的兴趣正逐步增强。

2、促进了“学困生”的主动发展。经过一年的实验,学生学习数学的积极性和主动性被充分调动起来,对数学学习表现出极大的热情和兴趣。

3、从最近两年中考、期中、期末调研考试成绩分析看,数学平均成绩在稳步提高,全市中考数学平均分列全市中游。特别是低分率下降幅度较大,说明“学困生”转化工作成绩较为显著。

七、可行性分析

九年制义务教育的目的是普及基础教育,合格率是检验一所学校办学是否成功的标准之一。我校地处三县交界,生源情况参差不齐,学困生所占的比例很大,严重影响了整个班级、整个年级的共同进步,严重影响了学校的声誉。这些学生刚入初中就已经学数学很困难,随着难度的逐渐加大,情况会越来越糟,初中学习生涯无疑是一种痛苦折磨。所以改善这类学生数学学习的信心、求知欲、学习动机、学习速度、思维发展水平等学习状况,不仅对学校来讲意义重大,而且对学生的一生的影响尤为重要。鉴于此,我申报了小课题,希望在专家的指导下,与数学组的同行一道,通过努力能够改善我校初中数学学困生的学习状况。

本课题研究中的“数学学困生”是指:智力与感官正常,但由于在数学学习中,学习方法或学习习惯不恰当,导致学习效果低下的学生。通过教师有针对性地帮助,这部分学生的数学成绩是可以提高的。

数学系开题报告

数学系开题报告范文

开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。

课题名称: 实积分与复积分的比较研究

一、课题的来源及意义

通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

二、国内外发展状况及研究背景

国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

三、课题研究的目标和内容

通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

四、本课题研究的方法

课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

五、课题的进度安排:

第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)

第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)

第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)

第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)

第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)

六、参考文献

[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004

[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001

[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002

[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004

[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002

[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79

[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103

[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41

[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)

[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页