PLC的自动送料小车
摘 要
可编程序控制器(Programmable controller)简称PLC,由于PLC的可靠性高、环境适应性强、灵活通用、使用方便、维护简单,所以PLC的应用领域在迅速扩大。对早期的PLC,凡是有继电器的地方,都可采用。而对当今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC。尤其是近几年来,PLC的成本下降,功能又不段增强,所以,目前PLC在国内外已被广泛应用于各个行业。
本设计是为了实现送料小车的手动和自动化的转化,改变以往小车的单纯手动送料,减少了劳动力,提高了生产效率,实现了自动化生产!而且本送料小车的设计是由于工作环境恶劣,不允许人进入工作环境的情况下孕育而成的。
本文从第一章送料小车的系统方案的确定为切入点,介绍了为什么选用PLC控制小车;第二章介绍了送料小车的应达到的控制要求;第三章根据控制要求进行了小车系统的具体设计,包括端子接线图、梯形图(分段设计说明和系统总梯形图)和程序指令设计;最后得出结论。
关键词:PLC,送料小车,控制,程序设计
目 录
前 言 1
第1章 控制系统介绍和控制过程要求 2
1.1 控制系统在送料小车中的作用与地位 2
1.2 控制系统介绍 2
第2章 送料小车系统方案的选择 4
2.1 可编程控制器 PLC的优点 4
2.2 小车送料系统方案的选择 5
第3章 基于PLC的送料小车接线图及梯形图 6
3.1 送料小车PLC的 I/O分配表 6
3.2 PLC端子接线图 7
3.3 梯形图分段设计 8
3.4 程序运行原理说明调试与完善 13
3.5 系统总梯形图设计 13
3.6 小车程序设计 18
结 论 23
谢 辞 24
参考文献 25
前 言
随着社会迅速的发展,各机械产品层出不穷。控制系统的发展已经很成熟,应用范围涉及各个领域,例如:机械、汽车制造、化工、交通、军事、民用等。PLC专为工业环境应用而设计,其显著的特点之一就是可靠性高,抗干扰能力强。PLC的应用不但大大地提高了电气控制系统的可靠性和抗干扰能力,而且大大地简化和减少了维修维护的工作量。PLC以其可靠性高、抗干扰能力强、编程简单、使用方便、控制程序可变、体积小、质量轻、功能强和价格低廉等特点 ,在机械制造、冶金等领域得到了广泛的应用。
送料小车控制系统采用了PLC控制。从送料小车的工艺流程来看,其控制系统属于自动控制与手动控制相结合的系统,因此,此送料小车电气控制系统设计具有手动和自动两种工作方式。我在程序设计上采用了模块化的设计方法,这样就省去了工作方式程序之间复杂的联锁关系,从而在设计和修改任何一种工作方式的程序时,不会对其它工作方式的程序造成影响,使得程序的设计、修改和故障查找工作大为简化。
在设计该PLC送料小车设计程序的同时总结了以往PLC送料小车设计程序的一般方法、步骤,并且把以前学过的基础课程融汇到本次设计当中来,更加深入的了解了更多的PLC知识。
第1章 控制系统介绍和控制过程要求
1.1 控制系统在送料小车中的作用与地位
在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。
控制系统是整个生产线的灵魂,对整个生产线起着指挥的作用。一旦控制系统出现故障,轻者影响生产线的继续进行,重者甚至发生人身安全事故,这样将给企业造成重大损失。
送料小车是基于PLC控制系统来设计的,控制系统的每一步动作都直接作用于送料小车的运行,因此,送料小车性能的好坏与控制系统性能的好坏有着直接的关系。送料小车能否正常运行、工作效率的高低都与控制系统密不可分。
1.2 控制系统介绍
图1-1 送料小车
本控制系统只要是用于控制送料小车的自动送料。它既能减轻人的劳动强度又能自动准确到达人不能达到或很难到达的预定位置。如图1-1,推车机可以沿轨道上下移动,到达预定位置。推车机上是一个小型泵站,通过控制电磁阀换向,使两油缸伸出、缩回,顶出送料小车,再由各个仓位控制要料。
用PLC对送料小车实现控制,其具体要求如下:
(1) 送料小车1动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ1,SQ2,SQ3,SQ4)分别受PLC的I0.0,I0.1,I0.2,I0.3检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,Q0.4驱动小车左行,Q0.5驱动小车右行。料仓要料由4个手动按钮(SB1,SB2,SB3,SB4)发出(对应于PLC为I0.4,I0.5,I0.6,I0.7)按钮发出信号其相应指示灯就亮(HL1-HL4),指示灯受PLC的Q0.0-Q0.3控制。
送料小车2动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ11,SQ12,SQ13,SQ14)分别受PLC的I1.0,I1.1,I1.2,I1.3检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,Q1.5驱动小车左行,Q1.4驱动小车右行。料仓要料由4个手动按钮(SB11,SB12,SB13,SB14)发出(对应于PLC为I1.4,I1.5,I1.6,I1.7)按钮发出信号其相应指示灯就亮(HL11-HL14),指示灯受PLC的Q1.0-Q1.3控制。
(2)运料小车行走条件:
运料小车右行条件:小车在1,2,3号仓位,4号仓要料;小车在1,2号仓位,3号仓要料;小车在1号仓位,2号仓要料。
运料小车左行条件:小车在4,3,2,0号仓位,1号仓要料;小车在4,3,0号仓位,2号仓要料;小车在4,0号仓位,3号仓要料;小车在0位,4号仓位要料。
运料小车停止条件:要料仓位与小车的车位相同时,应该是小车的停止条件。
运料小车的互锁条件:小车右行时不允许左行启动,同样小车左行时也不允许右行启动。
第2章 送料小车系统方案的选择
2.1 可编程控制器 PLC的优点
可编程控制器 PLC对用户来说,是一种无触点设备,改变程序即可改变生产工艺。目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的推广应用。可编程控制器是面向用户的专用工业控制计算机,具有许多明显的特点。
1. 可靠性高,抗干扰能力强
高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如西门子公司生产的S7系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。
2. 配套齐全,功能完善,适用性强
PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
3. 易学易用,深受工程技术人员欢迎
PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。
4. 系统的设计、建造工作量小,维护方便,容易改造
PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。
5. 体积小,重量轻,能耗低
