您当前的位置:首页 > 发表论文>论文发表

人工智能导论论文5000字

2023-12-08 10:22 来源:学术参考网 作者:未知

人工智能导论论文5000字

智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!

建筑智能化设计的相关探讨

【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。

【关键词】智能建筑;智能化系统;设计

一、建筑智能化系统的设计原则

(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。

(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。

(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。

(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。

(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。

(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。

二、建筑智能化系统的设计

(一)供电系统设计

智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。

(二)接地系统设计

智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:

1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。

2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持0.7m以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。

(三)智能化管理间与智能化竖井

通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。

(四)综合布线系统设计

在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:

C=(102-H)/1.2 W=C-5

其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。

三、目前智能建筑存在的问题

(一)国产化系统集成产品

现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。

(二)技术障碍

在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。

(三)人才缺乏

从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。

智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。

四、结束语

智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。

参考文献:

[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期

[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期

[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)

下一页分享更优秀的>>>人工智能的论文

浅谈计算机人工智能论文

近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域。下面是我给大家推荐的浅谈计算机人工智能论文,希望大家喜欢!

《计算机在人工智能中的应用研究》

摘要:近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域。本文针对计算机在人工智能中的应用进行研究,阐述了人工智能的理论概念,分析当前其应用于人工智能所存在的问题,并介绍人工智能在部分领域中的应用。

关键词:计算机;人工智能;应用研究

一、前言

人工智能又称机器智能,来自于1956年的Dartmouth学会,在这学会上人们最初提出了“人工智能”这一词。人工智能作为一门综合性的学科,其是在计算机科学、信息论、心理学、神经生理学以及语言学等多种学科的互相渗透下发展而成。在计算机的应用系统方面,人工智能是专门研究如何制造智能系统或智能机器来模仿人类进行智能活动的能力,从而延伸人们的科学化智能。人工智能是一门富有挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学与哲学。人工智能是处于思维科学的技术应用层次,是其应用分支之一。数学常被认为是多种学科的基础科学,数学也进入语言及思维领域,人工智能学科须借用数学工具。数学在标准逻辑及模糊数学等范围发挥作用,其进入人工智能学科,两者将互相促进且快速发展。

二、人工智能应用于计算机中存在的问题

(一)计算机语言理解的弱点。当前,计算机尚未能确切的理解语言的复杂性。然而,正处于初步研制阶段的计算机语言翻译器,对于算法上的规范句子,已能显示出极高的造句能力及理解能力。但其在理解句子意思上,尚未获得明显成就。我们所获取的信息多来自于上下文的关系以及自身掌握的知识。人们在日常生活中的个人见解、社会见解以及文化见解给句子附加的意义带来很大影响。

(二)模式识别的疑惑。采用计算机进行研究及开展模式识别,在一定程度上虽取得良好效果,有些已作为产品进行实际应用,但其理论以及方法和人的感官识别机制决然不同。人的形象思维能力以及识别手段,即使是计算机中最先进的识别系统也无法达到。此外,在现实社会中,生活作为一项结构宽松的任务,普通的家畜均能轻易对付,但机器却无法做到,这并不意味着其永久不会,而是暂时的。

三、人工智能在部分领域中的应用

伴随着AI技术的快速发展,当今时代的各种信息技术发展均与人工智能技术密切相关,这意味着人工智能已广泛应用于计算机的各个领域,以下是笔者对于人工智能应用于计算机的部分领域进行阐述。具体情况如下。

(一)人工智能进行符号计算。科学计算作为计算机的一种重要用途,可分为两大类别。第一是纯数值的计算,如求函数值。其次是符号的计算,亦称代数运算,是一种智能的快速的计算,处理的内容均为符号。符号可代表实数、整数、复数以及有理数,或者代表集合、函数以及多项式等。随着人工智能的不断发展以及计算机的逐渐普及,多种功能的计算机代数系统软件相继出现,如Maple或Mathematic。由于这些软件均用C语言写成,因此,其可在多数的计算机上使用。

(二)人工智能用于模式识别。模式识别即计算机通过数学的技术方法对模式的判读及自动处理进行研究。计算机模式识别的实现,是研发智能机器的突破点,其使人类深度的认识自身智能。其识别特点为准确、快速以及高效。计算机的模式识别过程相似于人类的学习过程,如语音识别。语音识别即为使计算机听懂人说

