教学论文 源于教学,成于思考 ,是教师在日常教学中经验的积累,对教育的感悟。一个好的论文题目很重要,下面我收集了一些关于初中数学教学论文题目,希望对你有帮助
1. 新课程理念下中学数学教学的合作学习问题探析
2. 浅谈新课标下的数学课题学习
3. 乘船中的数学问题
4. 忽似一夜春风来----浅议数学教学中的顿悟
5. 初中数学教学应重视学生直觉思维能力的培养
6. 七年级学生学习情况的调研
7. 老师,这个答案为什么错了?——由一堂没有准备的探究课引发的思考
8. 新课程背景下学生数学学习发展性评价的构建
9. 让学生走出“零阅读”的尴尬
10. 初中数学学生学法辅导之探究
11. 合理运用数学情境教学
12. 让学生在自信、兴趣和成功的体验中学习数学
13. 创设有效问题情景,培养探究合作能力
14. 重视数学教学中的生成展示过程,培养学生创新思维能力
15. 从一道中考题的剖析谈梯形中面积的求解方法
16. 浅谈课堂教学中的教学机智
17. 从《确定位置》的教学谈体验教学
18. 谈主体性数学课堂交流活动实施策略
19. 对数学例题教学的一些看法
20. 新课程标准下数学教学新方式
21. 举反例的两点技巧
22. 数学课堂教学中分层教学的实践与探索
23. 新课程中数学情境创设的思考
24. 数学新课程教学中学生思维的激发与引导
25. 新课程初中数学直觉思维培养的研究与实践
26. “问题解决”与创造精神的培养
27. 做个学习数学的有心人
28. 让学生的创新之花绽放得更鲜艳
29. 对数学探索教学的观察与思考
30. “先学后教”教学模式的探索与研究
1. 新形势、新气象、新变化
2. 浅谈新浙教版七年级数学教学体会
3. 让课堂充满问题 让问题充满思考
4. 改变试卷讲评方式,提高学生复习效率
5. 构建信息能力培养的平台----新课标下的数学教学
6. 在数学新课程教学中谈如何培养学生的合作学习
7. 数学教学中的对学生发展性评价的浅显研究
8. 对目前初中数学课堂教学的一些思考
9. 读书无颖者顺教有疑,有疑者顺教无颖
10. 心与心的交流、共创人文和谐
11. 展示过程学习,促进数学能力发展
12. 它山之石,可以攻玉——北师大教材的几点借鉴和反思
13. 新课程理念下初中数学课堂教学的反思
14. 借新课程理念,探中下生转化之路
15. 论新课标下数学试卷讲评课的思考
16. 谈数学教学中的四个“适”
17. 是否一定要“探究”
18. 数学建模——数学与现实世界的桥梁
19. 新课标下学生问题意识的培养
20. 数学课堂教学应让学生多思考
21. 实施新课程、新教材的体会与思考
22. 谈合作学习中的误区和对策
23. 探究性学习在初中数学课堂中的尝试
24. 浅谈数学教学情境的创设
25. 点击思维过程,培养学生思维深刻性
26. 让每个学生在课堂上都有自由发展的空间
27. 初中数学探究性学习兴趣培养之初探
28. 新课程标准下数学教学的反思
29. 新课标下如何培养学生的问题意识
30. 小组合作学习在初中数学教学中的实施策略
1. 新课标教学课堂有效教学的艺术
2. 动与静 大成 徐孝萍
3. 试析学生在课堂学习中的行为表现成因及对策
4. 让学生快乐地学习——浅谈关注学生学习状况,提高数学教学效率
5. 加强师生互动,提高课堂效率
6. 对培养学生学习主动性的感受
7. 为数学和谐之美,教师应有所作为
8. 初一学生数学学习习惯的调查和干预策略
9. 《初三复习课例题设计之一》
10. 《新课标下数学学科对学生的评价》
11. 《如何让学生爱上你的课》
12. 《优化数学预习作业,促进师生和谐对话》
13. 有感于听 ≠懂;懂 ≠会;会 ≠通
14. 《浅谈多媒体技术在数学积教学中的应用》
15. 新《标准》下数学课堂上的教师个性对学生学习的影响
16. 贴近现实生活,注重应用意识
17. 创设现实生活版的数学教学
18. 注重体验教学——让数学走向生活
19. 多元化的评价给学生插上了自信的翅膀
20. 对初一学生数学解题错误的分析
21. 新课程下更应重视数学阅读
22. 谈学生的数学思维综合品质培养
23. 合作教学法,培养学生创新能力的尝试
24. 在数学教学中进行德育渗透
25. 新课程理念下初中数学教学中的应用意识的渗透
26. “问题解决”与创新意识的培养
27. 浅谈如何维持数学课的教学秩序
28. 小班化教学有效自主学习指导策略
29. 课改区中考学生复习之秘诀
数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
初一数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。