生物医学动物实验研究论文
1实验设计
在开展生物医学研究时,研究者通过正确地运用统计学知识,可直接影响研究的质量。统计学设计的任务在于对研究的部署、实施,直到研究结果的解释进行系统的安排,力争做到以最少的人力、物力获得可靠的结论和信息。其目的在于确定某种处理是否会表现出某种特定的效应。在实验设计时应遵循惟一差异原则,即在进行两组比较时,两者之间仅有因处理因素不同而引起的差异,而其他实验条件相关的非处理因素都应保持等同。然而,处理组与对照组在反应上表现出的差别并不一定意味着是处理的结果。另有两种引起差别的可能性,即偏倚和偶然性。偏倚是指系统性差别,它不是因组间在处理上的不同所引起。生物医学实验中统计学设计和分析的目标就是消除潜在的偏倚,减少偶然性[2]。
1.1实验的偏倚和控制
偏倚是在研究中从设计到实验实施和结果分析的各环节存在一些人为的、有系统倾向的非随机误差,它不是由于抽样造成的,而是某种偏性使得实验结果偏离它的真值。从所选择的生物医学问题到研究方案的制订与实施、实验的完成过程、实验的分析与解释,乃至实验结果的发表,均可能存在各式各样的偏倚[2]。这种偏倚常常表现为系统误差。偏倚的大小取决于研究的方法和具体的实验条件。常见的偏倚主要有选择性偏倚、观察性偏倚和混杂性偏倚。必须认识实验过程的偏倚,从实验设计起直到整个研究过程结束均要加以控制。正确的实验设计可控制选择性的偏倚,事前人为控制和采取相应的措施可避免和减少观察性的偏倚。对于混杂性偏倚,可将重要的混杂因素在设计阶段进行分层随机设计,使混杂因素在组间分布均衡;在统计分析阶段将混杂因素作为分层因素或采用有协变量分析方法,以消除混杂因素的影响。只有有效地控制或消除偏倚,方可减少结果的假阳性或假阴性。
1.2减少偶然性的潜在影响
偶然性因素的作用可以减少,但不能完全排除。因为即使是在精心实施的研究中,接受同样处理的动物,其反应也不可能完全一样。适当的统计分析可使实验人员评估出现假阳性的概率,即根本不存在处理效应的情况下观察到差异的概率。这种概率越小,实验者发现真实效应的可能性就越大。为了更有把握地检测出真实效应,有必要减少偶然性的作用,并通过实验设计确保能在“噪声”之上识别真正的“信号”。
1.3实验设计的要素
要消除生物医学实验中潜在的偏倚,减少偶然性,就应对实验对象、处理因素和实验效应这三个实验设计要素,按照对照、重复、随机化和均衡四项原则进行周到的设计与控制[3]。1.3.1实验对象实验中处理因素所作用的对象称为实验对象。不同性质的实验研究需要选取不同种类的实验对象,一个完整的实验设计中所需实验对象的总数称为样本含量。生物医学试验中考虑动物实验对象时应关注以下几个方面:①动物种属的选择:选择实验动物的种属与品系时,尤其需要注意其背景反应的水平。为了将反应“信号”水平最大化,常常意味着应避免选择那些背景反应水平极低的动物种属或品系,但如果采用过度反应的动物种属或品系也同样会出现问题。动物物种选择中的其他问题,无论是实际问题(寿命、体型、易得性、对动物学特征的了解情况)或是理论问题(生化、生理或解剖结构与人的相似性),都需要从专业的角度认真加以考虑和权衡。②动物的数量:虽然从统计设计角度考虑可得出某项实验所需的动物数(样本含量),但所得出的数值往往很大。因此,虽然样本含量估计是保证结论可靠性(精度和检验效能)的前提,但基于实验的可操作性及经济原则方面的考虑,应结合统计学的计算结果与以往的生物医学研究经验予以确定。③动物的体重与年龄:为确保实验对象的同质性,实验中所使用的动物体重与年龄应尽可能相近;动物体重的标准差不应超出平均值的10%;啮齿类等小动物年龄相差不应超出1周,大动物年龄相差不应超出1个月。④动物的分层:为了准确检测一种处理因素引起的差别,各处理组在可能影响实验结果的其他非处理因素方面应尽可能具有同质性。当存在动物亚系间的差别时,有两种方法可得到更为准确的结论。一是在结果分析阶段将亚系作为一个“分层变量”处理,包括对两个亚系的结果进行单独分析,然后将结果综合,得出处理效应的总结论;二是将亚系作为实验设计的“区组因素”,这种情况下可使对照组与处理组中每个亚系动物数量相等。