以超小型PLC为例,新近出产的品种底部尺寸小于100 mm,重量小于150 g,功耗仅数瓦。由于体积小,很容易装入机械内部,是实现机电一体化的理想控制设备。
2.2 小车送料系统方案的选择
实现小车送料系统控制有很多方法来实现,可以用单片机、可编程控制器PLC等元器件来实现。
但在单片机控制系统电路中需要加入A/D,D/A转换器,线路复杂,还要分配大量的中断口地址。而且单片机控制电路易受外界环境的干扰,也具有不稳定性。另外控制程序需要具有一定编程能力的人才能编译出,在维修时也需要高技术的人员才能修复,所以在此也不易用单片机来实现。
而从上述第一节对PLC的特点了解可知,PLC具有很多优点,因此我们归纳出:可编程控制器PLC具有很高的可靠性,通常的平均无故障时间都在30万小时以上;安装,操作和维护也较容易;编程简单,PLC的基本指令不多,编程器使用比较方便,程序设计和产品调试周期短,具有很好的经济效益。此外PLC内部定时、计数资源丰富,可以方便地实现对送料小车的控制。
因此,最终我选择了用可编程控制器PLC来实现送料小车系统的控制,完成本次的设计题目。
第3章 基于PLC的送料小车接线图及梯形图
3.1 送料小车PLC的 I/O分配表
输入点分配 输出点分配
输入接点 输入开关名称 输出接口 驱动设备
I0.0-I0.3 小车1行程开关
(SQ1-SQ4) Q0.0-Q0.3 小车1要料指示灯
(HL1-HL4)
I0.4-I0.7 小车1控制按钮
(SB1-SB4) Q0.4-Q0.5 小车1左右行线圈
I1.0-I1.3 小车2行程开关
(SQ11-SQ14) Q0.6-Q0.7 油缸1伸出缩回
线圈
I1.4-1.7 小车2控制按钮
(SB11-SB14) Q1.0-Q1.0 小车2要料指示灯
(HL11-HL14)
I2.0-I2.5 推车机行程开关
(SQ5-SQ10) Q1.4-Q1.5 小车2左右行线圈
I2.6-I2.7 起动,停止按钮
(SB5,SB6) Q1.6-Q1.7 油缸2伸出缩回
线圈
I3.0-I3.1 手动,连续
转换开关(SA6,SA7) Q2.0-Q2.1 推车机上下行线圈
I3.2-I3.3 推车机上下,左右
转换开关 (SA1,SA2)
I3.4-I3.6 油缸单动联动
转换开关(SA3-SA5)
3-1 I/O分配表
根据控制要求,PLC控制送料小车的输入\输出(I\0)地址编排如下表所示,其中SB5为启动开关,为SB6停止开关,SA6、SA7为手动\连续选择开关,SA1、SA2为上下、左右转换开关,SA3、SA4、SA5为油缸单动联动转换开关。Q0.0-Q0.3和Q1.0-Q1.3控制8个要料指示灯,Q0.4-Q0.5和Q1.4-Q1.5控制小车1、2左行右行,Q0.6-Q0.7和Q1.6-Q1.7。如表3-1所示:
3.2 PLC端子接线图
PLC型号的选择:由于该系统是在原来CPU226的基础上改进的设备,而现在共用了31个输入,用直流24V;18个输出,用交流电220V,所以我选择用S7-200系列CPU226,加一个EM223的扩展模块。CPU226的主要的技术参数:输入24VDC,24点;输出220VAC,16点;电源电压为AC100—240V 50/60Hz。
EM223的主要技术参数:输入24VDC,8点;输出220VAC,8点;电源电压为AC100—240V 50/60Hz。如图3-1所示:
图3-1 端子接线图
3.3 梯形图分段设计
本次设计的自动送料小车梯形图,是分开来画的。由总程序结构图、自动操作程序图、手动操作程序图、小车1左右自动送料运行程序图、小车2左右自动送料运行程序图组成。
图3-2 总系统结构图
(1)程序的总结构图如图3-2所示:因为在手动操作方式下,各种动作都是用按钮控制来实现的,其程序可独立于自动操作程序而另行设计。因此,总程序可分为两段独立的部分:手动操作程序和自动操作程序。当选择手动操作时,则输入点I3.0接通,其常闭触点断开,执行手动程序,并由于I3.1的常闭触点为闭合,则跳过自动程序。若选择自动操作方式,将跳过手动程序段而执行自动程序。
(2)自动程序设计,自动操作控制主要是由行程开关来控制推车机的上行、下行,两缸的伸出、缩回。通过行程开关的上限、下限、左限、右限准确的控制推车机到达预定位置。自动程序时,手动自动转换开关拨到连续档SA7,按下启动按钮SB6,推车机上行,碰到上位行车开关SQ6,上行停止;同时两个油缸动作,推动两小车向左移动,小车1、2碰到左位行程开关SQ10、SQ5,说明两小车到位,这时各个仓位可向小车要料;而且两油缸缩回,碰到行程右位开关SQ8、SQ9停止收缩,推车机下行到行程开关位SQ7时停止。如图3-3所示:
图3-3 自动操作程序图
(3)手动操作程序的设计,手动操作控制简单,可按照一般继电器控制系统的逻辑设计法来设计。手动程序时,手动自动转换开关拨到手动档SA6,上下、左右转换开关拨到上/下行档时,按启动按钮SB5推车机上行,按停止按钮SB6推车机下行;上下、左右转换开关拨到左/右档时,拨动单动联动转换开关SA3(缸1动作),按启动按钮SB5,缸1伸出推动小车1左行;按停止按钮SB6,缸1缩回;拨动转换开关到SA5(缸2动作),按启动按钮SB5,缸2伸出推动小车2左行,按停止按钮SB6,缸2缩回;拨动单动联动转换开关到SA4(两缸同时动作)按启动按钮SB5,两缸伸出推动两小车左行;按停止按钮SB6,两缸缩回。如图3-4所示:
图3-4 手动操作程序图
(4)小车1自动送料运行程序,把小车1送到指定位置后,四个仓位就可以向小车要料了,M0.0-M0.3分别代表小车1的1号料仓到4号料仓的要料状态,运料小车1当前所处位置由I0.0-I0.3,运料小车1的右行,左行,停止控制由Q0.4、Q0.5。小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。(上微分操作的注意事项,上微分脉冲只存在在一个扫描周期,接受这一脉冲控制的元件应写在这一脉冲出现的语句之后)。小车1自动送料图如下图3-5所示:
图3-5 小车1左右自动送料运行程序图
(5)小车2自动送料运行程序,把小车2送到指定位置后,四个仓位就可以向小车要料了,M1.0-M1.3分别代表小车2的1号料仓到4号料仓的要料状态。运料小车2当前所处位置由I1.0-I1.3,运料小车2的右行,左行,停止控制由Q1.4、Q1.5。小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。
小车2自动送料图3-6所示:
图3-6 小车2左右自动送料运行程序图
3.4 程序运行原理说明调试与完善
本程序是用梯形图所写的。在运行前,先选择工作方式,手动/自动。选择手动SA6时,把上/下、左/右转换开关旋转到上/下档SA1,按下SB5起动点动按钮,推车机上行,按下SB6停止点动按钮,推车机下行;把上/下、左/右转换开关旋转到左/右档SA2,再选择小车的单动、联动控制,小车1单动时把单动/联动转换开关旋转到单动档SA3,两小车联动时旋转到联动档SA4,小车2单动时旋转到单动档SA5,这时按下起动按钮SB5,油缸推动小车左行,按下停止按钮SB6,油缸缩回。选择自动SA7时,按下起动按钮SB5,推车机开始上行,碰到上限行程开关SQ6时停车,两缸自动推出小车,小车碰到左限行程开关SQ5、SQ10时,说明小车到位,各个仓位可以向小车要料,这时两缸自动缩回,碰到右限行程开关SQ8、SQ9时,推车机自动下行,下行到位后(碰到SQ7)停车。只有再次按下起动按钮SB5,才能再次运行。
