您当前的位置:首页 > 发表论文>论文发表

计算机科学小论文600字

2023-12-08 11:05 来源:学术参考网 作者:未知

计算机科学小论文600字

1、人或动物的生存与植物的关系

不久前,我们家搬入了现在的新房子。刚搬完家,叔叔阿姨们就送来了好几盆花和几株树。门口、客厅里、房间里和阳台上都摆上了盆景。我对爸爸说:“我们家都有成植物园了,摆那么多的植物干吗?”爸爸笑着说:“植物能制造气氛,净化空气,人和动物谁都离不开它们,离开了它们都有不能生存。”人或动物离开植物后不能生存?为什么人或动物离开植物后不能生存?我将信将疑。决定做几个小实验来证明这个问题。

星期天,我从车库里抓来两只老鼠。这两只可怜的小老鼠即将成为我的实验品。它们不停地挣扎着,圆溜溜的一次性薄膜桌布小眼睛瞪着我。我把第一只小巧玲珑老鼠放在一个大鱼缸里,用把玻璃瓶封得严严实实的,生怕瓶里的空气与外界的空气相通。我仔细地观察着,只见小老鼠沿缸着壁,绕着缸底快速地向前窜。咦,小老鼠不是活得好好的吗?难道爸爸说的不是真的?可是,没过几分钟,只见小老鼠绕圈的速度越来越慢,直到停滞不前,奄奄一息的样子。顿时,我把一次性薄膜桌布轻轻拿开,捉出第一保小老鼠,放进第二只小老鼠,又搬入了四盆枝繁叶茂的植物。然后轻轻盖上一次性薄膜桌布。我不停地拍打鱼缸,只见小老鼠惊慌地乱窜。过了好久也没要咽气的样子。这个实验证明了植物可以输送动物所需要的氧气。

为了进一步证明人类和动物对植物的依赖性。我来到我们老家附近一个饲料加工厂。那儿的空气里到处弥漫着一股哝哝的灰尘味,熏得我直咳嗽。我感到十分难受。然后,我又跑向我们家屋后的一片竹林里,那是一个空气新鲜的地方,我感觉极为清爽。这个实验证明植物可以净化空气。使人呼吸顺畅。

这两个实验证明,人类和动物的生存与植物有密切的关系。这其中到底有多大的科学道理呢?我们科技小队来到图书馆去查阅了许多的科技书籍,还到学校电子北阅览室上网查询,总结出以下几点: ① 人必须依靠植物提供氧气,只有植物才能制造氧气。如果说一个人几天不吃饭、几天不喝水且有一息尚存的话,几分钟就可能性命难保,氧气可是人生命活动的第一需要呀!一个成年人每天呼吸约2万多次,吸入氧气0.75千克,呼出二氧化碳0.9千克。 ② 动物与植物的呼吸,物质的燃烧,也都要消耗氧气,释放二氧化碳。这样一来,空气中的氧气不就一天天增加么?不!天地间之所以没有产生过这种危机,就是因为植物既是天然氧气“制造厂”,又是二氧化碳的“广阔市场”。 ③ 有人做过统计,1公顷阔叶林,在生长季节每天能制造氧气750千克,吃掉二氧化碳1000千克。所以算起来,只要有10万平方米的林木,就可以供给一个人氧气的需要量,并把呼出的二氧化碳吸收掉。因为有植物源源不断地补充氧气,空气中的氧气才能保持基本恒定。相反,如果没有植物,地球上的氧气只要500年左右的时间既可以用完。

2、一种新型存储器——光盘
随着社会发展,科学进步,计算机对人们来说已不再陌生,仅在北京市的普通家庭,计算机的普及率已经比较高了。

对于使用计算机的用户来说,如何操作不再是难事,然而新的问题又出现了,庞大的信息量用什么存储,靠什么流通呢?

