在天地的某个角落中有了一个渺小的我。在书海里,有一个伟大的东西数学。我像一张白纸一样,折来翻去,永远都是白纸,肤浅。而数学则像一个万花筒转一圈转0.1毫米宽,它的意义就需探究,深奥。
可偏偏,我这一生就跟数学有了结缘。
就眼望现在,我真的发自内心的想数学怎么就那么难?看到数学这俩字就让我想起那无数在我看来扭曲到不行的图形数字。眉毛就不自觉得接了个吻。
学不好数学是最让我头疼的了。不是没有追根到底看看究竟为什么学不好。而是到最后的答案让人怀疑。一、上课没听。不,不是没听,而是半懂半昧。二、作业都不写。不,是写的都错。三、脑子天生笨。不,要笨就不会这么写了。但是数学就是个无底洞,让我投进去了无数个问号,终究没一个叹号回给我(句号都没有)。逻辑思维太强悍了,我发自内心的喜欢华罗庚,喜欢的五体投地。但是这跟我喜欢数学依旧没关系。我讨厌数学。可是就偏偏让一个数学班主任教着,数学也就无时无刻晃在我眼前。像星星一样的晃。说实话,我都晃晕了N回了。(N可以等于任何数)。可越是如此我就越发厌倦。
现在想想,小学的时候数学还考过满分呢!哎~那也毕竟是咱的光彩过去。有时候,真的就咬着笔杆,看着那和我不在同一世界的数字睡着过。而且还白痴般的许了无数个类似让我学好数学,让我和数学做朋友,让我变聪明点吧!可笑的愿望。并且还在某天晚上梦到将来的自己成了名人,而群众们呼喊的是伟大的数学家听到这句话,我立马惊醒。后来那个梦就一直被我视为恶梦。
在恶梦刚醒时,还犹见我妈拿了一叠数学资料来让我研究。那被我妈视为宝贝的题都跟我有仇,看我不爽还是怎样,一道都不会。
现在,数学正式作业还没写完。数学啊我把你视为苍天,数学啊我把你待为大地!数学啊!我喜欢你!数学啊,你为什么不喜欢我?数学啊数学!
我和数学的故事未完待续。
课堂教学是学生在校期间学习文化科学知识的主阵地,也是对学生进行思想品德教育的主渠道。现在,学校实行五天制工作,带来了一定的压力。由于每堂课的时间的减少和每门课总学时的减少,确实给教师带来了很大的麻烦,给原来教熟了的老套路、老方法提出了挑战。对于减时不减量这一矛盾,除了对教材的内容进行重新修订调整外,对教师来说,最迫切的问题,就是如何提高四十分钟的课堂教学教育的效率,尽量在有限的时间里,出色地完成教学任务。
1 有明确的教学目标
布鲁姆在他的《教育目标分类学》一书中,将教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法、媒体,进行必要的内容重组。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。如《复数的引入》这一课是整个复数这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释复数的形成和发展,体会到矛盾是事物发展的动力,矛盾的解决推动着事物的发展。引伸到现实生活中,就是当我们遇到矛盾时,也要勇于面对矛盾,要有解决矛盾的决心和信心,促进矛盾的转化和解决,同时也就提高了自己分析问题和解决问题的能力。
2 能突出重点、化解难点
每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。如解析几何第二章的《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简。教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆形台面的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解。为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解,尤其是上台板演的那两位的同学,更是终生难忘了。在进一步求轨迹方程时,学生容易得出这样一个结果:但化简却遇到了麻烦。这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。教师问:是直接平方好呢还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。这样,椭圆方程的化简这一难点也就迎刃而解了。同时也解决了将要遇到的求双曲线的标准方程时的化简问题。
3 要善于应用现代化教学手段
随着科学技术的飞速发展,三机一幕进入了寻常教室。对教师来说,掌握现代化的教学手段显得尤为重要和迫切。现代化教学手段,其显著的特点,一是能有效地增大每一堂课的课容量,从而把原来四十五分钟的内容在四十分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性。四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。对于有条件的学校,还可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。
4 根据具体内容,选择恰当的教学方法
每一堂课都有每一堂课的教学任务,目标要求。教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。俗话说:“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
5 对学生在课堂上的表现,要及时加以总结,适当给予鼓励
在教学过程中,教师要随时了解学生的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
6 充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。
7 处理好课堂的偶发事件,及时调整课堂教学
尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《复数的概念》第二课时时,有“两复数不全是实数时,不能比较大小”这一结论,但没有证明。教学计划中也没有证明的要求。在课间当带到这个问题的时,有一位成绩较好的学生要求我写出解答。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了“i>0”不能成立的原因。然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈。这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲。
8 要精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进去,而不是由教师一个人承包,对学生进行满堂灌。教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备。
数字的历史
公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。
两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。
大约700年前后,阿拉伯人征眼了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢?
771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(即我们现在用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。
后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝�6�1奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。
阿拉伯数字起源于印度,但却是经由阿拉伯人传向四方的,这就是它们后来被称为阿拉伯数字的原因。