手动程序中设置了联锁和保护电路。如推车机的上行、下行常闭触点的联锁,推车机上下行行程有行程开关SQ6、SQ7控制保护。自动程序是根据推车机的位置、油缸的位置来控制电路执行下一条指令的。
油缸把小车推到位后,小车处于准备送料的初始位置,这时1-4号仓位都可以向小车要料。本设计中要料时刻不同时,先要料者优先,但是要料时刻相同时,却不知道小车向哪个仓位送料,需要改进。
3.5 系统总梯形图设计
由以上,我们画出送料小车系统的总梯形图,其中包括推车机的手动控制程序、自动控制程序、送料小车1控制程序、送料小车2控制程序。
如下图3-7所示:
图3-7送料小车梯形图(a)
图3-7 送料小车梯形图(b)
图3-7 送料小车梯形图(c)
图3-7 送料小车梯形图(d)
3.6 小车程序设计
由系统总梯形图,我们写出送料小车的程序指令,如下表3-2所示:
表3-2 送料小车程序指令表
LDN I3.0 A I3.3
JMP 0 A I2.6
LD I3.2 AN I2.4
LPS = Q1.6
A I2.6 LD I2.4
AN I2.0 O M2.2
= Q2.0 AN I1.3
LPP = M2.2
A I2.7 LD I3.4
AN I2.1 O M2.0
= Q2.1 A I3.3
LD I3.5 A I2.7
= M2.0 AN I2.2
LD I3.4 = Q0.7
O M2.0 LD I3.6
A I3.3 O M2.0
A I3.3 A I3.3
A I2.6 A I2.7
AN I2.5 AN I2.3
= Q0.6 = Q1.7
LD I2.5 LBL 0
O M2.1 LDN I3.1
AN I0.3 JMP 1
= M2.1 LD I2.6
LD I3.6 O Q2.0
O M2.0 AN I2.0
AN Q2.1 O Q1.7
AN I2.7 AN I2.3
= Q2.0 AN Q1.6
LD I2.0 AN I2.7
O Q0.6 = Q1.7
AN I2.5 LD I2.5
AN Q0.7 AN I2.4
AN I2.7 O Q2.1
= Q0.6 AN Q2.0
LD I2.5 AN I2.1
O M2.1 AN I2.7
AN I0.3 = Q2.1
= M2.1 LBL 1
LD I2.0 LD I0.4
O Q1.6 AN M0.1
AN I2.4 AN M0.2
AN Q1.7 AN M0.3
AN I2.7 S M0.0 1
= Q1.6 S Q0.0 1
LD I2.4 LD I0.5
O M2.2 AN M0.0
AN I1.3 AN M0.2
= M2.2 AN M0.3
LD I2.5 S M0.1 1
O Q0.7 S Q0.1 1
AN I2.2 LD I0.6
AN Q0.6 AN M0.0
AN I2.7 AN M0.1
= Q0.7 AN M0.3
LD I2.4 S M0.2 1
S Q0.2 1 A I0.5
LD I0.7 OLD
AN M0.0 AN Q0.5
AN M0.1 S Q0.4
AN M0.2 LD I0.3
S M0.3 1 O I0.2
S Q0.3 1 O I0.1
LD I0.0 O M2.1
A M0.0 A I0.4
LD I0.1 LD I0.3
A M0.1 O I0.2
OLD O M2.1
LD I0.2 A I0.5
A M0.2 OLD
OLD LD I0.3
LD I0.3 O M2.1
A M0.3 A I0.6
OLD OLD
EU LD M2.1
R Q0.0 6 A I0.7
R M0.0 4 OLD
LD I0.0 AN Q0.4
O I0.1 S Q0.5 1
O I0.2 LD I1.4
A I.7 AN M1.1
LD I0.0 AN M1.2
O I0.1 AN M1.3
A I0.6 S M1.0 1
OLD S Q1.0 1
LD I0.0 LD I1.5
AN M1.0 LD I1.0
AN M1.2 O I1.1
AN M1.3 O I1.2
S M1.1 1 A I1.7
S Q1.1 1 LD I1.0
LD I1.6 O I1.1
AN M1.0 A I1.6
AN M1.1 OLD
AN M1.3 LD I1.0
S M1.2 1 A I1.5
S Q1.2 1 OLD
LD I1.7 AN Q1.5
AN M1.0 S Q1.4 1
AN M1.1 LD I1.3
AN M1.2 O I1.2
S M1.3 1 O I1.1
S Q1.3 1 O M2.2
LD I1.0 A I1.4
A M1.0 LD I1.3
LD I1.1 O I1.2
A M1.1 O M2.2
OLD A I1.5
LD I1.2 OLD
A M1.2 LD I1.3
OLD O M2.2
LD I1.3 A I1.6
A M1.3 OLD
EU LD M2.2
R Q1.0 6 A I1.7
R M1.0 4 OLD
AN Q1.4
S Q1.5 1
结 论
在做这个设计中,我学会了很多以前没学过的知识,也巩固了很多以前没学好的知识,使我的专业理论知识更加扎实,软件操作更加熟练了。做完这个设计后,我得出几个结论如下:
一、送料小车在硬件设计中,加入了扩展模块,可以在触点不够的情况下方便地实现该小车的系统控制;然后软件设计中,运用了上微分指令,简化了程序,还运用了互锁和联锁,确保了系统的正常运行,减少了系统的故障点。在送料小车的系统中加入了手动操作程序,便于设备的维修,方便操作人员操作。
二、该小车系统在实施的情况下,其成本价格比较高。
三、该小车控制系统的研究方向:由于本小车系统并不完善,只做了送料,没有设计小车怎么装料和小车到料仓后送料的多少。这两方面是该系统设计的完善,是将来的研究方向。
最后,经过这次毕业设计培养了我们的设计能力以及全面的考虑问题能力。学习的过程是痛苦的但是收获成功的喜悦更是让人激动的。相信通过这次毕业设计它对我以后的学习及工作都会产生积极的影响。
谢 辞
本论文是在余炳辉导师亲自指导下完成的。导师在学业上给了我很大的帮助,使我在设计过程中避免了许多无为的工作。导师一丝不苟、严谨认真的治学态度,精益求精、诲人不倦的学者风范,以及正直无私、磊落大度的高尚品格,更让我明白许多做人的道理,在此我对导师表示衷心的感谢!
本论文能够完成,要感谢机电学院的所有老师,是他们在这三年的时间里,教会我的专业知识。在我撰写论文期间,得到了我的指导老师的帮助,在忙碌的工作之余,给予我专业知识上的指导,而且教给我学习的方法和思路,使我在科研工作及论文设计过程中不断有新的认识和提高。导师为论文课题的研究提出了许多指导性的意见,为论文的撰写、修改提供了许多具体的指导和帮助。多得他们的指导和帮助才使我能完成本论文。我会在以后的工作中为社会作出贡献去回报他们对我的教导。希望每个人都和我一样,通过做毕业设计,能够学到很多的知识与道理,大家都能用一颗热诚的心去投身未来的工作,报效祖国、父母、老师。
在本文结束之际,特向我敬爱的导师和机电学院所有老师致以最崇高的敬礼和深深的感谢!
