数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,也就是对题目中的条件和结论既分析其代数含义又挖掘其几何背景,在代数与几何的结合上寻找解题思路。实现由代数形式与几何形式互化的数学化归思想。
第一,应用数形结合提高学生对数学知识的记忆
“记忆是智慧的仓库”人们知识经验的积累、技能的形成、技巧的熟练、思维能力的培养、事业的成就等都离不开良好的记忆能力。
初等教育中的数学知识是基础性知识,需要牢固地记忆并掌握这些基础知识,在此基础上做到灵活应用,在整个教学过程中这二者是相辅相成的,记忆正是掌握知识的基本手段,记忆的过程也就是知识积累的过程,有助于知识的深化。而且知识水平的提高更要以记忆为前提,有的学生面对一些数学问题束手无策,找不到解题的思路与方法,这与脑子里记忆的数学知识太少有关,只有对数学的基础知识记忆牢固,才能做到温故而知新,应用时才能熟能生巧,从而进一步发展数学思维,提高数学能力。
第二,应用数形结合训练学生的数学直觉思维能力
在数学里,存在着大量的直觉思维。这就是人们在求解数学问题时,运用已有的知识,从整体上对数学对象及其结构迅速识别、判断,进而做出大胆的猜想,合理的假设,并做出试探性的结论。用数形结合的方法解题,能直接揭示问题的本质,直观地看到问题的结果,且只需稍加计算或推导,就能得到确切的答案。
本文内容摘自: ,也希望能真心帮助到楼主。