的话而进行自动翻译,如七国语言的口语自动翻译系统。该系统的实现使人们出国时在购买机票、预定旅馆及兑换外币等方面,只需通过国际互联网及电话网络,即可用电话或手机与“老外”进行对话。

(三)人工智能计算机网络安全中的应用。当前,在计算机的网络安全管理中常见的技术主要有入侵检测技术以及防火墙技术。防火墙作为计算机网络安全的设备之一,其在计算机的网络安全管理方面发挥重要作用。以往的防火墙尚未有检测加密Web流量的功能,原因在于其未能见到加密的SSL流中的数据,无法快速的获取SSL流中的数据且未能对其进行解密。因而,以往的防火墙无法有效的阻止应用程序的攻击。此外,一般的应用程序进行加密后,可轻易的躲避以往防火墙的检测。因此,由于以往的防火墙无法对应用数据流进行完整的监控,使其难以预防新型攻击。新型的防火墙是通过利用统计、概率以及决策的智能方法以识别数据,达到访问受到权限的目地。然而此方法大多数是从人工智能的学科中采取,因此,被命名为“智能防火墙”。

(四)人工智能应用于计算机网络系统的故障诊断。人工神经网络作为一种信息处理系统,是通过人类的认知过程以及模拟人脑的组织结构而成。1943年时,人工神经网络首次被人提出并得到快速发展,其成为了人工智能技术的另一个分支。人工神经网络通过自身的优点,如联想记忆、自适应以及并列分布处理等,在智能故障诊断中受到广泛关注,并且发挥极大的潜力,为智能故障诊断的探索开辟新的道路。人工神经网络的诊断方法异于专家系统的诊断方法,其通过现场众多的标准样本进行学习及训练,加强调整人工神经网络中的阀值与连接权,使从中获取的知识隐藏分布于整个网络,以达到人工神经网络的模式记忆目的。因此,人工神经网络具备较强的知识捕捉能力,能有效处理异常数据,弥补专家系统方法的缺陷。

四、结束语

总而言之,人工智能作为计算机技术的潮流,其研究的理论及发现决定了计算机技术的发展前景。现今,多数人工智能的研究成果已渗入到人们的日常生活。因此,我们应加强人工智能技术的研究及开发,只有对其应用于各领域中存在的问题进行全面分析,并对此采取相应措施,使其顺利发展。人工智能技术的发展将给人们的生活、学习以及工作带来极大的影响。

参考文献:

[1]杨英.智能型计算机辅助教学系统的实现与研究[J].电脑知识与技术,2009,9

[2]毛毅.人工智能研究热点及其发展方向[J].技术与市场,2008,3

[3]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,1

[4]陈步英,冯红.人工智能的应用研究[J].邢台职业技术学院学报,2008,1

计算机导论论文

  大学计算机科学导论论文
  计算机科学与技术这一门科学深深的吸引着我们这些同学们,原先不管是国内还是国外都喜欢把这个系分为计算机软件理论、计算机系统、计算机技术与应用。后来又合到一起,变成了现在的计算机科学与技术。我一直认为计算机科学与技术这门专业,在本科阶段是不可能切分成计算机科学和计算机技术的,因为计算机科学需要相当多的实践,而实践需要技术;每一个人(包括非计算机专业),掌握简单的计算机技术都很容易(包括原先Major们自以为得意的程序设计),但计算机专业的优势是:我们掌握许多其他专业并不"深究"的东西,例如,算法,体系结构,等等。非计算机专业的人可以很容易地做一个芯片,写一段程序,但他们做不出计算机专业能够做出来的大型系统。今天我想专门谈一谈计算机科学,并将重点放在计算理论上。