软盘片便于携带,但容量太小,一般不超过2MB(1MB=1000KB KB=1000B,2B可容纳一个汉字),对稍大的软件则不适用;硬盘容量较大,对稍大的软件则不适用;硬盘容量较大,从几十兆(MB)到几GB(1GB=1000MB)不等,但是只能装在机器内部,携带极为不便。为为集中二者优点且避免二者缺点,便出现了一种新存储器——光盘。光盘的大小与软盘相仿,随时可带在身上,使用方法与软盘也基本一样,只不过用的不是软盘驱动器,而是光盘驱动器。

光盘的大小与软盘相仿,随时可带在身上,使用方法与软盘也基本一样,只不过用的不是软盘驱动器,而是光盘驱动器。

光盘不像软、硬盘那样利用高速旋转来控制读写速度,而是充分利用光。高科技的光头读写,使光盘和可读写光盘速度快,容量大,跟上了当前计算机发展的潮流。

光盘分为两大类:只读光盘和可读写光盘。只读光盘标准容量为650MB,速度比软盘要快得多,相当于中档硬盘的速度;可读写光盘容量大些,一般不超过1.4GB,速度略慢,相当于低盘的速度。

光盘的优点还不止这些,它的计算机领域已被广泛应用。

首先先是软件,无论是应用软件还是游戏软件,容量超过15MB,使用软盘就不太方便了,何况几百上千兆的高级软件。而使用光盘就不用顾忌这些,无论多大的软件,只需薄薄的几张光碟便可解决问题。所以现在的软件和游戏多趋向于精美化、完善化,漏洞明显减少。

其次,现在流行的CD唱盘,VCD影碟,都是利用了光盘技术。它们实质上都是按不同格式存储的光盘。

再加上较之软、硬盘、光盘价格低廉,可被一般家庭接受。所以相信过不了多久,光盘势必成为计算机流通领域的主流,而且它的发展,在很长一段时间内,是决不会停止的。

3、动量守恒定律,是最早发现的一条守恒定律,它渊源于十六、七世纪西欧的哲学思想,法国哲学家兼数学、物理学家笛卡儿,对这一定律的发现做出了重要贡献。

观察周围运动着的物体,我们看到它们中的大多数终归会停下来。看来宇宙间运动的总量似乎在养活整个宇宙是不是也像一架机器那样,总有一天会停下来呢?但是,千百年对天体运动的观测,并没有发现宇宙运动有减少的现象,十六、七世纪的许多哲学家都认为,宇宙间运动的总量是不会减少的,只要我们能够找到一个合适的物理量来量度运动,就会看到运动的总量是守恒的,那么,这个合适的物理量到底是什么呢?

法国的哲学家笛卡儿曾经提出,质量和速率的乘积是一个合适的物理量。速率是个没有方向的标量,从第三节的第一个实验可以看出笛卡几定义的物理量,在那个实验室是不守恒的,两个相互作用的物体,最初是静止的,速率都是零,因而这个物理量的总合也等于零;在相互作用后,两个物体都获得了一定的速率,这个物理量的总合不零,比相互作用前增大了。

后来,牛顿把笛卡儿的定义略作修改,即不用质量和速率的乘积,而用质量和速度的乘积,这样就得到量度运动的一个合适的物理量,这个量牛顿叫做“运动量”,现在我们叫做动量,笛卡几由于忽略了动量的矢量性而没有找到量度运动的合适的物理量,但他的工作给后来的人继续探索打下了很好的基础

4、你能在刀刃上行走自如吗?你能在走完刀刃后什么事都没有吗?肯定不能。但是,你知道吗?一只小小的蜗牛做得到。
中午,妈妈把青菜放在厨房里,在青菜前面还放着几片刀片。不知从哪儿爬进来的一只蜗牛,看见了青菜就奋力朝青菜爬去。要想吃到青菜,需要从刀刃上翻过去。可没想到,它在经过刀刃时,居然什么事都没有发生,安然无恙地抵达了目的地。我真是感到奇怪,怀疑蜗牛的下身是不是有一层“保护膜”,便拿来放大镜对蜗牛进行研究。
原来,蜗牛的身体下面有一块十分有弹性的肌肉,它很发达,与别的肌肉有很大不同。这块肌肉是由许多小块的肌肉组成的。这块肌肉就是蜗牛的腹足。蜗牛爬行时,它的足紧贴在别的物体上,由腹部肌肉做出波状蠕动,就能缓慢地向前爬行了。同时,它能分泌一中粘液帮助它爬行。在蜗牛爬行的时候,这种粘液,遍布足面,就能够保护足面不受损伤。
原来当蜗牛从刀刃上爬过的时候,是这种粘掖给它护了驾,不然的话,它恐怕早就“碎尸万段”了,大自然可真神奇啊!

