数学建模--教学楼人员疏散--获校数学建模二等
数学建模
人员疏散
本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.
摘要
文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。
关键字
人员疏散 流体模型 距离控制疏散过程
问题的提出
教学楼人员疏散时间预测
学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。
前言
建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。
随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。
一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。
其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。
此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为2.5kW/m2(烟气层温度约为200℃)。
图1 疏散影响因素
预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。
图2 人员疏散与烟层下降关系(两层区域模型)示意图
疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。
疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。
图3 与疏散行动时间预测相关的参数及其关系
模型的分析与建立
我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设:
u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;
u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;
u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配
u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。
以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。
1号教学楼平面图
教学楼模型的简化与计算假设
我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。
图4 原教室平面简图
在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。
图5 简化后教室平面简图
经测量,走廊的总长度为44米,走廊宽为1.8米,单级楼梯的宽度为0.3米,每级楼梯共有26级,楼梯口宽2.0米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。
对火灾场景做出如下假设:
u 火灾发生在第二层的15号教室;
u 发生火灾是每个教室都为满人,这样这层楼共有600人;
u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;
u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败;
对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.
人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:
式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。
假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.
为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。
图6 人员疏散的若干主要参数
Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为:
式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。
这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。
3 结果与讨论
在整个疏散过程中会出现如下几种情况:
(1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程;
(2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程;
(3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程;
(4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程;
(5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。
起火教室内的人员密度为100/ 125 = 0.8 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为1.1m/ s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为:
f0=v0×s0×w0=1.1×0.8×4.7=4.1(人/ s) (3)
式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在24.3s 内才能完全疏散完毕。
设人员按照4.1 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为9.2s。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700=0.059 < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为0.5人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第106.5s(60+24.3+9.2+13)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。
起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在129.2s他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为:
p1 = 100 ×2 = 200 (人) (4)
此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= 0.12 ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:
?/P>
0.27
0.73
f1 = (3400/ 8040) × 200 = 2.2人/ s) (5)
式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在286.5s(180+106.5)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1:
p′1 = 200 - (286.5 – 129.2) ×2.2 = -146.1(人) <0 (6)
所以,二层楼的人员已经全部到达一层
此后,需要使用二层楼梯间的人数p2 :
p2 = 100×3=300 (人) (7)
相应此阶段通过二楼楼梯间的流量f 2 :
0.27
0.73
f2 = (3400/8040) × 200 = 2.5(人/ s) (8)
这┤送ü楼楼梯的疏散时间t1 :
t1 = 300÷2.5 = 120 ( s) (9)
因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象
所以,通过二楼楼梯的总体疏散时间T :
T = 286.5+ 120×3 = 646.5 ( s) (10)
最终根据安全系数得出实际疏散时间为T实际:
T实际 =646.5×(1.5~2)=969.75~1293( s) (11)
图7 二楼楼梯口流量随时间的变化曲线图
关于几点补充说明:
以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。
在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。
关于1号教学楼的几个出口:
u 大厅有一个大门
u A座一楼靠近正厅有一个门
u A座大教室旁边有一个门
u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口
u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)
u A、B座大教室各有一个后门
合计: 8个出口
致校领导的一封信
尊敬的校领导,你们好。
针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。
以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。
该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为646.5 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为646.5 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。
如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。
建模第一步是建立模型假设
提示:
1. 建立数学模型来分析这栋楼的人员有组织、有秩序地迅速疏散、撤离所用的时间;仔细分析可以知道:有组织、有秩序地迅速疏散,意思就是说撤离速度是均匀的,与平常一样,你可以统计教学楼,宿舍楼来得到有效撤离速度。
2.绘出你所在的宿舍或教室的平面示意图
这句话貌似客套话,却依然告诉我们一些信息:我们需要用一些图论分析及优化,从第3问来看,这点更加显然。那么,究竟是什么东西需要优化和假设,自己揣摩下了,
3.考虑到不同年龄的学生的运动能力不同, 为方便紧急撤离,给学校提供合理的教室安排方案. 这里的运动能力指的是什么能力?怎样得到数据?