除以上所讨论的“亚系”之外,其他的非处理因素,如性别、窝别、体重段等也可作为分层变量进行局部控制,并据此进行分层随机化分组。1.3.2处理因素设计实验研究时,要明确研究中的处理因素和影响实验效应的非处理因素。研究者希望通过对研究设计进行有计划的安排,从而能科学地考察其效应大小的因素称为处理因素或实验因素;研究者往往忽略对评价实验因素作用大小有一定干扰的重要的非处理因素或非实验因素(如动物的窝别、体重等);其他未加控制的许多因素的综合作用统称为实验误差。实验结果是处理因素和非处理因素共同作用而产生的实验效应,因此如何控制和排除非处理因素的干扰,正确显示处理的效应,是实验设计的基本任务。1.3.3实验效应实验效应是处理因素作用于受试对象的反应和结果,是反映实验因素作用强弱的标志,它通过观察指标(统计学常将指标称为变量)来体现。如果指标选择不当,未能准确反映处理因素的作用,获得的研究结果就缺乏科学性,因此选择好观察指标是关系整个研究成败的重要环节。指标的观察应避免带有偏性或偏倚,要结合专业知识,尽可能多地选用客观性强的指标,在仪器和试剂允许的条件下,应尽可能多选用特异性强、灵敏度高、准确可靠的客观指标。对一些半客观(如尿液pH试纸读数值)或主观指标(行为测量、病理观察),一定要事先规定读取数值的严格标准,只有这样才能准确地分析实验结果,从而提高实验结果的可信度。
1.4实验设计的原则
为了防止结果的偏倚,保证实验结果的准确性和最大化的表达,在进行生物医学实验设计时必须遵循统计学设计的对照、重复、随机化和均衡四个基本原则。生物医学实验中对照组的设置必须具备三个条件:①对等原则,即惟一差别原则,除处理因素外,对照组具备与实验组对等的非处理因素。在相互比较的各组间,除了给予的处理因素不同外,其他方面应与实验组具有一致性,如相同的实验单位来源(动物种属、体重等)和相同的实验条件、操作方式和喂养环境等。②同步原则,对照组与实验组设立之后,在整个研究进程中始终处于同一空间和同一时间。③专设原则,任何一个对照组都是为相应的实验组专门设立的。不得借用文献上的记载或以往结果或其他研究资料作为本研究之对照。
1.5生物医学中常用的实验设计类型
如果需要在同一实验中同时评价几种不同的效应,实验者应该安排能区别各自效应差别的实验设计方法。生物医学中常用的实验设计有以下几项。1.5.1完全随机设计完全随机设计是生物医学动物实验中最为常用的一种实验设计方法,它是一种单因素有k个水平(k≥2)组的实验设计。即实验设计可设置一个对照或多个剂量组的实验方案。本设计保证每个实验动物都有相同机会接受任何一种处理,而不受实验人员主观倾向的影响。本设计应用了重复和随机化两个原则,因此能使实验结果受非处理因素的影响基本一致,真实反映出实验的处理效应。1.5.2随机区组设计随机化完全区组设计,简称随机区组设计,又称配伍组设计,是配对设计的扩展,它将几个条件相同的受试者划分在同一个区组或配伍组,然后再按随机的原则,将同一配伍组的受试者随机分配到各实验组。该设计方法的优点是每个区组内的k个实验单位有较好的同质性,比完全随机设计更容易察觉处理间的差别。这种方法须特别注意的是要求区组内实验单位数与处理数相同,实验结果中若有缺失值,统计分析将损失部分信息。1.5.3拉丁方设计拉丁方设计从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成区组,是比随机区组设计多一个区组因素的设计。在拉丁方设计中,每一行或每一列都成为一个完全区组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,实验处理数=横行区组数=直列区组数=实验处理的重复数。1.5.4析因设计析因实验设计又称全因子实验设计,属于多因素、多水平单效应的设计。它不仅可以检验每一因素各水平之间的效应差异,而且可以检验各因素之间的交互作用。交互作用是指一个因素不同水平间的效应差受另一因素的影响,包括协同交互作用和拮抗交互作用。析因实验主要用于分析交互作用,当因素及水平数过多时,所需的实验对象数、处理组数和实验次数大幅度增加,故一般采用较简单的析因实验。含有较多因素和水平的实验一般采用正交实验设计[5]。