5、 棍“冒汽”
炎热的夏天,热气逼人,吃上一根冰棍才舒服呢!你注意过吗,冰棍从冷藏箱里拿出来往往还冒“汽”哩! 真有趣,通常只有热的东西才冒汽,冰棍为什么会冒汽呢?
夏天的气温比冰棍的温度高得多,冰棍一遇到空气就要融化,融化时要从周围的空气中吸收大量的热,使空气的温度下降。平时空气里含有一定量的水蒸气,由于温度突然降低,就达到饱和或过饱和状态。也就是说,冰棍周围的空气由于温度降低,便容纳不下原来所含的那么多水蒸气了。在这种情况下,多余的水蒸气就结成微小的水珠,形成一团团飘浮着的雾状水滴,经光线照射,就成了白色的水汽。
云、雾、雨、雪形成的原因也是这样。江河湖海里的水,受到阳光照射后,不断地变成水蒸气,飘散在空气中,含有水蒸气的空气受热上升,升到一定高度,遇到冷空气,就凝成一团团悬浮的小水滴,这便是云。靠近地面的水蒸气,遇冷也能结成一团团悬浮的小水滴,这就是雾。所以云和雾在本质上是相同的。在合适的条件下,云里的小水滴不断地合并成大水滴,直到上升的气流托不住它的时候,便降落下来,形成雨。如果是冬季,这些水滴就结晶成雪花漫天飘舞。不过,空气中饱和水汽的凝结,必须有它凝结的“核心”才行,这个核心就是飘浮在空气中的尘埃,它是促进云、雾、雨、雪形成的必要条件之一。
云雾的秘密,使英国物理学家威尔逊受到很大启发。经过研究,他于1894年发明了一个叫“云雾室”的装置,它里面充满了干净空气和酒精(或乙醚)的饱和汽。如果闯进去一个肉眼看不见的带电微粒,它就成了“云雾”凝结的核心,形成雾点,这些雾点便显示出微粒运动的“足迹”。因此,科学家可以通过“云雾室”,来观察肉眼看不见的基本粒子(电子质子等)的运动和变化情况。同时,还发现了不少新的基本粒子。威尔逊云雾室,为研究微观世界作出了卓越贡献,1927年,他因此荣获了诺贝尔物理学奖金。

关于计算机方面的论文

你的计算机网络安全方面论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?
老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!
学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。

毕业论文是根据专业教学的要求,对学生所学知识和理论进行综合运用的培训,旨在对学生进行科学研究工作的初步训练,培养学生的专业研究素养,提高运用所学专业知识分析和解决问题的能力,使学生的创新意识和专业素质得到提高,创造性得以发挥,从而达到培养会计实用型人才的目的。

基本要求
1.统一用A4纸打印。目录、内容摘要、参考文献要分别打印,各打一张。
2.主标题加粗小二号黑体字型居中。
3.副标题加粗三号黑体字型居中。
4.论文内一级标题四号宋体加粗。
5.正文宋体小四号。
6.参考文献宋体五号字。其中“参考文献:”为五号加粗。
7.行距1.5倍。
8.页边距:上、下为2.54厘米,左右为3.17厘米。
9.从正文开始到参考文献要编页码,目录和内容提要不算页码。

标题层次
一、……一级标题
(一)……二级标题
1.……三级标题
(1)……四级标题

装订顺序及具体要求(论文装订一式二份)
封面——目录——内容摘要——正文——参考文献——学生毕业论文评审表——终稿——教师指导记录表。
1.封面:封面样式由学校统一发放;
2.目录:“目录”二字居中、用黑体小二字型,目录的内容用黑体小四字型,目录标题后要标明页码(一般标到二级标题即可)。
3.内容摘要:摘要是论文内容“不加注释和评论的简短陈述”,应当具有客观性和简明性,字数不少于300字。“内容摘要”四字居中、用黑体小二字型,内容用小四宋体字型,内容提要之后要列关键词。内容摘要一般不分段。
关键词:关键词是从论文中选取出来用以标示论文主要内容的名词性术语。一篇论文应有3-5个关键词,以显著的字符另起一行,排在内容摘要的左下方。
4.正文:正文要有论文题目,论文题目居中、主标题用加粗黑体小二字型,副标题用加粗三号黑体字型。正文用小四宋体字型,正文中的一级标题四号宋体加粗。
文中凡是另起一段的,前面均需空二个字,即四个空格键,大标题和小标题前也一样,且后面不能写正文,正文需另起一段。段落间不允许空行。
5.参考文献:参考文献全部用宋体小五字型。参考文献应另起一页。每篇论文至少应列示5个所引用的中外文参考文献资料。必须注明引用教材(或著作、期刊、网站等)的书名(或著作、期刊、网站名)、作者、出版单位、时间(引用期刊的还必须注明文章名),引用其他参考材料也应注明资料来源。参考文献按序号、编著者、书名(或著作、期刊、网站名)、出版社、出版时间的顺序排列。
参考文献数目:成绩为良好及以上的论文,参考文献不少于8篇;其他成绩的不少于5篇。