4.一般的人认为,楼梯越宽,那么疏散能力越好,但是不对,大家忽略了楼梯越宽的同时,疏散要走的路也就越多,从而可能导致疏散时间不减反增。至于最好多宽,什么形状,位置,这就是你的模型里应该研究的问题。
更详细的:
0对学生宿舍设计方案的评价
摘要
关键词:
一、 问题重述与分析:
学生宿舍事关在校学生在校期间的生活品质,直接或间接的影响到学生的生活、学习和健康成长。学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理,同时要考虑成本和收费的片平衡,这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
经济性主要由以下三方面影响:建设成本、运行成本和收费标准;
舒适性主要由以下几方面影响:人均面积、使用方便、互不干扰、采光和通风;
安全性主要由以下两方面影响:人员疏散的能力和防盗能力。
本文旨在解决以下问题:
(一)本题要求根据列举的四种典型的宿舍设计方案进行综合量化分析,对各种宿舍方案的优缺点进行分析、比较,得出每个影响因子对选择其中某一个方案时的权重,在综合全国平均选择水平的基础上,对四个设计方案的各项影响因子进行比较评分,在评得的分数的基础上综合各自的权重比,可以评价出一个较为普遍经济适用的方案。
(二)评价这四种典型的学生宿舍设计方案各自的特点(优、缺点)及适用环境。
(三)根据全国各个不同区域的经济发展水平、文化习俗等因素的差异,每一种设计方案在不同经济水平的地域城市里的合理度是不尽相同的,可以选择经济发展水平不同的三个城市,然后对经济性、舒适性、安全性重新进行权重赋值,可以对这三类城市在选择宿舍设计方案时的偏好程度进行分析。
二、 基本假设:
1) 假设全国平均选择水平以网站调查数据为依据;
2) 假设所给四种设计方案中的经济性、舒适性、安全性仅考虑各自的直接、主要的影响因子;
3) 假设
三、 符号说明:
:方案 的合理度,用来评价方案合理度的目标函数( );
:各个影响因子对合理度 的贡献权重 ;
:各种影响因子对宿舍设计方案合理度 的影响力 ;
:
四、 模型的建立与求解:
宿舍设计方案的综合量化比较主要包括经济性、舒适性、安全性这三个方面,而且在上述三个方面中,经济性又由三个影响因子组成,舒适性主要由五个影响因子组成,安全性主要有两个影响因子组成。为了评价四个宿舍设计方案的相对合理性,设定一个目标函数值 , 的值越大就表示方案相对越合理。
由于各类不同的宿舍设计方案对上述各种不同影响因子的取舍不同,那么各种因子对合理度 的值的贡献也不同,设置各个因子对合理度 的贡献权重为: ,由此得到确切的评价宿舍设计方案的合理度目标函数:
模型中权重值 通过层次分析法得到,各种影响因子的影响值 可参照图纸通过五分制打分法得到。
(一)用层次分析法计算权重时 ,具体的算法如下所述:
1)在认真分析影响宿舍设计方案合理度的各个直接因子(经济性、舒适性、安全性)之间的关系后,我们建立宿舍设计方案的递阶层次结构:
2)对同一层次的各个因子关于上一层次中某一准则的重要性进行两两比较,构造两两比较判断矩阵。在构造两两比较判断矩阵的过程中,按1~9比例标度对重要性程度进行赋值。
对于任何一个准则,几个被比较元素通过两两比较就可以得到一个判断矩阵:
其中 就是 与 相对于 的重要性比例标度。
3)根据得到的判断矩阵,我们采用“特征根法”来求解判断矩阵中被比较元素的排序权重向量。
对于本模型而言,我们认为经济性比舒适性稍微重要,经济性比安全性略微
重要,安全性比舒适性略微重要,依据上述的层次分析方法及1-9比例标度赋值,利用matlab软件计算得到如下各个层次下的判断矩阵和其对应的特征值、特征向量、一致性指标。
标 度 含 义
1 表示两个因子相比,具有同样重要性
3 表示两个因子相比,一个因子比另一个因子稍微重要
5 表示两个因子相比,一个因子比另一个因子明显重要
7 表示两个因子相比,一个因子比另一个因子强烈重要
9 表示两个因子相比,一个因子比另一个因子极端重要
2,4,4,8 上述两相邻判断的中值
倒数 因素 与 比较的判断 ,则因素 与 比较的判断
表1 判断矩阵元素 的标度方法
(1)
表1 目标层的判断矩阵
A B1 B2 B3
B1 1 3 2 0.5279