参考文献
[1] 张结,黄德斌,唐毅.应用标准与IEC61850的引用和兼容关系.电力系统自动化,2004,28(19):88~91
[2] 朱永利,黄歌,刘培培等.基于IEC61850的电力远动信息网络化传愉的研究.继电器,2005,33(11):45~48
[3] 章宏甲,黄谊,王积伟.液压与气压传动.北京:机械工业出版社, 2002:112~118
[4] 成大先.机械设计手册(液压控制).单行本.北京:化学工业出版社, 2004:20~21
[5] 廖常初.PLC基础及应用.北京:机械工业出版社,2003:57~64
[6] 储云峰.西门子电气可编程序控制器原理及应用.北京:机械工业出版社,2006:75~84
[7] 汪巍,汪小凤.基于PLC的气动机械手研究.辽宁工程技术大学学报,2005,4(12):97~98
[8] 丁筱玲,赵立新. PLC在机械手控制系统上的应用.山东农业大学学报,2006,37(1):105~108
[9] 常斗南,王健琪,李全力.可编程控制原理.应用及通信基础.北京:机械工业出版社,1997:50~68
[10]王本轶.机电设备控制基础.北京:机械工业出版社,2005:96~112
[11]王春行.液压控制系统.北京:机械工业出版社,1999:12~45
[12]王永华.现代电气控制及 PLC 应用技术.北京:北京航空航天大学出版社,2003:75~90
[13]陈立定.电器控制于可编程控制器.广州:华南理工大学出版社,2001:67~77
[14]张林国,王淑英.可编程控制器技术.北京:高等教育出版社,2002:110~123
[15]周万珍,高鸿宾.PLC分析与设计应用.北京:电子工业出版社,2004:21~45
基于PLC的智能温室控制系统的设计
摘要:温室环境系统是一个非线性、时变、滞后复杂大系统,难以建立系统的数学模型,采用常规的控制方法难以获得满意的静、动
态性能。根据温室环境控制的特点,设计了一个基于PLC的智能温室控制系统。
关键谝:PLC;智能控制:温室控制
智能温室系统是近年逐步发展起来的一种资源节约型高
效设施农业技术。本文在吸收发达国家高科技温室生产技术
的基础上,对温室温度、湿度、CO,浓度和光照等环境因子控
制技术进行研究,设计了一种基于PLC的智能温室控制系统。
1智能温室控制算法的研究
1.1温室环境的主要特点
温室环境系统是一个复杂的大系统,建立精确的控制模
型很难实现。由于作物对环境各气候因子的要求并不是特别
的精确,而是一个模糊区间,比如作物对温度的要求,只要温
度在某一时间段在某一区间内,该作物就能很好地生长,因
此,也没有必要将各种参数进行精确控制。温室气候环境作
为计算机控制系统的控制对象,有以下特点:非线性系统、分
布参数系统、时变系统、时延系统、多变量藕合系统。
1.2智能温室控制对象微分方程
智能温室温度微分方程为:
式中,为智能温室的放大系数;为智能温室的时间常数;
为智能温室内外干扰热量换算成送风温度的变化量;为智
能恒温室室内温度。
2系统总体结构与硬件设计
2.1系统总体结构
2.1.1控制系统设计目标
温室控制系统是依据室内外装设的温度传感器、湿度传
感器、光照传感器、CO,传感器、室外气象站等采集或观测的
温室内的室内外的温度、湿度、光照强度、CO,浓度等环境参
数信息,通过控制设备对温室保温被、通风窗、遮阳网、喷滴灌
等驱动/执行机构的控制,对温室环境气候和灌溉施肥进行
调节控制以达到栽培作物生长发育的需要,为作物生长发育
提供最适宜的生态环境,以大幅度提高作物的产量和品质。
2.1.2控制模式
以时间为基准的变温管理。根据一天中时间的变化实行
变温管理,根据作物的生长需要将l天分成4个时间段,4个时
间段中根据不同的控温要求对温室进行控制。1天中4个时间
段的分段方法用户可以灵活的更改,而且4个时间段中的温度
设定值用户也可以设定修改。
不同季节的控制模式不同,只是自动控制系统启动的调
节机构不相同,但不同季节的控制目的是相同的,即将环境参
数调控到设定的参数附近。随着季节的变化,以及随作物生
长阶段的变化,各时间段所需要的温度也是变化的,这时可通
过修改设定温度值来调整温室的温度控制目标。
2.1-3控制方案
本系统采用自动与手动互相切换控制两种方式来实现对
温室的自动控制,提高设备运行的可靠性。在运行时可通过
按钮对这两种控制方式进行切换。手动控制简单可靠,由继
电器、接触器、按钮、限位开关等电气元器件组成。自动控制
模式采用计算机自动控制。通过传感器对环境因子进行监测,
并对其设定上限和下限值,当检测到某一值超过设定值,便发
出信号自动对驱动设备进行开启和关闭,从而使温室环境因
子控制在设定的范围内。其运行成本较低,可大大节约劳动
力,降低劳动者的劳动强度。
2.2系统的硬件组成
为了实现智能温室的环境监控,本设计建立了温室环境
控制参数的长时间在线计算机自动控制系统。实现了温室内
温度、湿度、CO,浓度、光照强度等参数的长期监测。并可根据
智能温室温湿度的需求,对天窗、侧窗、降温湿风扇、风机、湿
帘、内外遮阳网等设备自动控制。采用计算机作为上位机安装
有组态t6.02监控软件,能将数据汇总、显示、记录、自动形成
数据库,并实现了温室调控设备的自动设置与远程监控。为了
确保系统的可靠性,温室设备的控制采用手动/自动切换方
式,即在某些特殊情况下系统可以切换成手动,使用灵活方
便。
3系统的软件设计
3.1温室控制系统PLC软件的设计
根据基本要求和技术要求列出以下几点:(1)防止接点误
动作:可利用自锁电路加以解决;(2)系统自诊断功能:PIG本
身具有此项功能;(3)风机控制:温室设有一组风机,能同时启
动与停止,当温室内的温度超出预定值时,受PLC的控制先是
4个侧窗自动打开,延时5s后风机启动,再延时5s后湿帘水泵
启动,从而使温室的温度降低;(4)侧窗控制:温室中设有4个
侧窗,侧窗受电机控制,通过电机限位的设定来控制侧窗行
程。解决方法类似上一点,但考虑到程序的精炼性,可配合
PGI的中断功能命令加以解决;(5)系统自动/手动控制:可利
用一个开关量作为PLC的输入信号,实现控制程序的转换;
(6)湿帘泵控制;(7)遮阳网控制;(8)CO,补气(控制;(9)补光灯控制;(1O)可扩展性:在PLC中预留一定的存
储空间和端口即可解决。
3.2控制系统软件设计
系统中对风扇、天窗、侧窗、环流风机、遮阳幕和湿帘泵的
控制是通过PLC发出开关指令,通过交流接触器控制相关机
构的启停。由于PLC检测系统具有较高的灵敏度,能够把温
室内的扰动快速反应出来,同时由于温室较大的传递滞后,执
行机构动作频繁,从而影响使用寿命。为此,在程序中加有时
间可调的延时模块,使用时可根据具体情况调整延时,使控制
效果达到最佳。
3.3系统的组态监控软件的设计
组态软件是可从可编程控制器以及各种数据采集卡等设
备中实时采集数据,然后发出控制命令并监控系统运行是否正
常的一种软件包。其主要功能如下:
(1)远程监视功能。它可以通过通讯线远程监视多座温
室的当前状态,包摇‘户外温度、光照强度、风速、风向、雨雪信
号、室内温度、室内湿度、控制器温度、三组独立通风窗的位置
和开关状态、内外遮阳幕的位置和开关状态以及一级二级风
扇、湿帘、微雾、加热器、环流风扇、补光灯、C0,补气阀、水暖
三通阀的状态和多种形式的报警监视,还能监视各灌溉阀的