其他内容
1.终稿(不少于600字)
内容包括:毕业论文写作背景,包括选题的理由(理论意义和实用价值);写作过程,包括研究方法、收集资料的途径;论文写作的感想、收获。
2.指导记录表(不少于6次)
保留指导老师每次指导评语,按时间顺序打印指导记录表内。
3.申请学位同学,提交论文全部内容的电子版给责任教师。

谁能帮我写一篇毕业论文? 600字左右!

毕业论文是结合毕业设计来写的。也就是说你要做一个作品出来。然后围绕着你的作品来写。我是今年刚毕业的,写论文我就用了两天。我给你建议一下吧:
1.先了解一下情况,看看别人是怎么写的。
2.毕业前一个半月,把作品定位出来,就是说你要做什么作品
3.花一个月的时间来做你的作品
4.花一个礼拜左右时间调试,修改你的作品
5.找你指导老师,当然跟他要搞好关系,拿你的师兄师姐的作品跟论文来参考,这个最重要了,其实很多论文前面根后面好及段都是差不多的内容,也就是说,大家都是写这些东西,就中间部分比较多是自己的东西,你要把自己的东西,参照别人的格式,你套进去就可以了,一般来说是用WORD,来编辑文档的。
6.跟老师关系要搞好点,呵呵。一般都会过的。
7.计算机应用的。你最强悍的是哪个项目,网页设计,PS,flasH ,等等,选个你最拿手的。
希望你成功~~ 记住,拿兄长学姐的论文来参考哦~!

如何写好一篇高质量的IEEE/ACM Transaction级别的计算机科学论文

初中论文要求的字数是600字,因此我们用多事写一人,也是有限制的,通常是两三事,如若超过四五事,那么这样的文章就让人生厌了,因为写的事情太多,只能匆忙一笔带过。这样的文章要求详略得当,段落之间可以互相补充。写多事通常也就代表着多角度,一个人身上的不同的几个特征