B2 1/3 1 1/3 0.1396
B3 1/2 3 1 0.3325
最大特征值: =3.0536
一致性指标: = = =0.0268
表4 随机一次性指标
1 2 3 4 5 6 7 8 9 10
0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
随机一致性指标: =0.58(查表4)
一致性比率: 通过一致性检验
(2)
表2 准则层B1的判断矩阵
B1 C1 C2 C3
C1 1 5 4 0.6833
C2 1/5 1 1/2 0.1169
C3 1/4 2 1 0.1998
最大特征值: =3.0246
一致性指标: = 0.0123
随即一致性指标: =0.58(查表4)
一致性比率: 通过一致性检验
(3)
表3 准则层B2的判断矩阵
B2 C4 C5 C6 C7 C8
C4 1 2 4 5 5 0,4375
C5 1/2 1 3 4 4 0.2855
C6 1/4 1/3 1 3 3 0.1451
C7 1/5 1/4 1/3 1 1 0.0660
C8 1/5 1/4 1/3 1 1 0.0660
最大特征值: =5.1399
一致性指标: =
随即一致性指标: =1.12(查表4)
一致性比率: 通过一致性检验
(4)
表4 准则层B3的判断矩阵
B3 C9 C10
C9 1 3 0.7500
C10 1/3 1 0.2500
最大特征值: =2
在此基础上, 层对 权重总排序 ,结果可下表计算可得:
表5 合成排序
C B B1 B2 B3 总排序权值
0.5279 0.1396 0.3325
C1 0.6833 0 0 0.3607
C2 0.1169 0 0 0.0617
C3 0.1998 0 0 0.1055
C4 0 0.4375 0 0.0611
C5 0 0.2855 0 0.0399
C6 0 0.1451 0 0.0203
C7 0 0.0660 0 0.0092
C8 0 0.0660 0 0.0092
C9 0 0 0.75 0.2494
C10 0 0 0.25 0.0931
综合(1)(2)(3)(4)求得的一次性指标检验值都符合要求,说明上述所得的权重向量是合理的。
(二)采用五分制打分法计算以上四个设计方案中各个影响因子的值 如下表:
表一:四种设计方案的评分
因子
方案
方案一 5 5 2 2 1 1 5 5 1 2
方案二 2 2 5 4 5 3 4 4 4 4
方案三 3 2 4 3 4 5 5 4 4 4
方案四 2 3 2 5 3 2 4 5 5 5
通过函数 用matlab软件求得四种设计方案的合理度为:
3.0130 ; 3.2918; 3.4533 ; 3.3619 ;
因为 3.4533 是四个方案中最大合理度,所以我们认为在全国平均水平下,方案三是相对较为合理的方案。而四个方案的最后合理度相差不大,说明以上四种设计方案都是合理的。
(二)现在我们根据经济性、舒适性、安全性占整个设计方案中的比例对这四种设计方案分别进行评价:
比例结果如下图:
图2
方案一:该方案建筑面积小,设施布置公共集中,宿舍入住人数较多, 收费比较低廉,经济性好,舒适性差,安全性差,适用于人数较多,考虑经济性比较多,建筑面积有限的环境下采用此种方案;
方案二:该方案面积大,入住人数较多,基础设施十分齐全,但造价高,设施浪费严重,经济性比较差,安全性能好,舒适性较好,适用于人数较多但安全性和舒适性要求较高的环境;
方案三:该方案入住人数多,设施齐全且布置相对集中,楼梯、阳台、公用设备等布置合理且不浪费,经济性较好,舒适性较好,安全性好,适用于综合考虑三方面要求的环境;
方案四:该方案入住人数少,住宿环境宽松,生活设施独立布置,安全性很好,舒适性好,经济性差,适用于人数较少,建筑面积足够大,对舒适性及安全性要求比较高的环境;
五、 模型的评价与推广:
(一)模型评价
该模型在综合全国的平均选择水平的基础上进行比较评价四种宿舍设计方案。
优点:该模型能较为明了的描述出:每种设计方案中经济性、舒适性、安全性所占的权重值大小,可以粗糙的分析出三种性能在该方案中的地位;
缺点:各项影响因子在建立矩阵,进行标度处理时主观因素影响比较大,对研究设计方案的经济性,舒适性,安全性时,不能很精确的计算出三个主要因素在选择时的权重值
