您当前的位置:首页 > 发表论文>论文发表

微积分发展简史2000字论文

2023-12-07 06:20 来源:学术参考网 作者:未知

微积分发展简史2000字论文

既然是发展史的话,就应该把微积分的来龙去脉说清楚
首先是微积分的启蒙,比如巴罗三角形等等
然后是牛顿的流数以及莱布尼茨建立的现代微积分符号
接下来可以讲一讲微积分的野蛮发展的时代,因为理论基础不扎实,微积分在整个18世纪引发了第二次数学危机
再接下来是柯西和威尔斯特拉斯建立了严谨的数学分析
最后可以讲讲微积分的现代发展,微分流形,微分拓扑等等

求一篇关于微积分应用的小论文(两千字就行)

高数论文
什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。
从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。
17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。
牛顿指出,“流数术”基本上包括三类问题。

(l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。

(2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。

(3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。

牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。

牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。
莱布尼茨使微积分更加简洁和准确

而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。

莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。

牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。

微积分的起源与发展历史

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。

思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理(即牛顿-莱布尼茨公式)。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。

至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨著《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页