  1)计算机语言
  随着20世纪40年代第一台存储程序式通用电子计算机的研制成功,进入20世纪50年代后,计算机的发展步入了实用化的阶段。然而,在最初的应用中,人们普遍感到使用机器指令编制程序不仅效率低下,而且十分别扭,也不利于交流和软件维护,复杂程序查找错误尤其困难,因此,软件开发急需一种高级的类似于自然语言那样的程序设计语言。1952年,第一个程序设计语言Short Code出现。两年后,Fortran问世。作为一种面向科学计算的高级程序设计语言,Fortran的最大功绩在于牢固地树立了高级语言的地位,并使之成为世界通用的程序设计语言。Algol60的诞生是计算机语言的研究成为一门科学的标志。该语言的文本中提出了一整套的新概念,如变量的类型说明和作用域规则、过程的递归性及参数传递机制等。而且,它是第一个用严格的语法规则——巴科斯范式(BNF)定义语言文法的高级语言。程序设计语言的研究与发展在产生了一批成功的高级语言之后,其进一步的发展开始受到程序设计思想、方法和技术的影响,也开始受到程序理论、软件工程、人工智能等许多方面特别是实用化方面的影响。在“软件危机”的争论日渐平息的同时,一些设计准则开始为大多数人所接受,并在后续出现的各种高级语言中得到体现。例如,用于支持结构化程序设计的PASCAL语言,适合于军队各方面应用的大型通用程序设计语言ADA,支持并发程序设计的MODULA-2,支持逻辑程序设计的PROLOG语言,支持人工智能程序设计的LISP语言,支持面积对象程序变换的SMALLTALK、C等。而且,伴随着这些语言的出现和发展,产生了一大批为解决语言的编译和应用中所出现的问题而发展的理论、方法和技术。有大量的学术论文可以证明,由高级语言的发展派生的各种思想、方法、理论和技术触及到了计算机科学的大多数学科方向,但内容上仍相对集中在语言、计算模型和软件开发方法学方面。

  (2)计算机模型与软件开发方法
  20世纪80年代是计算机网络、分布式处理和多媒体大发展的时期。在各种高级程序设计语言中增加并发机构以支持分布式程序设计,在语言中通过扩展绘图子程序以支持计算机图形学程序设计成为当时程序设计语言的一种时尚。之后,在模数/数模转换等接口技术和数据库技术的支持下,通过扩展高级语言的程序库又实现了多媒体程序设计的构想。进入20世纪90年代之后,并行计算机和分布式大规模异质计算机网络的发展又将并行程序设计语言、并行编译程序、并行操作系统、并行与分布式数据库系统等试行软件的开发的关键技术依然与高级语言和计算模型密切相关,如各种并行、并发程序设计语言,进程代数,PETRI网等,它们正是软件开发方法和技术的研究中支持不同阶段软件开发的程序设计语言和支持这些软件开发方法和技术的理论基础——计算模型。
  (3)计算机应用

  用计算机来代替人进行计算,就得首先研究计算方法和相应的计算机算法,进而编制计算机程序。由于早期计算机的应用主要集中在科学计算领域,因此,数值计算方法就成为最早的应用数学分支与计算机应用建立了联系。最初的时候,由于计算机的存储器容量很小,速度也不快,为了计算一些稍稍大一点的题目,人们常常要挖空心思研究怎样节省存储单元,怎样减少不需要的操作。为此,发展了像稀疏矩阵计算理论来进行方程组的求解;发展了杂凑函数来动态地存储、访问数据;发展了虚拟程序设计思想和程序覆盖技术在内存较小的计算机上运行较大的程序;在子程序和程序包的概念提出之后,许多人开始将数学中的一些通用计算公式和计算方法写成子程序,并进一步开发成程序包,通过简洁的调用命令向用户开放。子程序的提出是今日软件重用思想的开端。

  在计算机应用领域,科学计算是一个长久不衰的方向。该方向主要依赖于应用数学中的数值计算的发展,而数值计算的发展也受到来自计算机系统结构的影响。早期,科学计算主要在单机上进行,经历了从小规模数值分析到中大规模数值分析的阶段。随着并行计算机和分布式并行计算机的出现,并行数值计算开始成为科学计算的热点,处理的问题也从中大规模数值分析进入到中大规模复杂问题的计算。所谓中大规模复杂问题并不是由于数据的增大而使计算变得困难,使问题变得复杂,而主要是由于计算中考虑的因素太多,特别是一些因素具有不确定性而使计算变得困难,使问题变得复杂,其结果往往是在算法的研究中精度与复杂性的矛盾难于克服。