(二)模型推广
表6 决策层对准则层 的判断矩阵
S1 上 海 西 安 武 汉
上 海 1 1/5 1/3 0.1095
西 安 5 1 2 0.5815
武 汉 3 1/2 1 0.3090
最大特征值: =3.007
一致性指标: =
随即一致性指标: =0.58
一致性比率: 通过一致性检验
表7 决策层对准则层 的判断矩阵
S2 上 海 西 安 武 汉
上 海 1 5 3 0.6483
西 安 1/5 1 1/2 0.1220
武 汉 1/3 2 1 0.2297
最大特征值: =3.003
一致性指标: =
随即一致性指标: =0.58
一致性比率: 通过一致性检验
表8 决策层对准则层 的判断矩阵
S3 上 海 西 安 武 汉
上 海 1 3 2 0.5499
西 安 1/3 1 1 0.2099
武 汉 1/2 1 1 0.2402
最大特征值: =3.0183
一致性指标: =
随即一致性指标: =0.58
一致性比率: 通过一致性检验
六、参考文献:
[1] 冯楼台 赵贤淑 矩阵论 陕西人民出版社 1994年
[2] 周义仓 赫孝良 数学建模实验 西安交通大学出版社 1999年
[3] 马莉 MATLAB数学实验与建模 清华大学出版社 2010年
[4] 中华人民共和国行业标准 宿舍建筑设计规范 2006年2月1日实施
[5]
[6]
七、附录:
数学建模征文
那些年,我们一起经历的数学建模
还记得那时候我刚进入大学,利用一个月的时间才熟悉了大学的环境,和大学生的作息时间。
记得新生开学的一个月后,有一个社团纳新活动,全校的社团聚集在这里,拉拢着各自的会员。我在这琳琅满目的社团纳新中搜寻着自己感兴趣的社团。就在这时,我看到许多人围在一个社团前面徘徊着,出于好奇心理,我走上前去看了看,是数学建模协会纳新会员。我当时就在想,我自己本身数学就不好,这个应该和数学的关系很密切吧,顿时有种想放弃的冲动。
就在这时,有位学姐走了过来,给我详细的介绍了数学建模培训和相关的各类比赛。原来,数学建模是个团体性比赛,并不是个人类比赛,而且还有相关老师的指点,所以即使你不会,也没关系,大家一起分析,一起解决,体会团队合作解决问题的乐趣。
在学姐的大力鼓励下,还有我个人喜欢挑战自我的性格,于是我就这样加入了数学建模协会。在协会中,我不断的学习相关建模思想与算法,并与其他会友一同交流感想,交流心得,时间就这样一天天的过去,直到迎来了数学建模全国赛……
还记得迎来数学建模全国赛的前一天,老师通知我们参赛的队员们自己有空课时间的过来搬床板和床架,在机房旁边腾出了几个空房子,供队员们休息,晚上就不用回宿舍了。那天,我们十几个大男生把几十个人的床板和床架搬完了,累得汗流浃背,但却蛮开心的,因为彼此之间都在相互鼓励,相互帮忙,我体会到了一起耕耘,一起收获的喜悦。
我和我另外两个队友商量,今晚你值班,明晚我值班,后天晚上他值班,最后一天晚上大家一起熬到天明。所以在放赛题的前一天晚上,我收拾好行李,早早的躺在了床上,一想到明天就要开始和队友奋战三天三夜,我就激动无比,在迷迷糊糊的想象中,我睡着了,第二天早上7点钟就醒了,由于我是在新疆上学,所以新疆7点多天还是黑的,我起来后洗漱好,整理了一下我的行李,一个大大的登山包背了起来,然后到宿舍楼下骑上自行车,朝机房的方向出发!我知道,我的第一场数学建模大赛,将在那里开始…这时北京时间是早上7点半。
到了教学楼,找到自己的床铺,然后放下行李,就立马赶到机房与队友们会合,大家看起来精神还不错,想必昨晚都已把精力养好。这时是北京时间7点50.时间过得好慢,感觉我和队友们聊了很久,时间又似乎过得很快,仿佛就在一瞬间迎来了比赛开始的时刻,只见大家坐在电脑机前聚精会神的输入账号和密码后,把试题下载了下来。然后两个朋友们都聚精会神地看着题目,A题是关于黑子影子的分析,B题关于滴滴打车的数据分析,当时我和队友们一致认为,A题太高大上了,还是B题更切合实际点。
于是我们就分好工,我找历年来各城市间的人口密度等数据,他找与之相关的数学模型与算法,另外一个找关于打车软件的使用情况与使用频率等相关数据。还记得那是一个早上,机房开着空调,我内心却无比地感到炽热,这就是数学建模吗?和队友们还有指导老师在这机房内奋斗三天三夜后,总结出一篇论文来,仅此而已吗?