计算机农业应用论文

计算机模拟与生物学研究的新趋势



摘要:随着生物学知识的积累和计算机技术的发展,出现了研究生物学的新方法:计算机模拟。典型的是日本Keio大学学者设计的电子细胞和美国康涅狄格州州立大学学者设计的虚拟细胞,允许生物学实验在这样一个人工环境里运行。生物学家将有可能利用这种新的工具来研究对于常规实验技术来说要漫长或复杂困难的生命过程机制。这是实验生物学进步的必然,也将为理论生物学成为整个生命科学的先锋带来莫大的机遇。
关键词:模拟、复杂、细胞、计算机
Computer simulation and new tendency of method in biological research field
Zhou Jian-Jun、Wu Cai-Hong, College of Life Sciences,Peking University 100871
Feng Mei-Fu, Institute of Zoology,Chinese Academy of Sciences 100080
Abstract: A new research method, which is marked by its artificial laboratory with the assistance of high quality computer and software, has emerged in biological field. The most important model platforms may be the electronic cell or virtual cell, designed by Tomita from Keio University, Japan and Schaff and Loew from Connecticut University,USA, respectively. Biologists will utilize the distinguished tool to accumulate knowledge on complex life mechanisms that seem to be difficult or far-reaching for conventional experimental techniches. Like physics and economics, theoretical biology will stand as the pioneer in the development of life sciences.
Key Words:simulation、complexity、cell、computer
有这样一个奇怪的现象,理论家在物理学、经济学中占据王者地位,在生物学研究中却恰恰相反,试图从数学计算进行理论研究的人处于被忽视的地位。人们包括实际从事生物学领域工作的研究者心中的生物学必然是诞生于充满各种离心机、电泳槽和奇形怪状的瓶瓶罐罐的实验室,文章写作的模式也几乎千篇一律,先是前言,再是材料与方法,然后是结果与讨论。分子生物学家就是在这样的生活与研究环境中,基于直接的观察和实验,一点一滴地收集着有关生老病死的数据材料,整天忙于单个基因的克隆和功能分析,单个信号分子与直接相关蛋白的作用方式;而在怎样将生命本身作为复杂系统从总体上进行研究,大家还顾不上考虑,更不要说运用什么模型进行演绎和预测了。
不过还是有些"傻瓜"或者"疯狂"的的幻想者继续做着他们的梦想,他们时时刻刻想把现实世界中生命形式和美妙过程映射到计算机模拟的环境中,创造数字形式的"人工生命",美国加州的Santa Fe Institute(SFI)就有这么一群"疯子"。类似眼下颇为流行的人工智能,"人工生命"是用计算机来模拟基本的生物学机制和生命本身,而人工智能的研究范围是在模拟人思维过程。Chris Langton在70年代初即开始了这方面的尝试。他在阅读中发现计算机的老祖宗冯•诺意曼从40年代起就对诸如自我繁殖等问题发生了兴趣,而这个现象是生物最本质性的自然规律之一从DNA 复制、细胞分裂到两性生殖。Langton把阅读地来的兴趣化为决定毕生追求的工作,召集起志同道合的研究人员,并于1987年与SFI和苹果计算机公司召开了首届关于人工生命的国际研讨会,从蚂蚁王国的集体行为、蛋白质分子的自组织到生态系统的计算机演化无所不包。其中最引人注目的是曾写作《Selfish Gene》而名扬天下的牛津大学著名生物学家Richard Dawkins演示的一个程序,它用反复对一个初始模拟生物形式使用若干简单的规则的方法居然在计算机上描绘出与真实生物界惊人相似的生命演化和灭绝的过程。
人们正在从计算机创造出的虚拟空间中寻造真实世界的替身,完成实际情况下难于控制代价高昂和对于社会和实验者自身过于危险的实验研究。