照强度、风速、室内温度、室内湿度、CO,浓度、水暖温度等全
月的、全周的、全日的和本时段的最大值、最小值和平均值。
(3)温室设备运行记录功能。它能在线记录各温室设备
状态变化时的时间、当前状态和位置、当前目标温度、室内温
度、目标湿度和室内湿度,并能打印输出。
(4)远程设定功能。可以通过通讯线远程修改可编程控
制器的全部设定参数。
(5)生成曲线图功能。它能以平面图或立体图的方式同
时绘制任意时刻的户外温度、光照强度、风速、目标温度、室内
温度、目标湿度、室内湿度、CO,浓度、水暖温度等全年的、全
月的、全周的、全日的变化曲线并打印输出。
4结语
本文通过分析温室执行机构的相应动作对环境因子的影
响,将可编程控制技术、变频技术、组态监控技术和传感器技
术应用于温室控制系统的设计,开发了基于PLC的智能温室
控制系统。圜
状态
(2)数据统计功能。它可以统计任意时刻的户外温度、光[2]
。
它可以统计任意时刻的户外温度、光
14O
[参考文献】
邓璐娟,张侃谕,龚幼民.智能控制技术在农业工程中的应
用.现代化农业,2003(12):1~3
申茂向等.荷兰设施农业的考察与中国工厂化农业建设的思
考.农业工程学报,2000,16(5)
PLC的,一百多份,有用的话,加分给我,
1. 基于FX2N-48MRPLC的交通灯控制
2. 西门子PLC控制的四层电梯毕业设计论文
3. PLC电梯控制毕业论文
4. 基于plc的五层电梯控制
5. 松下PLC控制的五层电梯设计
6. 基于PLC控制的立体车库系统设计
7. PLC控制的花样喷泉
8. 三菱PLC控制的花样喷泉系统
9. PLC控制的抢答器设计
10. 世纪星组态 PLC控制的交通灯系统
11. X62W型卧式万能铣床设计
12. 四路抢答器PLC控制
13. PLC控制类毕业设计论文
14. 铁路与公路交叉口护栏自动控制系统
15. 基于PLC的机械手自动操作系统
16. 三相异步电动机正反转控制
17. 基于机械手分选大小球的自动控制
18. 基于PLC控制的作息时间控制系统
19. 变频恒压供水控制系统
20. PLC在电网备用自动投入中的应用
21. PLC在变电站变压器自动化中的应用
22. FX2系列PCL五层电梯控制系统
23. PLC控制的自动售货机毕业设计论文
24. 双恒压供水西门子PLC毕业设计
25. 交流变频调速PLC控制电梯系统设计毕业论文
26. 基于PLC的三层电梯控制系统设计
27. PLC控制自动门的课程设计
28. PLC控制锅炉输煤系统
29. PLC控制变频调速五层电梯系统设计
30. 机械手PLC控制设计
31. 基于PLC的组合机床控制系统设计
32. PLC在改造z-3040型摇臂钻床中的应用
33. 超高压水射流机器人切割系统电气控制设计
34. PLC在数控技术中进给系统的开发中的应用
35. PLC在船用牵引控制系统开发中的应用
36. 智能组合秤控制系统设计
37. S7-200PLC在数控车床控制系统中的应用
38. 自动送料装车系统PLC控制设计
39. 三菱PLC在五层电梯控制中的应用
40. PLC在交流双速电梯控制系统中的应用
41. PLC电梯控制毕业论文
42. 基于PLC的电机故障诊断系统设计
43. 欧姆龙PLC控制交通灯系统毕业论文
44. PLC在配料生产线上的应用毕业论文
45. 三菱PLC控制的四层电梯毕业设计论文
46. 全自动洗衣机PLC控制毕业设计论文
47. 工业洗衣机的PLC控制毕业论文
48. 《双恒压无塔供水的PLC电气控制》
49. 基于三菱PLC设计的四层电梯控制系统
50. 西门子PLC交通灯毕业设计
51. 自动铣床PLC控制系统毕业设计
52. PLC变频调速恒压供水系统
53. PLC控制的行车自动化控制系统
54. 基于PLC的自动售货机的设计
55. 基于PLC的气动机械手控制系统
56. PLC在电梯自动化控制中的应用
57. 组态控制交通灯
58. PLC控制的升降横移式自动化立体车库
59. PLC在电动单梁天车中的应用
60. PLC在液体混合控制系统中的应用
61. 基于西门子PLC控制的全自动洗衣机仿真设计
62. 基于三菱PLC控制的全自动洗衣机
63. 基于plc的污水处理系统
64. 恒压供水系统的PLC控制设计
65. 基于欧姆龙PLC的变频恒压供水系统设计
66. 西门子PLC编写的花样喷泉控制程序
67. 欧姆龙PLC编写的全自动洗衣机控制程序
68 景观温室控制系统的设计
69. 贮丝生产线PLC控制的系统
70. 基于PLC的霓虹灯控制系统
71. PLC在砂光机控制系统上的应用
72. 磨石粉生产线控制系统的设计
73. 自动药片装瓶机PLC控制设计
74. 装卸料小车多方式运行的PLC控制系统设计
75. PLC控制的自动罐装机系统
76. 基于CPLD的可控硅中频电源
77. 西门子PLC编写的花样喷泉控制程序
78. 欧姆龙PLC编写的全自动洗衣机控制程序
79. PLC在板式过滤器中的应用
80. PLC在粮食存储物流控制系统设计中的应用
81. 变频调速式疲劳试验装置控制系统设计
82. 基于PLC的贮料罐控制系统
83. 基于PLC的智能交通灯监控系统设计
plc毕业设计开题报告
我们眼下的社会,报告使用的次数愈发增长,报告中提到的所有信息应该是准确无误的。你所见过的报告是什么样的呢?下面是我整理的plc毕业设计开题报告,仅供参考,欢迎大家阅读。
1、选题意义和背景。
可编程序逻辑控制器(Programmable Logic Controller, PLC)具有可靠性高、抗干扰能力强、功能丰富等强大技术优势,已经成为目前自动化领域的主流控制系统。然而,从目前的应用情况来看,PLC还大都只是承担最基本的控制功能,如顺序控制、数据采集和PID反馈控制。各个PLC厂家也在其产品中设计了PID模块。虽然PID算法控制有很高的稳定性,但对于一些复杂控制系统,PID控制很难满足控制要求,这也使PLC的发展面临着一种挑战。随着越来越多的PLC产品与IEC1131-3标准兼容,PLC控制系统越来越开放,将先进控制算法嵌入PLC常规控制系统成为可能。本课题从工业控制实际应用角度出发,对PLC的控制功能进行深入的研究和探讨,以提高和扩展PLC控制器的应用水平和应用范围。本课题:PLC先进控制策略的研究与应用,其目的是通过研究使一些先进控制算法在PLC及组态系统上得以实现,并开发相应的应用程序,经过验证后最终应用到工业过程控制中去。
在PLC组态系统中实现先进控制算法,包括预测控制算法和模糊逻辑控制算法,形成具有人工智能的控制模块及网络系统,能大大提高系统的控制水平,改善控制质量。从经济角度来看,目前PLC生产商的一些产品具备先进控制模块,如模糊模块。但它们的价格十分昂贵,且封闭性较强,不适合我国中小型企业的工业改造。因此开发较为通用的先进算法实现技术,对于我国中小型企业的工业改造具有很大的意义,既可降低生产成本,又可提高经济效益。
模糊控制与预测控制是智能控制中技术较为成熟的分支,因此,研制和开发出适合工业环境的实时先进控制开发工具,实现模糊控制、预测控制嵌入PLC,与常规控制集成运行,让先进控制从教授、专家手中走出来,实现先进控制的工程化、实用化、转化为社会生产力,对缩短控制系统开发周期,加快先进控制技术的广泛应用,提高我国的工业自动化水平有着重大的意义。