那一整天,我都在不停地寻找数据,逛遍了中国知网,万方,维普等数据库,还进入了国家统计网里查询相关资料。最后收获得就是一堆堆的图表和相关年份与地区的数据分析资料。真的好奇怪,平时这个点一般不饿的,今天却突然奇饿无比。中午学校订好的午餐,我狼吞虎咽的吃完后继续坐在电脑前奋斗至黄昏,时间过的真快呐,没想到一心一意的专注于做一件事,时间从身旁悄悄溜过都无法感受到,想想平时没事的时候老看表,或许就是因为没有明确目标的缘故吧!
第一天就这么过去了, 我们把B题的第一问解决了,我回到宿舍后一头栽在了床上,好累!累,并快乐着。数学建模国赛的第一天——结束了!
第二天,我们继续昨天的劲头,一鼓作气的准备拿下B题的第二问和第三问,这样我们第三天的任务量就会轻一点。可是,天有不测风云,待到第二天中午的时候,我们遇到了一个关键性问题,就是关于数据的采集和合适模型的建立问题。那个下午,我们不停的查找资料,老师也在旁边帮助我们出谋划策,提出一些指导性的意见。一直到傍晚,我们都在不断地摸索中,各种数据库,中国知网进了无数遍,浏览了无数篇论文,期间有人松懈过,打开爱奇艺播放器观看电视剧,但在我们的提醒下,他的心还是回到了正轨!
第二天夜晚,我值班。另外两个队友已经回宿舍休息了,我一个人,和其他几个队的队员坐在机房内继续工作,想睡,但又想到还有一天时间比赛就结束了,强大的压力感使我无法入睡,如果不睡的话,注意力集中不起来,于是当我有倦意的时候,我就去洗手间用冷水洗脸,或者趴在电脑桌旁小憩一会。
在这种状态下,我终于在第三天的凌晨4点,完成了任务,躺在了我梦寐以求的床上,等待着第三天黎明的到来,然后和队友们披荆斩棘,完成对数学建模比赛的最后一击。于是,我带着对未来美好的憧憬,沉沉睡去……
第三天醒来,已是8点,早饭学校已经准备好,队友们也陆续到齐,坐在了机房内继续写论文。我们围在一起,边吃着早饭,边向队友们今天凌晨的工作情况和遇到的问题,大家相互交流了下,吃过早饭,开始了第三天的工作。加油!最后一天!
在4个小时的奋战中,B题的.第二问已经基本结束,最难的一问已经解决掉,第三问还不是手到擒来?!
到了下午的时候,指导老师也来了,看了下我们写的初步论文,觉得除了语句和格式出了点问题,其他都还好,于是他让我们再完善下论文,晚上发给他,他来负责论文排版和一些语句的修改工作。我们双方达成了协议,于是从下午开始进行对第三题的研究和论文的最终纂写工作。
不知是因为我太紧张,还是太兴奋,其中有一段时间是用Lingo软件算数据优化的,我却丢三落四,写了这个,忘了那个,来来回回改了四遍。看来做事情,一定不能急躁,越是在紧急的情况下,越要保持冷静,这样才能达到事半功倍的效果!
到了晚上,我们已经基本上完成了我们的数学建模国赛论文,我呼出了长长的一口气,把论文发给了指导老师,让他做好最后的排版与修改后,就可以交了。一个队友守在电脑机前,旁边放着几袋咖啡粉包,然后我和另外一个队友去旁边的休息室小睡一会。
到了休息室,我和我的队友聊了会天,结果越聊越兴奋,竟然毫无睡意,一直聊到了凌晨1点半,我们聊到了生活,聊到了感情,聊到了大学理想,也聊到了未来,谈谈人生…感觉我好久没有说这么多的话了,另外一个守在电脑机前的队友还在靠喝咖啡提神,听说我们没睡,郁闷的发昏,不过最后还是相互调侃了几句,郁闷的坏心情也烟消云散了。
不过我真的十几个小时没合眼了,从早上8点到次日的凌晨1点多,倦意突然袭来,我向他们请了个假,去休息室睡觉去了,告诉他们如果老师发消息来了就一定要把我摇醒。于是我再一次躺在了我梦寐以求的床上,我卸掉了这几天的紧张感,随之进入梦乡……
不知过了多久,感觉像是十几分钟,我的一个队友跑过来叫我让我醒来,我迷迷糊糊的问了句老师发消息过来了吗?他说没有,让我去趟机房,我说知道了,然后他就走了,结果我直接栽倒在了床上继续睡去,不知又过了多久,感觉这次比上次睡觉时间稍微长了那么一点点,我又被我的队友摇醒,让我去趟机房,我还是问了句老师发消息来了吗?结果还是一样的回答,没有。