生命过程在很大程度上是一种化学过程,至少现在主要研究的或有能力研究的是这样。而本世纪二三十年代量子力学的主要框架确定之后,理论上就能从原子外层电子的行为解释和计算化学反应的过程,可怜那会儿没有计算机,即使在六七十年代,用程序来计算模拟分子之间的化学反应也不能引起化学家们的兴趣。然而现在的情况改变了,名叫Gaussian98的这样一种软件成为了几乎所有顶尖化学研究人员的宠儿,它愈来愈表现出的模拟生物大分子相互作用的卓越能力更加吸引着生物领域苦苦奋斗的研究者。因为它的巨大成功,为它的发展而作出杰出贡献的Watter Kohn和John A.Pople,一个发明了更加简便易算的量子化学密度函数计算方法,一个将这种理论程序化验变为可在计算机环境中模拟分子反应过程的实用工具,获得98年诺贝尔化学奖。
细胞是生物体的最基本形式,关于生命的复杂性,从细胞里能学到很多东西,特别是整体大于部分的经典的系统伦命题。怎样研究单细胞的复杂性进而规模更大的生命形式,乃至千缠万扯的生态系统,是把在生物学家面前无比挑战性的课题。传统实验研究思路和分析方式显然无法胜任这种要求,单靠生物学家的自身本事异乏掀巨澜之势,幸而计算机科学发展到今天如此发达的程度,使得一门新诞生的生物信息学横跨在两者之间,也产生了一些计算机与生物学双料精英,让两者都受益,当然本文仅从这种大趋势对生物学研究的影响来阐述。
本世纪中叶发展起来的分子生物学已将细胞内的物理化学过程描述得如此精细从基因表达到跨膜信号传递,从细胞的能量产生与消耗到其不知不觉的诞生和无声无息的死亡,然而无论我们对这些具体过程知道的是多么清楚,我们还是不可能明白这团生命的聚合体是怎样作为一个整体在运作的,因为我们曾经所做的和观察的都只是在它的一个侧面,大象不会因为知道自己要被一群瞎子去摸而自动分解为一只耳朵、一条腿、一个身子和一根尾巴。以往所有的分子生物学试验都是在盲人摸象,随着人类基因组计划和几个模式生物基因组计划的加快进行和完成,现在我们需要一个强大的而且美妙的工具去把这些支离破碎的知识组装起来,来检验一些东西,来预测一些东西。这就是计算机模拟。
在日本的Keio大学有一个名叫Masaru Tomita的生物信息学教授(这位正是所谓的计算机/生物学双料高手)领导的研究小组,正在做一个有着划时代意义的软件:E-CELL。这是一种生物学计算机模拟软件,在计算机环境中构造一个虚拟的电子细胞,它不仅仅是包括一些单一的细胞事件和过程,而是将从整体的角度为细胞描绘一幅全图。这个软件将在今年六月份在网上()公布β测试版。E-CELL其实一个建模的工具包或平台,它允许使用者规定细胞的基因、蛋白质以及其他分子,它们的胞内定位和估计浓度,给出各自单独的相互作用所依赖的"游戏规则",然后剩下的工作交给计算机来完成,看这些使用者输入的"初始值"在细胞这个复杂系统里是怎样相互作用构成细胞的。电子细胞将把每个时刻特定位置特定物质的变化通过画面和数字告诉你;你可以仅仅用鼠标去轻轻敲击就能实现在分子生物学实验室费死牛劲的基因敲除、转基因或基因修饰等操作,自由的将感兴趣的细胞暴露在某一中生存环境下,无需考虑细菌的污染、RNA的降解或讨厌的放射性损害。研究者所需做的就是输入初始值,然后就是在计算机屏幕前喝杯咖啡等待友好的E-CELL模拟罢了。无疑这种方法将提供一个非常简捷经济的筛选药物和研究基因功能手段,更重要的是,我们能实时的看到某个因素和环节对细胞整体行为及生命活动的影响。目前这个程序可在UNIX或Linux操作系统下运行。Tomita的小组已用E-CELL的早期版本建构了一个"假想的细胞",拥有大部分来自解脲支原体(最简单的细胞和最简单的基因组)的127个基因。这个虚拟的细胞就在计算机环境下"生活"着,从虚拟的培养基中吸取着葡萄糖等养分,合成各种各样的维系细胞生存的酶和蛋白质,排出乳酸等代谢废物。难道生物学与计算机科学联姻的E-CELL仅能象吸引小孩子的动画片提供一种教学节目演示吗?当可以做演示,而且它的重复性很好,绝没有人为的误差;更重要的是它在给我们一种崭新的探索环境,我们能从已知里寻找未知的联系,检验我们的思想。Tomita就有这样的意外发现:当中断虚拟细胞的葡萄糖供应时,细胞里的ATP(所有生命过程里最重要的能量供应者)水平在下降之前竟然有一个短暂的上升。根据这个简单模拟结果,Tomita推测产生ATP的系列过程前期也需要ATP本身来供应能量,那么当葡萄糖来源中断后,这种自身消耗便不再进行,而行进在ATP产生途径中后期的代谢中间产物还会维持一小会ATP的供应。可以鲜明的看出来模拟试验为在活细胞中进行的实在试验提供了最有价值的提示和线索,滤掉了许多繁琐而重复的过程,留给科学家饶有趣味的课题和材料。当然为了恰如其分的模拟,我们首先要给我们的模拟软件充实许多的素材,知道更多数目的基因及其功能,知道在柔软的细胞及生物体里潜藏的物理化学规则,最终能够模拟"真实"有机体的完整细胞。