2、论文综述/研究基础。
在过程工业界,从40年代开始,采用PID控制规律的单输入单输出简单反馈控制回路己成为过程控制的核心系统。目前,PID控制仍广泛应用,即便是在大量采用DCS控制的最现代的工业生产过程中,这类回路仍占总回路80%-90%.这是因为PID控制算法是对人的简单而有效操作的总结和模仿,足以维护一般过程的平稳操作与运行,而且这类算法简单且应用历史悠久,工业界比较熟悉且容易接受。
然而,单回路PID控制并不能适用于所有的过程和不同的要求[4}0 50年代开始,逐渐发展了串级、比值、前馈、均匀和Smith预估控制等复杂控制系统,即当时的先进控制系统,在很大程度上满足了单变量控制系统的一些特殊的控制要求。在工业生产过程中,仍有10%-20%的控制问题采用上述控制策略无法奏效,所涉及的被控过程往往具有强藕合性、不确定性、非线性、信息不完全性和大纯滞后等特性,并存在着苛刻的约束条件,更重要的是它们大多数是生产过程的核心部分,直接关系到产品的质量、生产率和成本等有关指标。随着过程工业日益走向大型化、连续化,对工业生产过程控制的品质提出了更高的要求,控制与经济效益的矛盾日趋尖锐,迫切需要一类合适的先进控制策略。自50年代末发展起来的以状态空间方法为主体的现代控制理论,为过程控制带来了状态反馈、输出反馈、解疆控制、自适应控制等一系列多变量控制系统设计方法}s}.上述多变量控制策略有其自身的不足之处,工业过程的复杂性使得建立其正确的数学模型比较困难。同时,计算机技术的持续发展使得计算机控制在工业生产过程中得到了广泛的应用,强大的计算能力可以用来求解过去认为是无法求解的问题,这一切都孕育着过程控制领域的新突破。
整个80年代,出现了许多约束模型预测控制的工程化软件包。通过在模型识别、优化算法、控制结构分析、参数整定和有关稳定性和鲁棒性研究等一系列工作,基于模型控制的理论体系己基本形成,并成为目前过程控制应用最成功,也最有前途的先进控制策略。近年来,人工智能技术有了长足的长进并在许多科学与工程领域中取得了较广泛的应用。就过程控制而言,专家系统、神经网络、模糊系统是最有潜力的三种工具。专家系统可望在过程故障诊断、监督控制、检测仪表和控制回路有效性检验中获得成功应用。神经网络则可以为复杂的非线性过程的建模提供有效的方法,进而可用于过程软测量和控制系统的设计上。模糊系统不仅是行之有效的模糊控制理论基础,而且有望成为表达确定性和不确定性两类混合并提炼这些经验使之成为知识进而改进以后的控制,也将是先进控制的重要内容。
由于先进控制受控制算法的复杂性和计算机硬件两方面因素的影响,早期的先进控制算法通常是在PC机和UNIX机上实施的。随着DCS功能的不断增强,更多的先进控制策略可以与基本控制回路一起在DCS控制站上实现。国外发达国家几乎所有企业都采用了DCS系统或其它智能化设备来实现对生产过程的控制,并在此基础上通过实施先进控制与优化较大的提升了系统的性能。可以说,高性能控制系统,尤其是DCS系统的普及为先进控制的应用提供了强有力的硬件和软件平台。国外从70年代末就开始了先进控制技术商品化软件的开发及应用,并在DCS的基础上实现先进控制和优化。如爱默生公司的DeltaV和Honeywell公司的TDC3000,其先进控制软件RMPGT和RPID等在现场的实际应用都集中在自己的DCS系统上。传统的PLC由于不支持浮点运算以及先进控制所必须的精确的时间,因此,除了模糊逻辑控制外,其他的先进控制并没有在PLG平台上实现。然而,在过程工业中大多系统使用先进灵活的PLC控制系统,因此1996年Barnes提出了一种基于PC-PLC通讯的混合方式,通过控制网络实现计算机与PLG的通讯,从而实现先进控制。
3、参考文献。
[1]基希林,曲非非。PLC的发展[J].微计算机信息,20xx, 18(9):1-2
[2]陈夕松,张景胜。过程控制发展综述与教学研讨[J].南京工程学报,20xx,2(1):49-52
[3]Ohaman Martin, Johansson,Stefan, Arzen, Karl-Erik. Implementation aspects of the PLC standard IEC 1131-3 [J].Control Engineering Practice, 1998,6(8):547-555
[4]范宗海,黄步余,唐卫泽。先进过程控制在聚丙烯装置上的应用[J].石油化工自动化,1999, (6):7-12
[5]王跃宣。先进控制策略与软件实现及应用研究[M].浙江大学博士论文,20xx,(1):8-20
[6]褚健。现代控制理论基础[M].杭州:浙江大学出版社,1995: 9-15
[7]沈平,赵宏,孙优贤。过程控制理论基础[M].杭州:浙江大学出版社,1991:31-38
[8]张志辉一套常减压先进控制的应用与开发「M].陕西:西安交通大学硕士论文,20xx:20-25
[9]薛美胜,吴刚,孙德敏,王永。工业过程的先进控制[J].化工自动化及仪表,20xx,29(2):1一9
[10] Kolokotsa D.,Stavrakakis,G S二Genetic algoritluns optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks[J].Engineering Applications of Artificial Intelligence,20xx,15(5):417-428
[11]黄丽雯。新型PLC的特点及应用[J].新特器件应用,1999 , (6) : 27-29
[12]杨昌馄。可编程序控制器发展趋势概述[J],基础自动化,1998 , (2) :1-5
[13]蔡伟,巨永锋。PLC分布式控制系统[J].西安公路交通大学学报,1996,16(3):20-25
[14]胡惠延。用PLC实现的一种集散型控制系统[J].煤矿自动化,20xx, (4) : 22-24
[15]陈勇,赵勇飞,徐莉。工控机与PLC分布式测控系统的设计[J].西安公路交通大学学报,1999 , (6) : 41-43
[16]任俊杰,钱琳琳,刘泽祥。基于SIMATIC S7 PLC的现场总线控制系统[J],电工技术杂志,20xx,(9):40-42
[17〕田红芳,李颖宏。PLC与上位机的串行通讯[J].微计算机信息,20xx,17(3):36-37
[18]姚锡凡,彭永红,陈统坚,李伟光。基于模糊芯片的加工过程智能控制[J].组合机床与自动化加工技术,20xx, (2):26-29
[19]汪小澄,方强。基于PLC的模糊控制研究[J].武汉大学学报,20xx, 35(3):79-81
[20]肖汉光。模糊控制在悬挂链同步控制中的应用[M].广州:华南理工大学硕士论文,20xx: 20-31
[21]成晓明,柳爱美,田淑杭,PLC的炉温多级模糊控制的优化与实现[J].自动化仪器与仪表,20xx,(1) : 20-22
[22]李敬兆,张崇巍。基于PLC直接查表方式实现的模糊控制器研究[J].电子技术杂志,20xx,(9):18-21
[23]张玺,刘勇,张小兵。二次开发Wincc模糊控制算法[J].计算机应用,20xx,(1):69-71
[24]孙东卫,周立峰。预测模糊控制在渠道系统中的应用[J].现代电子技术,20xx,(4):82-85