于是我又倒在了床上不省人事,前前后后,反反复复的队友"折腾"了我四次,在这过程中我断断续续的补了3个半小时的觉,终于觉得这样被他叫下去不是办法,索性直接坐起来,去洗手间用凉水冲了把脸,瞬间觉得精神许多,然后快步走入机房。这时候我看了下表,是数学建模第四日的凌晨6点,离比赛结束时间还有两个小时……
老师还是没有发消息过来,我无聊地打起了CS,队友们在看电视剧,而我看其他的队都在紧锣密鼓的写论文,我突然觉得我们队是最轻松的了。就在这时,老师发来了他修改后的论文。
我们此时兴奋到了极点,瞬间把论文下载下来进行查看。不得不感谢老师大半夜的还在帮我们修改论文,真是辛苦了!论文的排版比以前好看了许多,语句不通顺的也修改的很严谨,很专业。我们看了下,觉得没多大问题,就准备在早上8点之前提交论文。这时时间是早上7点,离数学建模国赛结束时间还有1个小时…
时间过的很快,转眼到了7点40,大家陆续打开网站链接进行论文提交。但没想到登陆的人数太多,网站卡爆了,于是我们先打印纸质版的论文,由于打印的队伍比较多,场面比较混乱,人在看到忙碌的场面,再加上没有休息好的话,心情就会极差,容易发脾气,所以我很抱歉当时我没有控制好自己的情绪,对我的队友发火了,事后想来,还是我自己的错,于是在论文的电子版和纸质版提交后,我主动向他们到了歉。还是大男生好说话,手一挥,说了句没事!国赛结束了,我们收拾好行李,准备往宿舍的方向走去,此时看了下表,北京时间9点半,星期一,是大家每周第一天上课的时间。
我们从机房走出来,我背着我自己硕大的登山包,队友们拿着大大的袋子装上被褥和床单,一起朝着宿舍的方向走去,路上看到我的朋友们,都和我说"出关了?不容易啊!",我也只是笑笑,因为我实在,没有太多的力气和他们打招呼了,甚至说话都觉得好困难,这三天里,我们一起经历了从不会到会的过程,也感受了现学现用的快感!
当然,最让我难以忘怀的,还是当我累的睁不开眼睛的时候,有队友们的支持与关怀,相互鼓励,相互扶持的温暖。三个人并排坐在电脑前各司其职的场景;吃饭时间围在一起聊天娱乐的喜悦之情;还有出现问题大家一起相互探讨,相互分享想法的学习气氛;当然了,还有为我们默默付出的指导老师;我觉得参加数学建模比赛获奖只是个其次,关键是在这三天三夜的过程中,我体会到了团队作战的重要性,还有培养了我独立思考,数据分析,现学现用的学习能力,最后就是在那种强大压力下想偷懒却不敢偷懒,不断激发自己潜力的过程,因为我从没有试过一天一夜不睡觉是什么感觉,或者就是休息短短几个小时后工作一天的那种强大的精神力量。
是的,这些我都体会到了,我也都经历了,所以,这次的数学建模国赛,是我会一直用心铭记的比赛,不仅是因为这是我第一次参加国家级比赛,更是因为在这次比赛中,我收获了除了获奖之外的其他财富,这些都是用物质买不到的。
三个人,走到了宿舍楼的十字路口,该说再见了,我挥一挥手,给他们说声"再见,早点回去休息喽~".谢谢你们,于我记忆的深处收藏了一幅美不胜收的画卷,即使会过去多年,但我依旧会相信每当回忆起这段经历,都是我的一笔宝贵的财富,我将用它走上更美好的人生,因为我发现,我已经做出了别人做不到的事情,我已经成长了,所以,我相信我会在以后的道路中更加顽强,更有能力去接受更大的挑战!
回到了我的宿舍,舍友们都去上课了,空荡荡的宿舍,我卸下一身的包袱,还有疲惫的身躯,机械式的上了床,躺在床上,看着天花板,缓缓的闭上眼睛,这将是我睡的最美的一觉。明天,又将是一个崭新的一天,而我,将会在人群中昂首阔步,因为我已不是过去的我,我已拥有新的生命。
不好意思,建模在高中水平上还真是涉及很少,建模问题也是难道很多大学生的问题。而且建模要求的独立思维,所以希望你最好自己写。能在网上查到的都不是高中能做出来的。大学学的数学,我建模都不敢说会做。如有帮助,希望采纳,有问题继续追问