2生物医学动物实验的描述统计学
2.1生物医学实验资料的类型
生物医学实验对实验对象(动物)进行干预后测定的观测指标通常有以下类型:①连续性数据:测定结果表现为有数字大小和单位的数据,统计上称定量资料,如生理、生化指标,体重值,器官重量等。②分类数据:测定结果表现为按某属性划分的定性类别,统计上称为定性资料,具体又可以分为二值资料、多值名义资料和多值有序资料。如某反应为出现或不出现,死亡或未死亡,有畸形或无畸形;病理损害的严重程度(无、轻度、中度、重度)等。
2.2统计描述指标
描述性统计学(或归纳统计学)是对样本观察/测量数据频率分布的定量研究,描述性统计的目的在于:①对测量值或观察值进行归纳浓缩,用统计量、统计图或统计表的形式表现;②估计总体分布的参数。2.2.1资料的整理与探索对于某一测量指标,一般应从文献资料中了解其分布类型。如果没有判断概率分布的理论基础,应重复以大样本测定,绘制样本的频数分布图(理论上样本量要大于100),并经统计学检验拟合其分布。2.2.2数据的描述统计量①连续性数据的频数分布:通过对样本资料编制频数分布表或做茎叶图,以确定资料分布的类型、频数分布的集中趋势和离散趋势、估计总体参数,也便于发现离群值。②中心位置的描述统计量:描述数据分布的集中趋势,常用指标为算术均数、中位数、众数、几何均数等。③离散程度的描述统计量:描述数据分布的离散趋势,常用指标为标准差和方差、极差和四分位数间距、变异系数和离散系数等。④统计学图表:统计图包括连续性数据分布的直方图、茎叶图,表示数据中心位置和离散程度的点杆图(做图时表示均数和标准差)和盒须图(做图时表示中位数、极差、四分位数间距),描述构成比数据资料的百分条图、饼图,描述经时变化趋势的线图,以及预测和检验分布类型的概率-概率图(P-P图)等[6]。统计表具有简单、明了、易于理解、便于比较的优点。编制统计表时原则上应当重点突出、层次分明、避免层次过多或结构混乱。一般的统计表应为三线表,表中只有横线,无竖线和斜线。统计表的标目应层次清楚,不宜过于复杂。
3生物医学动物实验的假设检验
生物医学动物实验中最常见的情况是给予不同受试物后进行组间比较,通过统计学中的假设检验,说明受试物的作用。假设检验时应注意以下问题。
3.1检验方法的选用依据
3.1.1资料的类型和变量的数目不同类型的资料(定量、定性)的组间比较应采用不同的统计检验方法。单变量、多变量的`统计检验方法也各不相同。3.1.2实验设计类型应该根据实验设计的具体类型选择对应的统计检验方法,以便得到处理组效应的真实结论。3.1.3检验方法的前提条件选用假设检验方法前,应了解所分析的数据资料是否满足相应检验方法的前提条件,如t检验和方差分析等参数检验方法要求数据满足正态性和方差齐性,2检验要求样本含量大于40且理论频数大于5。
3.2正态性检验及拟合优度检验
统计学假设检验须判定样本的频数分布是否符合某一理论分布,如符合要求就可按此理论分布来进行统计学处理。对正态分布可采用正态性检验,其他分布可用拟合优度检验。通常可通过查阅文献,了解实验参数符合何种理论分布。
3.3方差齐性检验
连续性数据未达到参数法统计分析前提的第二种原因即为方差不齐。一般而言,数值愈大,其固有的变异性也愈大。例如,若某组动物的平均反应值为100,其数值范围可能为80~120;而另一组动物的平均反应值为300,其数值范围可能会扩大至240~360。解决方差不齐的措施是进行数据转换。若数据的标准差与平均值成正比,在统计分析前宜将数据转换为对数值之后再进行分析,据此,不仅数据的变异度与平均值大小无关,同时还可确保其更符合正态分布。若数据变异度增加幅度与平均值的关系不太明显,采用平方根转换则更易使数据的变异度与平均值大小无关。某些数据经对数或平方根转换后可能仍存在方差不齐,此时宜采用非参数检验。