  几何是数学的一个分支,它实现了人类思维方式中的数形结合。在计算机发明之后,人们自然很容易联想到了用计算机来处理图形的问题,由此产生了计算机图形学。计算机图形学是使用计算机辅助产生图形并对图形进行处理的科学。并由此推动了计算机辅助设计(CAD)、计算机辅助教学(CAI)、计算机辅助信息处理、计算机辅助测试(CAT)等方向的发展。

  在各种实际应用系统的开发中,有一个重要的方向值得注意,即实时系统的开发。

  利用计算机证明数学定理被认为是人工智能的一个方向。人工智能的另一个方向是研究一种不依赖于任何领域的通用解题程序或通用解题系统,称为GPS。特别值得一提的是在专家系统的开发中发展了一批新的技术,如知识表示方法、不精确性推理技术等,积累了经验,加深了对人工智能的认识。20世纪70年代末期,一部分学者认识到了人工智能过去研究工作基础的薄弱,开始转而重视人工智能的逻辑基础研究,试图从总结和研究人类推理思维的一般规律出发去研究机器思维,并于1980年在《Artificial Intelligence》发表了一组非单调逻辑的研究论文。他们的工作立即得到一大批计算机科学家的响应,非单调逻辑的研究很快热火朝天地开展起来,人工智能的逻辑基础成为人工智能方向发展的主流。

  数据库技术、多媒体技术、图形学技术等的发展产生了两个新方向,即计算可视化技术与虚拟现实技术。
  随着计算机网络的发展,分布在全世界的各种计算机正在以惊人的速度相互连接起来。网络上每天都在进行着大量政治、经济、军事、外交、商贸、科学研究与艺术信息的交换与交流。网络上大量信息的频繁交换,虽然缩短了地域之间的距离,然而同时也使各种上网的信息资源处在一种很难设防的状态之中。于是,计算机信息安全受到各国政府的高度重视。除了下大力气研究对付计算机病毒的软硬件技术外,由于各种工作中保密的需要,计算机密码学的研究更多地受到各国政府的重视。
  实际上,在计算机科学中计算机模型和计算机理论与实现技术同样重要。但现在许多学生往往只注重某些计算机操作技术,而忽略了基础理论的学习,并因为自己是“操作高手”而沾沾自喜,这不仅限制了自己将研究工作不断推向深入,而且有可能使自己在学科发展中处于被动地位。例如,在20世纪50年代和20世纪60年代,我国随着计算机研制工作和软件开发工作的发展,陆续培养了在计算机制造和维护中对计算机某一方面设备十分精通的专家,他们能准确地弄清楚磁芯存储器、磁鼓、运算器、控制器,以及整机线路中哪一部分有问题并进行修理和故障排除,能够编制出使用最少存储单元而运算速度很快的程序,对机器代码相当熟悉。但是,当容量小的磁芯存储器、磁鼓、速度慢的运算器械、控制器很快被集成电路替代时,当程序设计和软件开发广泛使用高级语言、软件开发工具和新型软件开发方法后,这批技术精湛的专家,除少量具有坚实的数学基础、在工作中已有针对性地将研究工作转向其他方向的人之外,相当一部分专家伴随着新技术的出现,在替代原有技术的发展过程中而被淘汰。因此,在计算机科学中,计算比实现计算的技术更重要。只有打下坚实的理论基础,特别是数学基础,学习计算机科学技术才能事半功倍,只有建立在高起点理论基础之上的计算机科学技术,才有巨大的潜力和发展前景。

