傅立叶变换是从傅里叶级数推导出来的。
科学家傅里叶发现,任何周期信号(周期函数)都可以用正弦函数和余弦函数构成的无穷级数来表示,后世称为傅里叶级数。
对于非周期信号,可以看成周期为无穷大的周期信号,但根据傅立叶级数的公式,此时振幅趋于0,因此需要引入一个新的量——频谱密度函数。
频谱密度函数就是指数形式的傅立叶级数的系数与周期相乘并取周期趋于无穷大的极限。而这个过程就叫做傅立叶变换。
当然,常用的傅立叶变换的表达式是带入傅里叶级数的系数的表达式并化简后的结果,已经很难看出它的来源了。
傅立叶变换是数字信号处理领域一种很重要的算法,要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。
傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
傅立叶变换的提出:
用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。
一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。
傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅里叶变换算法对应的是反傅里叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。
因此,可以说,傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:
1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;
2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
4、离散形式的傅里叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
5、著名的卷积定理指出:傅里叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
扩展资料
傅里叶生于法国中部欧塞尔(Auxerre)一个裁缝家庭,9岁时沦为孤儿,被当地一主教收养。1780年起就读于地方军校,1795年任巴黎综合工科大学助教,1798年随拿破仑军队远征埃及,受到拿破仑器重,回国后于1801年被任命为伊泽尔省格伦诺布尔地方长官。
傅里叶早在1807年就写成关于热传导的基本论文《热的传播》,向巴黎科学院呈交,但经拉格朗日、拉普拉斯和勒让德审阅后被科学院拒绝,1811年又提交了经修改的论文,该文获科学院大奖,却未正式发表。
傅里叶在论文中推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅里叶级数(即三角级数)、傅里叶分析等理论均由此创始。
傅里叶由于对传热理论的贡献于1817年当选为巴黎科学院院士。
1822年,傅里叶终于出版了专著《热的解析理论》(Theorieanalytique de la Chaleur ,Didot ,Paris,1822)。这部经典著作将欧拉、伯努利等人在一些特殊情形下应用的三角级数方法发展成内容丰富的一般理论,三角级数后来就以傅里叶的名字命名。
傅里叶应用三角级数求解热传导方程,为了处理无穷区域的热传导问题又导出了当前所称的“傅里叶积分”,这一切都极大地推动了偏微分方程边值问题的研究。
然而傅里叶的工作意义远不止此,它迫使人们对函数概念作修正、推广,特别是引起了对不连续函数的探讨;三角级数收敛性问题更刺激了集合论的诞生。因此,《热的解析理论》影响了整个19世纪分析严格化的进程。傅里叶1822年成为科学院终身秘书。
由于傅里叶极度痴迷热学,他认为热能包治百病,于是在一个夏天,他关上了家中的门窗,穿上厚厚的衣服,坐在火炉边,结果因CO中毒不幸身亡,1830年5月16日卒于法国巴黎。
参考资料来源:百度百科-傅立叶变换
参考资料来源:百度百科-傅立叶
离散傅里叶变换:
傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。
离散化也就是要采样。我们知道,时域等间隔采样,频域发生周期延拓;频域采样,时域发生周期延拓。那么要得到时域频域都离散的结果,显然时域频域都要采样。周期延拓怎么办?只取一个周期就行了。
总结一下:
第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;
第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。
第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。
这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。
FFT:
这就是DFT的一种快速算法。
复数的加法乘法计算量很大,FFT利用了DFT中WN的周期性和对称性,把一个N项序列按奇偶分组,分为两个N/2项的子序列,继续分解,迭代下去,大大缩减计算量。具体算法就看那张蝶形图吧。
FFT对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅里叶变换,可以说是进了一大步。