3.4单侧检验与双侧检验
检验假设选择单侧检验或双侧检验,应事先根据专业知识做出选择。一般而言,若研究目的仅须了解是否存在组间差异、实验者无法预测组间变化的方向以及实验者希望获得正负两方面的结果时,应采用双侧检验。若事先可预测组间差异的变化方向,实验者仅对某一方面的重要性感兴趣,实验者仅希望了解与对照组差异或正或负一个方向,则应采用单侧检验。此外,剂量设计预试验中应采用双侧检验,正式试验在了解相关信息后可采用单侧检验。
3.5多重比较及多重性问题
生物医学实验经常在处理组和对照组之间做多个变量的比较。即使不存在真正的实验效应,也有可能纯粹由于偶然性而有一个或多个变量在5%检验水平出现显著性差别。除了上述均数多重比较导致Ⅰ类错误概率增加的多重性问题之外,其他的多重性问题还包括多次的中期分析、关注多个结局、亚组间的多重比较。处理多重性问题的原则包括:①预先计划进行多重比较;②限制比较的次数;③多重比较时采用更严格的界值标准;④多重比较具有生物学方面的依据。
3.6观察值或实验对象的独立性
许多统计检验方法要求比较的观察值或实验对象相互独立,如二项分布的率检验、t检验和方差分析等。但是,有的生物医学实验中观察单位并不独立。例如,生殖和发育研究中就存在窝效应:由于遗传因素、宫内的发育环境和药物的代谢环境相似,与异窝胎仔相比,同窝胎仔之间对毒性效应的反应概率趋于系统,即同窝内数据为聚集性数据,这就是一种常见的非独立数据。在统计学分析时,忽略数据的窝内相关性具有潜在的风险;因同窝母鼠所产k个胎仔的观察值存在共性,其所提供的信息不及k个独立的来自不同母鼠所产胎仔所提供的信息;窝内相关性愈大,其信息量愈少。聚集性数据的均数标准误小于独立的数据,因此,若基于观察值独立的统计分析方法,就会增加犯Ⅰ类错误的概率,即假阳性的风险增加,降低实验的有效性。
3.7历史对照数据的应用
某些情况下,尤其是在发生率较低的情况下,单项研究可能提示处理可影响肿瘤发生率,但无法得出明确的结论。可能想到的分析办法之一是将处理组的数据与来自其他研究的对照组动物相比较。虽然历史对照数据具有重要意义,但值得强调的是,众多原因可导致不同研究之间的变异度大于研究之内的变异度。动物来源、饲料及饲养条件,研究期限,研究中的动物死亡率、读片的病理学家等均可能影响最终的肿瘤发生率。故此,忽视这些差异,将处理组的肿瘤发生率与合并的对照组发生率相比较,可能得出严重错误的结果,并进而明显夸大统计显著性水平。Tarone[4]曾对历史对照组的比率数据分析进行过综述。
3.8假设检验的局限性
首先,假设检验中的P值并未提供有关处理诱发效应大小的直接信息。某一受试物可诱发一定量的、反应的增加,但增加的幅度是否具有统计显著性则取决于研究的规模和数据的变异性。在规模较小的研究中,有可能错失较大、重要的效应,尤其是在检测终点测量精度不高的情况下。相反,在规模较大的研究中,较小、非重要的效应则具有统计显著性。例如,D药与C药相比,降血压效应相差近30mmHg,但因为例数仅10例,假设检验未发现显著性差异(P=0.31);相反,B药与A药相比,降血压效应仅相差0.2mmHg,但因为例数达500例,假设检验却发现存在显著性差异(P<0.001)。由此可见,统计学显著性与效应大小无直接相关性。因此,愈来愈多的统计学家主张以处理组与对照组差异值的95%置信区间表述处理的效应。据此,若处理反应的增加值为10个单位(95%置信区间3~17单位),则该区间包含真实差异的几率为95%。若置信区间的下限大于零,则双侧检验的P值小于0.05。其次,假设检验无法消除实验设计或实施不当所带来的影响。虽然前述的分层分析等有助于发现真实的差异,但若实验设计存在偏倚,或实验实施过程中存在偏差或失误,假设检验方法一般也于事无补。因此,在生物医学实验过程中应注重对实验设计或实施过程进行严格的质量控制和质量保证措施,强化GLP规范意识。其三,对统计学分析本身的质量控制和质量保证也是确保研究质量的重要环节。所用统计分析软件包应经过充分的认证,以确保分析结果的准确、可靠性。数据的录入、核对和分析结果的报告与归档,均应制订并严格执行相关的标准操作规程。综上所述,在动物实验研究的多个环节,统计学中的相关理论和方法都能够发挥重要作用。统计学不仅可以保证结果的科学性和可靠性,在很多情况下也可以极大地提高研究效率,节约研究成本。在这里还必须强调,除了实验后期的数据分析以外,在实验方案的制定阶段也需要统计学人员的早期介入,这样有助于避免实验设计出现大的偏差和漏洞,有利于研究目标的顺利实现。