除了Tomita对E-CELL的努力,美国康涅狄格州立大学健康中心的计算机科学家James Schaff和生理学家Leslie Loew也在做同一个梦想,他们设计了一个"Virtual Cell",放在他们的主机上(),用户可以以远程登陆的方式运行各自的模拟试验。除了同时将细胞作为整体来模拟,细胞生物学家还能在这个系统里研究细胞的形态体积和别的物理特征怎样影响特定生化过程的。Virtual Cell建立在 Loew对分子扩散和在活细胞内如何反应的准确测量基础上。这些结果用数学语言描述出来再写成相应的计算机程序,"组装"成现实细胞镜象般的计算机化的细胞,一个软件使用者可以免于具体生化过程制约的框架环境。比如研究人员用鼠标人为的加入虚拟细胞一定量的钙,然后观察Virtual Cell是如何解决该这个胞内重要信号分子的命运和它所关联的生物分子的参与的事件。除了看到象在活细胞中纪录到的钙振荡外,还能预测另一种信号分子IP3的动力学过程,而后者在活细胞里进行实验是难以做到的。研究人员将想看电影一样得到完整的细胞内分子事件的全过程,相比现在实验生物学家整天泡在凌乱的实验室里的辛勤,这简直一种不可思议的轻松和奢侈。
这两种模拟软件是可以互补的,而其中透露出来的信息和研究趋势正激起愈来愈多的兴趣,尤其在细胞生物学加中,没有计算机对他们研究的辅助,他们越来越感到一天比一天难活。这正是最有生命力的信息科学与生命科学在未来的21是互相交融共放异彩的明兆。愿更多的人相信。
现在越来越多的科学实验特别是比较复杂的实验采用这种方法来做,并且取得了非常有价值的结论,非常值得积极于生物学发展的工作者借鉴,比如最近Science 杂志刊登的关于长颈恐龙如何觅食的研究。长颈蜥脚类恐龙生活在侏罗纪和白垩纪。本世纪早期,蜥脚类恐龙化石第一次被发现时,其颈部被描述为水平姿态。 但近来发现的化石被重新搭建后发现它的头远远高出地面,有着天鹅般曲线的颈部几乎与地面垂直。这迅即引起了人们对这种恐龙的血液循环如何为头部提供血液的争论,一些研究者甚至认为它可能有多个心脏。但是原始的化石标本很重且易碎,难以在其关节上移动,因而很难确定它颈部的初始形态。为了解决这个问题,Steven和Parrish开发了"DinoMorph"软件来模拟两种长颈蜥脚类恐龙即Diplodocus和Apatosaurus的颈部形态。该软件模拟了每一对颈部脊椎运动的几何学细节,得到了复杂的三维图景。结果表明,它们的颈部在放松时几乎是水平的,向下倾斜的角度很小。头部离地面很近,与颈部相比又有一个向下的角度。两种恐龙的颈部没有传统假说所认为的那般柔软,Diplodocus仅能使其头部抬起来超过背部,Apatosaurus的灵活性略好一些。这意味着长颈蜥脚类恐龙是沿着湖滨吃生长在地上的植物,而不是像长颈鹿一样吃树叶。
出现了这么一种研究形式,我们有必要反思一下什么是科学和科学方法。科学,除开它已延伸开去的几乎作为真理代名词的含义,其实是在一种精神和方法指导下进行的一种社会行为,这个方法就是所谓科学方法。而其中最核心的就是可重复的受控实验思想,即可用实验来验证关于世界之所以为世界的种种假说。只有经历这样过程的理论才能真正称为科学理论。然而在自然科学研究的焦点注视到自然界最复杂的生命系统时,我们原有的酒精灯、试管、显微镜和解剖刀不再够用,甚至我们连实验的重复性都不能再很好的把握,因为生命系统的非线性,某些过程的不可逆性和复杂的受千万种实验可变因素影响的人工不可控性。我们需要在现实实验室的旁边或内部再建立一个做专门研究生命复杂体系的实验室系统,计算机虚拟实验室,开展大型的假想-预测-检验并反复循环的"生命游戏",领导整个生物学研究的走向,给它确定最有价值的研究命题,指导它该做什么,可能会发生什么。在这个绝妙的替身里重新恢复科学的尊严,恢复人类探索未知的兴趣和自信,让理论生物学在此全面地走在实验实践的前头,支撑起21世纪常规科学的基础。
参考文献:
1. 《复杂》129-184,276-336页,Mitchell Waldrop 1995年著;陈玲译,1997年4月北京生活•读书•新知三联书店出版。
2. 《虚实世界-计算机仿真如何改变科学的疆域》41-197页,1996年John L.Casti著;王千祥、权利宁译,1998年12月上海科技教育出版社出版。
3. Dennis Normile. Building working cells 'in silico'. Science 1999,284:80-81.
4. Kent A. Stevens, J. Michael Parrish. Neck Posture and Feeding Habits of Two Jurassic Sauropod Dinosaurs.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页