您当前的位置:首页 > 发表论文>论文发表

数学与应用数学本科毕业论文选题

2023-12-07 22:01 来源:学术参考网 作者:未知

数学与应用数学本科毕业论文选题

一、调查报告参考选题

1、学前数学教育所面临的问题与挑战;

2、小学数学教育所面临的问题与挑战;

3、高中数学教育所面临的问题与挑战;

4、数学新教材的特点及存在问题;

5、数学学习中困难生的研究;

6、数学学习困难生的认知特点、成因及其教学对策;

7、数学学习态度、学习策略对中学生数学学习的影响;

8、中学生数学能力的性差别的调查报告。

9、影响解决数学问题的心理因素;

10、教学媒体在数学教学中的作用;

二、研究报告参考选题

1、数和算术的教与学的研究;

2、中学代数的教与学的研究;

3、中性几何的教与学的研究;

4、数学教学的创新;

5、数学史在数学教育中的作用;

6、数学教学评估的研究;

7、初中数学新旧教材比较研究;

8、培养学生解题能力的研究;

9、数学应用题解题困难分析及教学策略研究;

10、培养学生直觉思维能力的实验研究;

11、图形在中学数学中的实践研究;

12、小议现行中学几何课本的逻辑体系;

13、浅谈数学学习兴趣的培养;

14、如何处理数学学习中的认知冲突;

15、对数学教育现状的分析与建议;

16、如何评价高中学生的数学素质;

17、数学教学中的“理论联系实际”;

18、浅析课堂教学的师生互动;

三、数学专题参考选题

1、解析证法初探;

2、反例在数学教学中的应用;

3、谈谈类比法;

4、数学教学中如何渗透分类讨论;

5、注重创新性试题的设计;

6、生活中处处有数学;

7、数学几种课型的问题设计;

8、浅谈几何证明;

9、在不等式教学中培养学生的探究思维能力;

10、谈平面几何入门的概念教学;

11、数学教学设计随笔;

12、代数变形常用技巧及其应用;

13、“特征信息”的捕捉与解题最优化;

14、反思教学中的一题多解;

15、谈反函数的教学;

16、观察法及其在数学教育研究中的应用;

17、直觉思维在解题中的运用;

18、数学方法论与数学教学——案例三则。

本科数学毕业论文题目

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

2.1基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

2.2基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

3.1建立简化模型

3.1.1模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

3.2模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

3.3模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

数学专业毕业论文选题方向

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

数学与应用数学本科毕业论文怎么写

数学与应用数学专业毕业论文(设计)大纲

先修课程:数学与应用数学专业主要课程、教育类课程等
适用专业:数学与应用数学(本科、师范)

一、目的
培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。

二、论文选题
论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:
1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;
2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;
3.结合自己所学的专业知识,联系实际解决一些应用问题;
4.对中学有关数学课程的教材、教学方法进行专题研究;
5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;
6.对新课程改革的理论与实践进行探讨。
论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。

三、对毕业论文的基本要求
1.立论、观点要符合马克思主义基本原理;
2.对学术的探讨要符合科学性和逻辑性;
3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;
4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;
5.文字通顺,表达确切,书写规范,独立完成;
6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;
7.论文应包括英文名、英文摘要和英文关键词;
8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。

四、毕业论文成绩评定
1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。

毕业生毕业论文统一格式要求

一、论文用纸:B5纸打印。
二、论文标题:
1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文:
1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页