医学统计论文
医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。
摘要: 不同的统计分析方法均有其适用的范围和应用的条件,研究者在书写医学论文时应根据论文设计及资料的类型进行合理的试验设计,选择恰当的统计分析方法,切记勿盲目套用。同时,还应注意得出的结果和结论应满足设计的要求。医学统计方法的正确运用,是充分利用试验研究获得的数据,也是最终得出科学、可信的结论的必要条件。
关 键词 :医学统计;方法;运用;原理;选择
一、统计学方法简介
统计学方法包括统计软件包、统计分析方法以及检验水准三方面的内容。其中医学论文中常提到检验水准即α,它是用来表示组间实际无差别而统计结果判断有差别,犯这类错误的概率。实际工作中常取α=0.05,当研究数据计算的P值小于0.05时,组间差异比较被认为有统计学意义。统计学方法包括统计描述和假设检验两个方面的内容。统计描述是指根据资料及原始数据分布的类型,选择正确的指标来描叙资料及数据的特征。而假设检验即组间差异性检验,是医学论文中最常用的统计学方法。资料类型则包括能用具体数据表示的定量资料与不能用具体数值表示但能反映被观察对象某一特征的定性资料。定性资料的统计描述包括率、相对比和构成比。而参数法及非参数法是常用的定量资料统计分析方法。参数法一般包括t检验、方差分析,非参数法常用的有秩和检验。
二、试验设计中的统计学原理
合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。
医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的.指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。
三、统计学方法的选择
统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。
四、常见统计学方法的误用分析及对策
1.统计方法误用。最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。
2.选用检验方法错误。在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。
五、结论表述中的统计学应用
资料的统计处理不是医学研究工作的最终目的,而是通过统计学分析为研究结论提供依据或者线索。因此,在对统计资料进行分析后应把握统计学术语,对结论做出科学的分析跟解释。在根据统计结果得出专业结论时研究者应遵循一个重要原则,就是统计结论都是概率性的,不能绝对地肯定或否定。研究者习惯上将“P<0.05”称为显著性,不应误解为差别很大或者在医学上有显著的价值。统计推断是以一定的概率界值为依据,说明来自同一总体的可能性大小。“差异有统计学意义”说明在试验中的差异不能用抽象误差进行解释;“差异无统计学意义”表明在试验既定的条件下,差异可能是因抽象误差引起的,在增加样本数量的情况下,差异可能变成“有统计学意义”。
参考文献:
[1]医学统计工作的基本内容[J].国际检验医学杂志,2013(19):2563.
[2]关红阳,郭轶男.医学统计t检验的分析研究[J].中国校外教育,2013(30):114.
统计数据质量作为衡量统计工作绩效水平的重要依据,社会各界对其给予了更多的关注,也提出了更高的要求。下文是我为大家搜集整理的关于统计方面论文范文的内容,欢迎大家阅读参考!