  计算机理论的一个核心问题

  我国计算机科学系里的传统是培养做学术研究,尤其是理论研究的人(方向不见得有多大的问题,但是做得不是那么尽如人意)。而计算机的理论研究,说到底了,如网络安全学,图形图像学,视频音频处理,哪个方向都与数学有着很大的关系,虽然也许是正统数学家眼里非主流的数学。这里我还想阐明我的一个观点:我们都知道,数学是从实际生活当中抽象出来的理论,人们之所以要将实际抽象成理论,目的就在于想用抽象出来的理论去更好的指导实践,有些数学研究工作者喜欢用一些现存的理论知识去推导若干条推论,殊不知其一:问题考虑不全很可能是个错误的推论,其二:他的推论在现实生活中找不到原型,不能指导实践。严格的说,我并不是一个理想主义者,政治课上学的理论联系实际一直是指导我学习科学文化知识的航标(至少我认为搞计算机科学与技术的应当本着这个方向)。
  我个人的浅见是:计算机系的学生,对数学的要求固然跟数学系不同,跟物理类差别则更大。通常非数学专业的所?高等数学",无非是把数学分析中较困难的理论部分删去,强调套用公式计算而已。而对计算机系来说,数学分析里用处最大的恰恰是被删去的理论部分。记上一堆曲面积分的公式,难道就能算懂了数学?那倒不如现用现查,何必费事记呢?再不然直接用Mathematica或是Matlab好了。退一万步。华罗庚在数学上的造诣不用我去多说,但是他这光辉的一生做得我认为对我们来说,最重要的几件事情:首先是它筹建了中国科学院计算技术研究所,这是我们国家计算机科学的摇篮。在有就是他把很多的高等数学理论都交给了做工业生产的技术人员,推动了中国工业的进步。第三件就是他一生写过很多书,但是对高校师生价值更大的就是他在病期间在病床上和他的爱徒王元写了《高等数学引论》(王元与其说是他的爱徒不如说是他的同事,是中科院数学所的老一辈研究员,对歌德巴赫猜想的贡献全世界仅次于陈景润)这书在我们的图书馆里居然找得到,说实话,当时那个书上已经长了虫子,别人走到那里都会闪开,但我却格外感兴趣,上下两册看了个遍,我的最大收获并不在于理论的阐述,而是在于他的理论完全的实例化,在生活中去找模型。这也是我为什么比较喜欢具体数学的原因,正如我在上文中提到的,理论脱离了实践就失去了它存在的意义。正因为理论是从实践当中抽象出来的,所以理论的研究才能够更好的指导实践,不用于指导实践的理论可以说是毫无价值的。

  正如上面所论述的,计算机系的学生学习高等数学:知其然更要知其所以然。你学习的目的应该是:将抽象的理论再应用于实践,不但要掌握题目的解题方法,更要掌握解题思想,对于定理的学习:不是简单的应用,而是掌握证明过程即掌握定理的由来,训练自己的推理能力。只有这样才达到了学习这门科学的目的,同时也缩小了我们与数学系的同学之间思维上的差距。

  关于计算机技术的学习我想是这样的:学校开设的任何一门科学都有其滞后性,不要总认为自己掌握的某门技术就已经是天下无敌手了,虽然现在Java,VB,C,C++用的都很多,怎能保证没有被淘汰的一天,我想.NET平台的诞生和X#语言的初见端倪完全可以说明问题。换言之,在我们掌握一门新技术的同时就又有更新的技术产生,身为当代的大学生应当有紧跟科学发展的素质。举个例子,就像有些同学总说,我做网页设计就喜欢直接写html,不愿意用什么Frontpage,Dreamweaver。能用语言写网页固然很好,但有高效的手段你为什么不使呢?仅仅是为了显示自己的水平高,unique? 我看真正水平高的是能够以最快的速度接受新事物的人。高级程序设计语言的发展日新月异,今后的程序设计就像人们在说话一样,我想大家从xml中应是有所体会了。难道我们真就写个什么都要用汇编,以显示自己的水平高,真是这样倒不如直接用机器语言写算了。反过来说,想要以最快的速度接受并利用新技术关键还是在于你对计算机科学地把握程度。

  总的来说,从教育角度来讲,国内高校的课程安排不是很合理,强调理论,又不愿意在理论上深入教育,无力接受新技术,想避开新技术又无法避得一干二净。我觉得关键问题就是国内的高校难于突破现状,条条框框限制着怎么求发展。我们虽然认识得到国外教育的优越性,但为什么迟迟不能采取行动?哪怕是去粗取精的取那么一点点。

人工智能导论的内容简介

为了详尽地阐述人工智能的核心知识,必须有一条主线将这些知识串联起来。本书所确定的主线是从实现人工智能的角度,将有关知识划分为哲学基础和工程实践两大块。哲学基础是实现人工智能的不同哲学思想和在相应思想指导下的具体方法;工程实践则是有关方法在实际问题中的应用和集成,以及方法实现所需要的软硬件条件。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页