[25]石红瑞,孙洪涛,马智宏。二次开发RSView32嵌入广义预测控制算法[J] .测控技术,20xx 23(9) : 52-54
[26」西门子公司。西门子57-300系统参考手册[M].北京:西门子自动化与驱动集团,20xx: 10-200
[27」西门子公司。STEP? V5.1编程手册[M].北京:西门子自动化与驱动集团,20xx:40-60
[28]王磊,王为民。模糊控制理论及应用[M].北京:国防工业出版社,1997: 17-29
[291章为国,杨向忠。模糊控制理论与应用[M].陕西:西北工业大学出版社,1999:15一19
[30]蔡自兴。智能控制一基础与应用[M].北京:国防工业出版社,1998: 35-37
[31]孙增折。智能控制理论与技术[M].北京:清华大学出版社,1997; 55-62
[32]齐蓉,林辉,李玉忍,谢利理,通用模糊控制器在PLC上的实现[[J].工业仪表与自动化装置,20xx, (4):23-25
[33]闻新,周露,李东江,贝超。MATLAB模糊逻辑工具箱的分析与应用〔M].北京:科学出版社,20xx: 44-45
[34]许建平,刘添兵。PLC控制软件的模块化设计[J].九江职业技术学校学报,20xx,(3):13一14
[35]张运波。PLC梯形图设计中的关键技术[J].长春工程学院学报,20xx,1(1):30-32
[36] Richalet J, Rault A. Model Predictive Heuristic Cortrol:Application to Industrial Process[J] .Automatica, 1978,14(1):413-428
[37] Rouhani R,Mehra R K. Model algorithmic control (MAC):Basic Theoretical Properties[J].Automatica,1982,18(4):401-414
[38] Culter C R,Ramaker B L .Dynamic Matrix :ontrol-A Computer Control Algorithm[M].San Francisco: American Automatic Control Council,1980:221-230
[39] Clarhe D W, Mohtadi C.Constrained receding hori:on predictive control[J].IEEProc-D, 1991,13 8(4) : 347-3 54
[40] Garica C E,Morari M. Internal Model Control-A Unifying Review and Some New Results[J] .Process DesDew, 1982,(21):308一32;5
[41]Richalet J .Predictive functional control-Appliation to fast and accurate robots[J].Proc Of 10“ IFAC World Congress, Munich, FRG, 1987, (1):25I-258
[42]许超,陈治钢,邵慧鹤。预测控制技术及应用发展综述[J].自动化及仪表,20xx,29(3):1一10
[43]舒迪前。预测控制系统及其应用[M].北京:机械工业出版社,1996: 225-228
[44]李绍勇,陈希平,王刚,范宗良,树龙,蔡颖。换热机组供水温度的广义预钡(控制[J].甘肃科学学报,20xx, 16(3):95-97
[45]俞树荣,祁振强,商建平。集中供热系统热力站二段换热机组系统建模及研究[J].甘肃工业大学学报,20xx, 28(2):57-61
4、论文提纲。
第三章PLC模糊控制器的研究与实现
3.1模糊控制算法与系统
3.1.1模糊控制理论
3.1.2模糊控制系统
3.1.2.1模糊控制器的组成
3.1.2.2模糊控制算法
3.1.2.3模糊控制器的结构
3.2 PLC模糊控制器设计
3.2.1 PLC模糊控制器结构
3.2.2模糊控制器离线部分设计
3.2.2.1模糊控制器离线部分算法设计内容
3.2.2.2基于MATLAB模糊逻辑工具箱的设计
3.2.3 STEP7实现模糊控制器设计
3.2.3.1模糊算法流程图
3.2.3.2模糊算法的功能块
3.2.4 PLC模糊控制器的仿真验证
3.2.4.1仿真系统的建立
3.2.4.2仿真结果验证
第四章PLC预测控制器的研究与实现
4.1广义预测控制算法
4.1.1单值广义预测控制
4.1.2单值广义预测控制律计算
4.2 PLC单值广义预测控制器的设计与实现
4.2.1单值广义预测算法的实现步骤
4.2.2单值广义预测控制器的设计
4.3单值广义预测控制器的仿真验证
4.3.1仿真模型的建立
4.3.2仿真结果分析比较
第五章基于PLC的空调性能检测实验室计算机控制系统
5.1工艺流程与控制方案
5.1.1工艺过程简述
5.1.2控制要求
5.1.3控制方案设计
5.2控制系统结构及配置
5.3监控系统组态设计
5.4 57-300 PLC控制系统设计
5.4.1硬件系统组态
5.4.2 PLC控制程序设计
5、论文的理论依据、研究方法、研究内容。
目前,PLC的应用十分广泛,涉及到过程控制的方方面面。但在控制策略上,它依然沿用传统的PID控制。许多PLC开发商把PID算法做成模块,固化在PLC中。
但从长远角度看,对于一些复杂的控制系统,PID很难满足控制要求,这就需要把先进的控制算法嵌入到PLC的设计中。本课题以此为主要研究内容。
工业过程的复杂性以及对于控制日益提高的要求,各种先进控制算法越来越多地深入到控制领域,但由于PLC的编程目前还限于低级语言(如梯形图),所以,给在PLC上实现先进控制算法带来了困难。SIEMENS在PLC的编程系统STEP7中提供了比较丰富的功能模块,因此,本课题首先是通过对控制算法的研究与改进和对STEP?功能的开发,使先进控制策略在S7-300 PLC上得以较好的实现。本论文重点研究基于PLC的模糊控制器的实现,这一领域目前研究的比较多,因此在总结前人研究方法的基础上,设计出一个基于PLC的通用的模糊控制器,并使其固化在STEP7软件中。此外,对于PLC预测控制虽已有一些研究,但都仅限于理论方面,尚未给出PLC上实现的实例。本课题也想在此方面有所创新,开发出基于PLC的预测控制实现技术。
本论文第一章简要介绍了课题的来源背景、主要内容、目的意义以及国外相关工作的研究状况等。
第二章介绍了SIMATIC S7-300 PLC的主要特点,系统组成及控制系统的配置与实现,同时介绍了STEP?软件的功能及结构,组态环境,以及一些基本算法的实现方法。
第三章重点阐述了模糊控制的基本理论、模糊控制算法、模糊控制器的结构及设计方法。提出了基于PLC的模糊控制器的实现方法,即采用MATLAB离线设计,PLC在线查询的方式。给出了STEP?实现模糊算法的流程图及部分程序。
最后建立一个过程仿真系统,对PLC模糊控制器进行仿真验证。
第四章介绍了预测控制的基本理论,重点阐述了广义预测控制算法,并结合PLC的特点,提出了基于PLC的.单值广义预测控制器的设计方法,给出了STEP7实现单值广义预测算法的步骤与流程图。最后建立一个二阶大滞后的对象模型,构成仿真控制系统,与PID控制进行比较分析,验证PLC预测控制器的有效性。