统计方面论文范文篇1
论我国统计方法制度改革
统计方法制度是我国统计工作的基础与规范,关系到什么是统计、怎样统计的问题,关系到统计质量的问题,关系到服务于决策者和社会等问题。随着市场经济体制建设的深入发展,统计工作进入到一个由旧体制向新体制转变的关键时期,统计方法制度伴随着生产经济方式的转变,进行了一系列改革。但是还存在着一些问题没有解决,提出相应的解决措施已经成为一个重要的课题,本文就此详细的进行了论述。
一、统计方法制度基本特点
统计方法制度是统计管理工作的一个重要的对象,是统计工作的一个基础与规范,贯彻与执行以及实施统计方法的相关制度就包括:我国基层中的统计工作者其统计工作、政府部门中统计工作者的统计工作、以及政府综合性的统计工作者其统计工作。
其主要的特点就包括以下几点:
首先,全面性。统计方法相关制度就是包括了各个领域,包括资源、流通、生产、以及分配等等,涉及到了三次产业以及国民经济的相关部门。从社会经济的各个方面来看,它就全面的反映了政治文明、社会文明、物质文明、以及科技文明、以及环境文明等等。
其次,可比性。从纵向上来说,我国的一些统计制度就在很大程度上保证了一定的可比性以及稳定性。统计制度就在很大程度上反映了长期的稳定与发展,这也是能够成为一个长期制度的原因,也是因为这种原因,才能够在经济运行的过程中发现一些存在的问题以及规律,从计算的方法来看,在我国的统计方法制度中,也在很大程度上保证了可比性以及稳定性。
此外,系统性。从管理的角度来说,统计方法制度就包括了部门、地方、以及国家的统计方法的制度。在时间上来说,这就包括了年报以及定报。从标准来说,这已经形成了一套标准。从其管理的方面来看,已经本文由论文联盟http://收集整理基本上形成了一种固定的模式。
二、我国的统计方法改革存在的问题
近年来,社会各界对统计信息的需求量剧增,无论是宏观管理还是微观经济活动,对统计信息的依赖程度愈来愈大,要求愈来愈高,与统计力量薄弱,统计法制不健全,协调监督不力,技术手段滞后,形成的反差很大。现行的统计体制的弊端越来越显示出来,主要表现在以下几方面:
第一,常规统计的内容以及范围还存在着一些缺口。在我国的一些常规性统计中,其调查制度的一些内容以及范围还存在着缺口,其覆盖面不是很全,这就意味着对我国的国民核算体系还缺乏一定的支撑作用。主要体现在以下几点:价格的统计制度不是很健全、常规服务业的缺口也比较大、以及一些专业的统计范围不是很健全。
第二,专业性统计制度之间的协调性较差。这就往往体现在年报以及普查之间的矛盾;抽样调查与全面报表的矛盾;核算统计相关制度与专业性统计制度的矛盾;我国的统计制度还没有形成一个完整的、协调的、有机的整体。
第三,统计的标准化程度还没有对现在的需要完全相适应,目前来说,很多的统计标准其在制定以及修订的过程中,往往是以国际的标准以及与国际标准相联系的标准予以展开的,而没有与实际相联系起来,没有结合着自身的发展以及相关的制度改革相联系,这类的标准是较少的。尤其是目前的一些在一定程度上制约了改革的调查单位,与城乡一体化相互配合的一些支出分类,以及反映出我国的一些企业登记与注册的标准等等都需要做到对其研究、制定、以及改革。
第四,重复性调查比较多,对基层来说起负担较重。统计信息的浪费比较严重。因为缺乏一种对制度的平衡以及整体性设计,这就造成了专业制度其内部、各个专业之间、部门统计以及综合统计之间的一种重复性调查,这就在很大程度上加大了工作量。首先,基层的统计数据其质量不是很高。其次,造成了数出多门以及一门多数或者是数据打架的一种情况。在这个过程中很多的统计信息就会被湮没,使得可以运用的信息较少,造成了不必要的浪费。
三、制度方法改革的思路及策略
综上所述,随着形势的发展,统计工作的现行体制、制度、方法等弊端就越加暴露出来,只有加大改革的力度,加快统计方法、制度的改革步伐,转变职能,统计工作才有生气,才有希望,才能不断地向前发展。
(一)完善统计指标体系
在不断的改革以及对社会经济发展的规律不但的认识基础上,要做到不断的去发现并要捕捉到经济发展中的一些难点以及热点问题,要对当前的一些适用的统计指标要保留,对一些过时的、陈旧的、不适用社会发展的一些指标予以去除,对指标体系做到不断的改进以及完善,使得整个的指标体系在真实的基础上反映出实际情况,做到对社会各个方面的统计与要求能够适应。
(二)改进统计的方法
统计工作应该要在实际的情况以及新环境的基础上,根据实际的调查对象其不同的特征来对统计方法进行改革,在实行普查的基础上,依靠着抽样调查以及全面报表体系,并且要利用一些非全面的调查方法,加强利用行政记录。对调查方法进行改革中,首先要保证数据的质量,早保证质量的基础上再对成本加以考虑,用比较少的花费以及比较小的一种力量,来实现一种统计的目的。目前来说,在调查方法体系中,存在的一个主要的问题就是推进行政管理体系以及调查方法之间的一种考核还存在的一些矛盾,怎样去协调以及管理,这就需要我们运用智慧去研究以及解决。
此外,还要对统计的标准化水平予以提升,还要不断的对国民经济的核算体系进行完善等。
四、结束语
总之,对我国的统计方法进行改革有着极为现实的意义,鉴于在统计方法制度中存在的一些问题,就应该不断的采取相应的措施,促进我国的统计方法制度的不断发展与完善。
统计方面论文范文篇2
浅析中等职业学校统计教学方法
1 《统计学》课程教学面临的挑战
1.1 《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。特别是指数、抽样调查这部分概念抽象难以理解,公式复杂不易计算,这些对于学生学好这一课程面临的困难是可想而知的。
1.2 现在中等职业学生的特点:
中职学校的学生是一个特殊的群体,由于当前严峻的升学和就业形势,导致多数人认为上中职学校没有发展前途,基础好的学生都上了高中,中职学校的生源都是被挑选后剩余的学生。他们在初中时期,大部分成绩不是很好,甚至有的学生是个别教师“遗忘的角落”。因此,在很大程度上,这一批学生心理上存在着一定的缺陷,对自己不自信、甚至破罐破摔,缺乏学习兴趣、甚至厌学。大部分学生理论学习热情不高,缺乏钻研精神,缺乏积极的学习动机,学习目标不明确,学习上得过且过、效率低下。并且,他们的信息来源非常广泛,外界诱惑非常大,因此课程学习远远不能满足他们的心理需要。他们热衷于网络、游戏、追星、享乐等,根本无心学习。因此,采用传统的教学方法不能适应当代中职教育的要求。另外,中职生源知识基础比较差,但智力素质并不差。他们的思维敏捷,动手能力较强,对新事物、新观念容易接受,适应性强,且追求时尚,追求财富,出人头地的梦想非常强烈。所以,我们必须注重发掘他们的潜力,努力实施“因材施教”。加强实践教学环节,改变“填鸭式”的传统教学方法,培养学生的操作能力,让学生在实践中学习、在实践中进步。
2 统计学教学设想
2.1 在教学内容上,依据excel的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。
传统方式上的数据整理是使用纸上表格,填入数据、文字,再利用计算器计算所需的结果,如求和、分类汇总、求平均值、数列分析等数学运算,但往往因为数据过于庞大复杂,不仅计算起来十分辛苦,而且容易出错。现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学应与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。这样既培养了学生搜集数据、分析数据的能力,还培养学生处理大量数据的能力,即数据挖掘的能力。
excel电子表格软件是大家生活工作上常用的一款软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握,已能满足常用的统计方面的要求。excel可以进行数据运算,绘制图表、统计运算等,应用于数据整理、数据描述、抽样分析与参数估计、时间数列分析,不仅可以减少繁琐的重复计算,而且一旦编制好一个工作底稿,以后只要更改其中任一数据,就可以轻松地重新自动计算结果。这样,一方面可以减轻数据整理工作量,学习统计不再意味着整天埋头于一堆枯燥无味的数据中,另一方面可以提高学生的学习兴趣。
2.2 通过统计实践学习统计。
统计的教学不能只停留在课本上,我们应以学生为中心,案例教学与情景教学应成为统计课程的重要内容。在统计教学过程中,我们应增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。还可以通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。
比如同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。
2.3 统计教学与日常生活相结合。
统计是一种社会调查活动,不论是宏观社会的整体调查研究,还是微观事物的观察分析,都需要统计。从微观上说,在日常生活中无处不存在着“统计”。例如,开学时,辅导员要统计一下到校的学生人数;篮球比赛中教练员要统计每个队员的投篮命中率、犯规的次数;农户在农作物收获后统计其产量等。再例如,家庭中的商品选购,买房买车,储蓄炒股,节水省电,参与彩票等等。在统计教学过程中,尽量把生活中的例子融入到统计课堂教学中。比如讲到正态分布,我们可以联系到我们的日常生活,你会发现许多现象呈现常态,虽有差异,偏离正常,但表现过高或过低的情况总是比较少,而且越不正常的可能性越少。比如人生目标,现实中“总统”只有一个,真正的发明家也不太多,而普通人随处可见。明确了这一规律,我们就不必为我们不是“总统”或“发明家”而气馁,我们应该像大多数普通人一样根据自己的实际情况树立一个通过努力就可以达到的目标。再说身边的朋友,最要好、最贴心的不会很多,明争暗斗、勾心斗角的也是少数,而不冷不热、不疏不亲的“点头朋友”却随处可见。“点头朋友”约占95%,也就说你在大街上随便碰到的100 个朋友中,大约只有五个是好朋友或坏朋友,其余都是“点头朋友”。明白了这一点,我们就应好好珍惜那少数几个难能可贵的好朋友们,对那95%的“点头朋友”要少些期待和要求,对那些无可救药的坏朋友则应该敬而远之,避免不必要的麻烦。这样书本上的知识也讲了,与实际生活相联系又增加了趣味性。