第五章是作者在研究生期间参加的某空调性能检测实验室基于PLC实现的计算机控制系统,从系统控制方案的设计、系统配置和硬件构成、监控系统的设计等几个方面分别进行了详细的论述。
第六章结论与体会,总结自己在课题研究和项目研究的过程中的一些体会和心得,分析了工作中的不足,提出了以后工作的注意事项,改进方法。
6、研究条件和可能存在的问题。
I.尽快建立样板工程,把己经取得的研究成果应用到工程实际过程中,通过实践检验,发现问题以便不断改进和提高。
2. PLC预测控制器目前只应用了简单的单值广义预测算法,有其自身的局限性,如控制精度不高。目前,应用较为成熟的是MPC算法,因此可以把PLC-MPC控制器作为今后研究的一个重点。
3.对于PLC模糊控制器的改进,主要是在算法上,为了提高控制效果,单纯的模糊算法是不足的,改进型模糊算法如模糊PID可以改善控制器性能,因此可以开发PLC模糊PID控制器。
4.进一步挖掘STEP?软件的功能,开发过程对象仿真模块,给出基于PLC建立仿真系统的方法和步骤,为工业实阮应用缩短调试时间,保证系统的可靠性。
7、预期的结果。
1.通过对先进控制各种算法的分析比较,对先进控制理论有了进一步认识,从中学到了不少解决问题的方法,理解了传统控制方法与先进控制方法的区别。
2.基于PLC实现先进控制与基于PC实现先进控制相比较,最重要的一个优势在于PLC实现先进控制不需要通讯协议,而基于PC实现先进控制,在系统设计和运行之前必须正确的配置PC与PLC之间的通讯协议,因此可以降低系统得开发时间。其次,在系统运行时,在下位机上完成先进控制算法比在上位机完成更具有实时性。在可靠性方面,由于基于PC实现先进控制,现场的数据和信号要经过通讯传给上位机,这难免会出现数据的丢失和信号的误差,从而使系统的控制精度下降,而基于PLC实现先进控制避免了这类现象的发生。
3.西门子57-300 PLC功能强、处理速度快、模块化结构易于扩展,被广泛的应用于自动化控制系统中;其相应开发软件STEP7采用模块化编程方法,提供多种编程语言,丰富的功能模块,能实现较为复杂的功能和算法。因此二者结合 起来,为先进控制的设计与开发提供了很好的软硬件平台。
4. PLC模糊控制器采用MTALAB离线设计和PLC在线查表的方法,把复杂的模糊推理过程交给计算机离线完成,得到模糊控制量查询表供PLC在线调用。此方法将复杂琐碎的模糊控制系统的开发工作变得简单明了,大大缩短了开发周期,同时也提高的PLC控制的实时性,是目前被广泛采用且效果良好的PLC模糊控制器的设计方法。
5. PLC单值广义预测控制器采用简单实用的单值广义预测控制算法,它需要调整参数少、在线计算时间短,可适用于PLC类控制采样周期较短的快速动态过程系统。仿真结果表明:PLC单值广义预测控制器保持了预测控制的性能,控制效果较PID控制有很大改善,同时具有计算量小,响应迅速的优点。
8、论文写作进度安排。
20xx.05-20xx.06 开论文会议
20xx.06-20xx.07 确定论文题目
20xx.07-20xx.02 提交开题报告初稿
20xx.02-20xx.06 提交论文初稿
20xx.07-20xx.08 确定论文终稿
20xx.08-20xx.09 论文答辩
PLC的,一百多份,有用的话,加分给我,
1. 基于FX2N-48MRPLC的交通灯控制
2. 西门子PLC控制的四层电梯毕业设计论文
3. PLC电梯控制毕业论文
4. 基于plc的五层电梯控制
5. 松下PLC控制的五层电梯设计
6. 基于PLC控制的立体车库系统设计
7. PLC控制的花样喷泉
8. 三菱PLC控制的花样喷泉系统
9. PLC控制的抢答器设计
10. 世纪星组态 PLC控制的交通灯系统
11. X62W型卧式万能铣床设计
12. 四路抢答器PLC控制
13. PLC控制类毕业设计论文
14. 铁路与公路交叉口护栏自动控制系统
15. 基于PLC的机械手自动操作系统
16. 三相异步电动机正反转控制
17. 基于机械手分选大小球的自动控制
18. 基于PLC控制的作息时间控制系统
19. 变频恒压供水控制系统
20. PLC在电网备用自动投入中的应用
21. PLC在变电站变压器自动化中的应用
22. FX2系列PCL五层电梯控制系统
23. PLC控制的自动售货机毕业设计论文
24. 双恒压供水西门子PLC毕业设计
25. 交流变频调速PLC控制电梯系统设计毕业论文
26. 基于PLC的三层电梯控制系统设计
27. PLC控制自动门的课程设计
28. PLC控制锅炉输煤系统
29. PLC控制变频调速五层电梯系统设计
30. 机械手PLC控制设计
31. 基于PLC的组合机床控制系统设计
32. PLC在改造z-3040型摇臂钻床中的应用
33. 超高压水射流机器人切割系统电气控制设计
34. PLC在数控技术中进给系统的开发中的应用
35. PLC在船用牵引控制系统开发中的应用
36. 智能组合秤控制系统设计
37. S7-200PLC在数控车床控制系统中的应用
38. 自动送料装车系统PLC控制设计
39. 三菱PLC在五层电梯控制中的应用
40. PLC在交流双速电梯控制系统中的应用
41. PLC电梯控制毕业论文
42. 基于PLC的电机故障诊断系统设计
43. 欧姆龙PLC控制交通灯系统毕业论文
44. PLC在配料生产线上的应用毕业论文
45. 三菱PLC控制的四层电梯毕业设计论文
46. 全自动洗衣机PLC控制毕业设计论文
47. 工业洗衣机的PLC控制毕业论文
48. 《双恒压无塔供水的PLC电气控制》
49. 基于三菱PLC设计的四层电梯控制系统
50. 西门子PLC交通灯毕业设计
51. 自动铣床PLC控制系统毕业设计
52. PLC变频调速恒压供水系统
53. PLC控制的行车自动化控制系统
54. 基于PLC的自动售货机的设计
55. 基于PLC的气动机械手控制系统
56. PLC在电梯自动化控制中的应用
57. 组态控制交通灯
58. PLC控制的升降横移式自动化立体车库
59. PLC在电动单梁天车中的应用
60. PLC在液体混合控制系统中的应用
61. 基于西门子PLC控制的全自动洗衣机仿真设计
62. 基于三菱PLC控制的全自动洗衣机
63. 基于plc的污水处理系统
64. 恒压供水系统的PLC控制设计
65. 基于欧姆龙PLC的变频恒压供水系统设计
66. 西门子PLC编写的花样喷泉控制程序
67. 欧姆龙PLC编写的全自动洗衣机控制程序
68 景观温室控制系统的设计
69. 贮丝生产线PLC控制的系统
70. 基于PLC的霓虹灯控制系统
71. PLC在砂光机控制系统上的应用
72. 磨石粉生产线控制系统的设计
73. 自动药片装瓶机PLC控制设计
74. 装卸料小车多方式运行的PLC控制系统设计
75. PLC控制的自动罐装机系统
76. 基于CPLD的可控硅中频电源
77. 西门子PLC编写的花样喷泉控制程序
78. 欧姆龙PLC编写的全自动洗衣机控制程序
79. PLC在板式过滤器中的应用
80. PLC在粮食存储物流控制系统设计中的应用
81. 变频调速式疲劳试验装置控制系统设计
82. 基于PLC的贮料罐控制系统
83. 基于PLC的智能交通灯监控系统设计