从宏观上说,一个国家一个社会更是离不开统计。在当代社会,统计学的应用越来越普及,人口学中的统计学应用(进行优生优育)、社会发展与评价、持续发展与环境保护、资源保护与利用、宏观经济监测与预测、政府统计数据收集与质量保证等都依赖于各类科学的统计方法。统计学在企业生产、经济生活中的应用也十分广泛,其中包括了保险精算、金融业数据库建设与风险管理、宏观经济监测与预测等一系列经济研究应用问题。
既然是处处离不开统计,那么我们就可以定期带领着同学们阅读各大新闻报纸及浏览各大统计官方网站,学习统计知识的同时又了解了国家大事。
2.4 改革考试方式和内容,合理评定学生成绩。
考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育、特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不拘一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。
3 结束语
教师在教学过程中要时刻明确学生是课堂的主体,教师要结合学生状况,灵活设计课堂模式,激发学生学习兴趣,了解和贯彻课程内容对学生能力和学生个性发展的要求,把学生放在教学的主导地位,引导学生发挥其主观能动性,培养学生信息学习的积极性、创造性和主观能动性,建立起能促进学生全面发展的教育教学模式。
猜你喜欢:
1. 统计方面论文优秀范文参考
2. 统计方面的论文范文
3. 统计学术论文范文
4. 统计优秀论文范文
5. 统计学论文范文
统计学的研究方法
统计是要分析数据的,但首先需要考察的是,数据的来源是否合适,实验采集的数据是否符合分析的目的和要求。
所谓实验设计就是指设计实验的合理程序,使得收集得到的数据符合统计分析方法的要求,以便得出有效的客观的结论。它主要适用于自然科学研究和工程技术领域的统计数据搜集。
实验设计要遵循的三个基本原则:
(1)重复性原则:即允许在相同条件下重复多次实验。好处是:其一可以获得更加精确的有效估计量;其二,可以获得实验误差的估计量。这些都是提高估计精度或缩小误差范围所需要的。
(2)随机化原则:是指在实验设计中,对实验对象的分配和实验次序都是随机安排的。是实验设计的重要原则。
(3)区组化原则:即利用类型分组技术,对实验对象按有关标志顺序排除,然后依次将各单位随机地分配到各处理组,使各处理组组内标志值的差异相对扩大,而处理组组间的差异相对缩小,这种实验设计安排称为随机区组设计。
2.大量观察
大量观察法是统计学所特有的方法。所谓大量观察法,是指对所研究的事物的全部或足够数量进行观察的方法。
3.统计描述
统计描述是指对由实验或调查而得到的数据进行登记、审核、整理、归类、计算出各种能反映总体数量特征的综合指标,并加以分析,从中抽出有用的信息,用表格或图像把它表示出来。是统计研究的基础。它通过对分散无序的原始资料的整理归纳,运用分组法和综合指标法得到现象总体的数量特征,揭露客观事物内在数量规律性,达到认识的目的。
分组法是研究总体内部差异的重要方法,通过分组可以研究总体中不同类型的性质以及它们的分布情况。
综合指标法是指运用各种统计指标来反映和研究客观总体现象的一般数量特征和数量关系的方法。
统计模型法则是综合指标法的扩展。它是根据一定的理论和假定条件,用数学方程去模拟现实客观现象相互关系的一种研究方法。
4.统计推断
所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。
(1)参数估计法:当总体的界限已划定,总体某一数量特征(如总体平均数、方差等)的数值就是唯一确定的,所以把总体的数量特征称为总体参数。但是总体参数通常不知道,这就需要通过样本数据计算样本统计量,并以此作为总体参数的估计量来估计总体参数的取值或取值区间,这种方法称之为参数估计法。
(2)假设检验法:假设检验的特点是,由于对总体的变化情况不了解,不妨先对总体的状况作某种假设,然后根据样本实际观察的资料对所作假设进行检验,来判断这种假设的真伪,以决定行动的取舍。假设检验的方法是统计推断常用的方法。会计